[go: up one dir, main page]

JP2842537B2 - 酸化物超電導線材とその製造方法 - Google Patents

酸化物超電導線材とその製造方法

Info

Publication number
JP2842537B2
JP2842537B2 JP63241112A JP24111288A JP2842537B2 JP 2842537 B2 JP2842537 B2 JP 2842537B2 JP 63241112 A JP63241112 A JP 63241112A JP 24111288 A JP24111288 A JP 24111288A JP 2842537 B2 JP2842537 B2 JP 2842537B2
Authority
JP
Japan
Prior art keywords
wire
oxide
thickness
oxide layer
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63241112A
Other languages
English (en)
Other versions
JPH01251515A (ja
Inventor
昭 岡山
道哉 岡田
忠興 森本
俊美 松本
吉美 矢内
宏 佐藤
俊哉 土井
和英 田中
隆彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPH01251515A publication Critical patent/JPH01251515A/ja
Application granted granted Critical
Publication of JP2842537B2 publication Critical patent/JP2842537B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • H10N60/203Permanent superconducting devices comprising high-Tc ceramic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49014Superconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物超電導線材及びその製造方法に係り、
特に臨界電流密度の向上に好適な酸化物超電導線材とそ
の製造方法に関する。
〔従来の技術〕
従来の超電導物質の超電導転移温度が大幅に上まわる
高温超電動物質として、ランタン・バリウム・銅の酸化
物が1986年初頭にジエー・ジー・ベドノルツとケー・エ
ー・ミユーラー両博士により発見されて以来、1987年春
には90K級の転移温度を有する超電導物質としてイツト
リウム・バリウム・銅の酸化物(Y−Ba−Cu−O系と略
称する)が米国ヒユーストン大学チユー博士ら及び中
国,日本でほぼ同時期に発見された。これら高温超電導
物質の相次ぐ発見は超電導革命とも称され、目下、物質
の組成,結晶構造,物性及び理論等の基礎科学から、物
質合成法,安定性あるいは弱電,強電分野への応用開
発、更には、より高い転移温度特性を示す室温超電導物
質の探索を目指した研究開発が精力的に進められてい
る。
その中で、高温超電導物質を線材形状に構成する技術
は一般に線材化技術と称され、超電導マグネツト等の強
電分野への応用における要素技術として位置付けられて
いる。線材の断面構成は、従来の合金系あるいは化合物
系超電導線材で周知のように、超電導特性を有する相と
金属相とが複合された断面構成が採用されている。線材
における金属部の機能は、線材を長尺形状に塑性加工
し、かつ超電導相を熱処理加工等で形成させる製造過程
での担持体であること、線材のコイル体への巻線作業時
及びコイル製品状態における強度維持体であること、更
には線材を超電導状態として通電する場合の超電導−常
電導転移に対する安定化材としての機能であること、な
どである。
酸化物系高温超電導物質の線材化に関しては、たとえ
ば日本経済新聞(昭62年3月4日付),同(4月3日
付)あるいは新超電導体−開発の現状とその応用(日経
マグロウヒル社刊,1987年6月15日発行)等で発表され
ているように、線材の構成要素である金属相(以下、シ
ース材と称す)の材質の可能性や線材形状を実現するた
めの塑性加工方法及び熱処理方法の試みが報じられては
いるが、その中で達成されている線材の臨界電流密度は
毎平方センチメートル当り高々数百アンペアのレベルで
ある。
〔発明が解決しようとする課題〕
上記したように、酸化物系高温超電導物質の線材形状
での臨界電流密度は工業的に要求される水準と比較する
と、現状では少なくとも2桁低いレベルにあり、臨界電
流密度を高めるための線材構成の詳細についても明らか
でない。
本発明の目的は、臨界電流密度を毎平方センチメート
ル当り少なくとも1000A以上に高めた酸化物系超電導線
材とその製造方法を提供することにある。
〔課題を解決するための手段〕
本発明を概説すれば、本発明の第1の発明は酸化物超
と、銀、又はそれと同効の銀基合金よりなる群から選択
した金属で該酸化物層を被覆した金属層とを有し、酸化
物層の厚みが、線材の全体の厚みの0.35から0.75である
ような酸化物超電導線材において、冷間圧延された線材
は、少なくとも1000A/cm2以上の臨界電流密度を有し、
酸化物層と金属層が、断面において互いに平行と現れる
ような平坦な形状を有し、線材の全体の厚みが0.2mm以
下であり、金属層は焼結のための熱処理において酸化物
層の収縮変形に追従するように変形可能であることを特
徴とする。
また、本発明の第2の発明は、上記第1の発明の酸化
物超電導線材の製造方法に関する発明であって、超電導
特性を有する酸化物層と、銀、又はそれと同効の銀基合
金よりなる群から選択した金属で該酸化物層を被覆した
金属層とを有し、冷間圧延された線材は、少なくとも10
00A/cm2以上の臨界電流密度を有し、酸化物層と金属層
が、断面において互いに平行と現れるような平坦な形状
を有し金属層は焼結のための熱処理において酸化物層の
収縮変形に追従するように変形可能であり、 (a)超電導性を有する酸化物粉末を金属チューブに充
てんする工程、 (b)該チューブを円形断面のロッドワイヤへ延ばす工
程、 (c)該ロッドワイヤを平坦な線材とするために冷間ロ
ーリングを行い、線材の全体の厚みが0.2mm以下で、冷
間ローリングで加工度が90%以上となるように扁平化さ
れ、酸化物層の厚みが、線材の全体の厚みの0.35から0.
75である平坦な線材を得る工程、及び (d)平坦な線材を超電導酸化物をシンターするために
熱処理する工程 の各工程を有することを特徴とする。
なお、本発明の線材において、線材の厚さ、及びそれ
に対する内部の酸化物層の厚さの比を前記のように数値
限定したのは、前記金属、すなわち銀、又はそれと同効
の銀基合金層が、最終冷間加工後の焼結時の酸化物層の
収縮変形に追従して変形可能とするためである。したが
って、銀基合金の中で、上記した銀と同効の効果を示す
合金の好適な例には銀基金合金がある。
超電導特性を有する酸化物層が金属層によつて覆われ
た酸化物系超電導扁平線材において、線材の長手方向に
垂直な断面に現われる酸化物層の上,下面が平行な部分
を有する程度に扁平形状の薄帯であり、酸化物層の厚さ
が圧延によつて得られた線材の全厚さの0.35〜0.75の範
囲内にあることが好ましく、特に前記線材の全厚さが、
0.2mm以下の薄帯が好ましく、前記金属層は焼結時に酸
化物層の収縮変形に追従して変形可能な厚さを有するも
のである。そして、使用時には弾性を有するものが好ま
しい。また、超電導特性を有する酸化物層が金属層によ
つて覆われた酸化物系超電導扁平線材を製造する方法に
おいて、金属製パイプを超電導特性を有する酸化物で充
填し、線引し、次いで線材を冷間圧延してその圧延前の
横断面全体の厚さをti、圧延後の全厚さをtと表わした
とき(ti−t)/ti×100≧90となるように圧延し、次い
で熱処理することにより達成される。
〔作用〕
本発明に従えば、酸化物系超電導線材は超電導特性を
有する酸化物が金属層によつてその周囲を覆われた構成
をとつており、その線材の長手方向に垂直な断面におい
て金属層と酸化物層とが平行な部分を有する扁平形状を
なしている。前記金属層は酸化物層との平行な部分での
片面の厚さが酸化物層より小さく、すなわち金属層の全
厚さが、酸化物を含む全体厚さの25〜65%、好ましくは
35〜60%であり、金属層は酸化物層の超電導特性向上の
ために焼結する熱処理時における収縮変形に追随して変
形可能であり、使用時には弾性であり、線材の長さ方向
には可撓性を有するものである。金属層はこの焼結後の
収縮に追随して変形できるように酸化物層に比較して薄
く形成しないと酸化物層にき裂が形成されるので、超電
導特性は向上しない。
断面構造の高温超電導線材において、線材の断面形状
が扁平であること、言い換えれば板状線材若しくはリボ
ン形状の線材であることによつて、線材横断面積に対す
る横断面積郭線長さ、すなわち線材断面における比表面
積が増大し、線材に超電導特性を発現させるための熱処
理工程で、雰囲気からの酸素の吸収を容易にする作用が
ある。更に、上記熱処理工程では、酸化物層粒子の焼結
反応に随伴して酸化物層が体積収縮を生ずることが避け
られないが、線材断面構成が扁平形状であることは、円
形断面形状である線材に比べて、線材断面上での酸化物
層粒子の焼結収縮変形及び該収縮変形に追随する金属層
の収縮変形を半径方向の収縮変形から板厚及び板幅方向
の収縮変形に転化することによつて、断面収縮変形を著
しく容易にする作用がある。また、金属層の変形が容易
化することによつて、熱処理工程での線材内部の酸化物
層と金属層の境界面の密着性を維持させる作用がある。
線材断面が扁平形状であることは本発明の1要件であ
り、それ独自で上記した作用効果を生ずるものである。
上記目的は、超電導特性を有する酸化物層と金属層と
から成る断面構造の高温超電導線材において、線材断面
形状が扁平であり、扁平断面の中央に酸化物層、該酸化
物層をとり囲んで金属層を配し、そのときの扁平断面の
全厚さが0.2mm以下とすること、及び前記金属層の全厚
さ、すなわち、扁平断面の長手方向において、酸化物層
を挾んで対峙する金属層の両方を加えた厚さが、全板厚
の25〜65%を有する構成によつて達成される。
しかし、これだけでは高い電流密度を有する線材の製
造は難しい。なぜならば、薄板を作る方法として例えば
薄い金属板の上に高温超電導物質をドクターブレード法
やスクリーン印刷法などで薄く塗り付けることが行なわ
れているが、この方法で得られた線材の臨界電流密度は
現在100A/cm2前後と低い(日本金属学界会報第26巻第10
号,1987,P981)。臨界電流密度の低い原因の1つに高温
超電導体の密度が低いことが考えられる。超電導体の機
能はとりもなおさず電気を流すことであり、高温超電導
体中に空隙が多くあれば、電流パスが減じてしまう。
すなわち、高温超電導体の線材化において第1義的に
重要な問題は線材内部にある酸化物層の密度を十分上昇
させておくことが必要と考えられる。そのための手段と
して各種実験の結果、金属層を構成するパイプ状の金属
中に高温超電導体を挿入し、冷間圧延を行なうことで酸
化物層の密度上昇が可能なことを見い出した。
上記本発明を構成する個々の技術手段の作用は次の通
りである。
線引き伸線加工だけで細線化した場合の加工度と密度
の関係は発明者らの実験結果から次のようである。断面
積減少率が70%程度までは加工度の増加と共に密度は上
昇するが、断面減少率70%程度以上では密度はほぼ一定
となり、その値は4.4g/cm2である。加工度98%を加えた
線材について、銀シースを取除いて950℃で24時間の熱
処理を加えてもその密度は5.4g/cm2と理論密度比の0.86
にしかならない。
すなわち、線引き伸線加工で、高温超電導体の密度を
上昇させるには限界がある。
しかるに、本発明者らは冷間圧延により、線材の断面
形状を扁平、換言すれば板状若しくはリボン状に圧延す
ることで、高温超電導体の密度は上昇して1000A/cm2
上の臨界電流密度を達成することを見出した。
線引き伸線加工に比較して圧延加工で密度が上昇する
理由は、加工時の応力が前者では引つ張りが主であるの
に対し、後者では圧縮が支配的になるからと考えられ
る。
本発明の線材の単位線材は厚さが0.2mm以下の薄板線
材が好ましい。圧延によつて得られた扁平断面の全厚さ
が0.2mmを超えると上記効果は充分得られないことがあ
る。
本発明における扁平断面における幅は厚さに対し20〜
400倍程度が好ましく、特に40〜200倍が好ましい。この
幅と厚さとの関係によつて欠陥のない線材が得られる。
一方、本発明において使用される高温超電導発現物質
であるイツトリウム・バリウム・銅酸化物YBaCuOは酸素
欠損型3重層状ペロブスカイト結晶であることが知られ
ている。該物質は高温では正方晶、低温では斜方晶とな
り、斜方晶の時に超電導特性を示す。正方晶から斜方晶
に変態する時には酸素を取込むことが必要である。また
該物質は一旦超電導特性を附与した後に粉砕すると結晶
の異方性に原因し、超電導が著しく劣化する。
線材加工用のYBaCuO原料は現在、固相反応法,共沈法
で作製されている。固相反応法はY2O3,BaCO3及びCuOを
出発原料とし、これら粉末を混合粉砕後に加熱処理を行
ない固相で反応させる。共沈法はY,Ba及びCuをしゆう酸
塩水溶液とし、これらを沈澱・濾過して乾燥後に加熱処
理を行ない反応させる。これらいずれの方法もYBaCuO合
成の加熱処理で焼結が進行し、粉末は凝集固化する。こ
のようにして得られた原料は線材加工用に粉砕される。
YBaCuOにおいて優れた超電導特性を発現させるために
は、原料が高品位で安定に供給されることが必要であ
る。上記の原料製造過程においてYBaCuOの汚染が特に問
題となるのは加熱処理で凝集固化した試料を粉砕する部
分である。その理由は以下のようである。
通常、粉砕はボールミル,らいかい機等を用いるが、
高温超電導体YBaCuOは酸化物のため非常に硬い。そのた
め、粉砕過程でボールミルのポツトやボール,らいかい
機の鉢や杵が消耗してYBaCuO中に混入するためである。
しかし、線材に用いるYBaCuOの原料粉末の形状は細かい
ものが、塑性の均質性及び線材加工後の熱処理(これに
ついては後で詳述する)での焼結性が良いなどの理由で
粉砕に長時間を掛けて微粉化する方法がとられ、この場
合は当然、上記理由でYBaCuOの汚染度が高まり、微細化
の効果が消去され超電導特性の低下を招く。
線材化の過程でシース材内部の酸化物層は粉砕される
ため超電導特性が著しく劣化すると同時に粒子と粒子の
結合は機械的となり充分電流パスが取れない。そのた
め、線材に加工後、加熱処理で粒子と粒子を結合させる
ことが必要となる。この熱処理はYBaCuOの正方晶の温度
領域で行なうため、熱処理後に斜方晶に変換させる。正
方晶から斜方晶への変換は温度的には熱処理後の徐冷で
達成され、酸素の供給はシース材を通して行なわれるこ
とになる。シース材の厚さが厚いとこの酸素の供給が十
分に行なわれず、内部のYBaCuOは超電導体となりにく
い。そのため、シース材すなわち金属層の厚さを0.1mm
以下とし、全板厚の25〜65%にすることが好ましい。こ
こでいう金属層の厚さとは酸化物層であるYBaCuOを挾ん
で対峙する上下の合計厚さで、片側だけの厚さはその半
分となる。金属層の厚さが酸化物層の厚さの25%以下に
なると、圧延過程で金属相が破断して長尺線材の加工が
困難となる。
扁平断面の全厚さが、0.2mm以下と薄くすることは、
内部の酸化物相に金属層を通して供給される酸素の取込
みが円滑に行なわれる上でも好ましいことである。
最終冷間加工後の線材の焼結に要する熱処理温度は87
0℃以下では十分焼結が進行せず酸化物層の粒子と粒子
の結合が不十分となり電流パスが十分取れない。950℃
以上になると異相が生じ超電導特性が劣化する。
線材内部の酸化物層の密度は、上記の熱処理後で理論
密度比が0.87未満では空隙が多く高い臨界電流密度が得
られないので、0.87以上好ましくは0.90以上、最も好ま
しくは0.95以上にする必要がある。
圧延加工における加工度は全板厚減少率で表わしたと
きの加工度が90%以下では、金属層と酸化物層の密着性
が悪く、界面抵抗の増加を招くので好ましくない。
圧延加工に先立つ線引き伸線加工は最終線材の酸化物
層の密度向上に寄与するが、断面減少率が70%以上にな
るとそれ以上加工を加えても密度はほぼ一定値を取るた
め線引き伸線加工における断面減少率は少なくとも70%
以上必要である。
本発明における圧延加工を以下に詳説する。本発明に
よる圧延工程は、線材の圧延前の横断面全体の厚さを
ti、圧延後の横断面における酸化物層の厚さをt0、全厚
をtと表わしたとき、 0.35≦t0/t≦0.75 …(1) (ti−t)/ti×100≧90 …(2) の両式を同時に満たすように酸化物系高温超電導線材の
断面形状及び該断面形状を得るための変形率を構成する
ことによつて達成される。
上述のように、本発明の目的とする高い臨界電流密度
の線材を得るには、更に付加的要件として、酸化物を板
厚中央に配置し、かつ酸化物相の厚さをt0、全体厚をt
で表わしたとき、 0.35≦t0/t≦0.75 好ましくは 0.4≦t0/t≦0.65 の関係式で表わされる板厚断面構成とする必要がある。
板厚中央部に酸化物層を配置することにより、熱処理
工程での酸化物層粒子の焼結収縮変形が両外皮シース材
に等量の収縮変形をもたらし、その結果として熱処理工
程で巨視的な湾曲変形が防止される作用があり、結果的
に線材化された酸化物層の熱処理歪を軽減し、臨界電流
密度を高める作用がある。
次に、線材断面構成における酸化物層の板厚t0と全板
厚tの比、t0/tが0.35以上、0.75以下とする要件は、本
発明者らが鋭意研究を重ねた結果解明されたものであ
る。t0/tが0.35より小さい断面構成の線材、すなわち酸
化物層の板厚t0が全板層の35%より小さい線材では、熱
処理工程での酸化物層粒子の焼結収縮が上下両面のシー
ス材の拘束によつて妨害され、結果的に焼結された酸化
物層の線材長さ方向での歪若しくはき裂の発生を伴い、
更にはシース材と酸化物層とのはく離を生じて高い臨界
電流密度が得られなくなる。
また、t0/tが0.75より大きい線材では、熱処理工程で
の酸化物層粒子の焼結収縮は、その初期過程ではシース
材の厚さが薄いことによつて、シース材の拘束を受ける
ことなしに発生しうるが、焼結収縮の増大、すなわち焼
結が促進されるのに伴つて上下両面のシース材は摺曲変
形を呈し、焼結が進んだ段階ではシース材の摺曲部が折
れ重なることによつて、結果的には線材長さ方向の酸化
物層の均一で自由な焼結収縮が妨げられる。その結果、
t0/が0.35より小さい銭材の場合と同様の問題、すなわ
ち酸化物層内の歪,き裂若しくはシース材界面での部分
はく離を生じて高い臨界電流密度が得られなくなる。
t0/tが0.35以上、0.75以下の断面構成から成る本発明
の線材構成では、上記欠点が除かれ、線材形状に塑性加
工した後の熱処理工程で、酸化物層粒子の焼結収縮はシ
ース材の整合的な変形を伴うことによつて、歪やき裂若
しくはシース材との界面はく離がなく、かつ、臨界電流
密度の高い酸化物超電導線材を得ることができる。扁平
断面を得る過程の横断面変形率 が90%以下では扁平化工程での酸化物層粉末粒子の粉砕
効果が十分には期待されない。tiは扁平化前の横断面全
体の初期厚さ、tは扁平化後の横断面全厚さである。
以上述べたように、本発明は冷間圧延法を用いること
により、高い臨界電流密度を有する超電導線材を提供す
るものである。すなわち、YBaCuO原料の粉砕過程で、粉
砕時間を極めて短時間とし、粉砕中に生じるYBaCuOの汚
染を非常に少なくする。その結果として、粉末中には10
0μm程度の粗粉が多く残るが、この粗粉を冷間圧延の
過程で粉砕するものである。圧延時の粉砕効果は横断面
変形率、すなわち加工度〔(ti−t)100/ti〕に依存す
る。加工度が大きくなるに従い粉砕は進むが、加工度90
%以下ではまだ充分に粉砕が進行せず、粉砕過程中の数
十μm程度の粉末が残存する。加工度90%以上になると
著しく粉砕が進み、粉末の粒径は10μm程度以下とな
り、その結果、線材の臨界電流密度が大きく向上する。
冷間圧延前の容器に充填されたYBaCuOの密度は冷間圧
延後の線材に影響を及ぼす。低密度で充填されると、
粉末の粉砕効率が著しく低下する、得られた線材の板
厚が変動するなどである。の理由は冷間加工の応力が
粉末の粉砕に効果的に働らかず、粉末の移動に消費され
るためである。の理由は、金属容器にパイプを用いた
場合が顕著で、パイプは圧延の初期に圧延ロールに接す
る面が小さいため、応力の集中を受け易く、その部分の
板厚が薄くなる。これは圧延が進行するに従つてシワな
どの原因となり、良好な線材を作製し難い。の問題を
解決するには金属容器の断面を矩形にすることである程
度解決できる。,の問題を生ぜずに、粉砕効果を高
め、かつ板厚の変動が極めて少ない線材を製造するに
は、冷間圧延前の金属容器に充填するYBaCuOの密度を少
なくとも4.0g/cm3以上にする必要がある。本発明では、
実施例で密度を上げる方法として冷間圧延前にドローベ
ンチを用いて線引き伸線したが、CIP(old sostati
c ress)を用いて予め高密度化したり、金型で粉末を
プレスして密度を高めたペレツトを金属容器に挿入する
などしても同じ効果が得られる。
高温超電導発現物質であるYBaCuOの超電導特性は粉砕
することで劣化する。冷間圧延で加工された線材中のYB
aCuOは粉砕されており、また粒子と粒子も機械的に接触
している状態で電流パスがとれず冷間圧延のままでは超
電導特性が発現しない。そのため、圧延加工後の線材は
熱処理を施す。熱処理温度が870℃以下ではYBaCuOの焼
結が進まず粒子と粒子の結合が不十分で電流パスが十分
とれない。950℃以上になると異相が生じ超電導特性が
劣化する。熱処理中の雰囲気は酸素が好ましい。その理
由は、YBaCuOは高温では正方晶、低温では斜方晶とな
り、斜方晶のときに超電導特性を示す。正方晶から斜方
晶に変態するとき、酸素を取込むことが必要となるから
である。正方晶から斜方晶への変換は熱処理後の徐冷で
達成される。
上記熱処理後の線材内部のYBaCuOの密度は電流パスに
影響を及ぼし、密度が低いと高い臨界電流密度が得られ
ないため5.7g/cm3以上の密度にすることが好ましい。こ
の値は理論密度比にして0.9となる。
用いる金属容器は熱処理時の酸素の透過性を考慮して
銀又は銀基合金が好ましく、銀基合金の場合はパラジウ
ム,白金,ルテニウムおよび金の内の1種又は2種以上
を含み、かつ該合金成分の重量百分率の総量は10%以上
になると酸素透過性が悪化するので10%以下が好まし
い。
本発明に係る酸化物系高温超電導線材は他にタリウム
・カルシウム・バリウム・銅系,ビスマス・ストロンチ
ウム・カルシウム・銅系酸化物にも適用可能である。
〔実施例〕
実施例1 以下、本発明を第1(a)〜(d)図及び第2図及び
第1〜2表により説明する。
第1図(a)及び(b)は本発明に係る高温超電導線
材の横断面の板幅方向中央部を省略した部分図である。
1は酸化物層、例えばY−Ba−Cu−O系高温超電導物質
であり、2は金属層、例えば銀シース、tは全板厚、t0
は酸化物層の厚さである。これらの扁平若しくは板状線
材は第2図の実線で示す一連の工程を経て作製した。第
2図において、まず超電導物質を合成するための出発原
料としてY2O3,BaCO3及びCuOをY,Ba,Cuの原子モル数がそ
れぞれ1:2:3となるように秤量した。次に、これら3種
の原料粉末に純水を加え、遠心ボールミルにより1時間
混合粉砕した。得られた混合粉末は150℃で脱水したの
ち、第1表に示す条件で第1熱処理を施こした。第1熱
処理を経た粉末状の仮焼成品を金型プレスにより直径30
mm×厚さ3mmに成型し、第1表に示した条件で第2熱処
理を行なつた。以上の工程で得られた複数個のペレツト
は液体窒素による冷却で、超電導物質の反磁性効果によ
り浮上することが確認された。これらのペレツトをらい
かい機により10分間粉砕したのち、外径6mm、内径4,5及
び5.5mm、長さ400mmに加工された純銀製パイプ3本に各
々理論密度比0.5で充填封入した。線引工程はドロ ーベンチにより行い、銀パイプの外径をいずれも6mmか
ら2.8mmに減少させた。得られた線材は冷間圧延加工に
よつて扁平断面化した。圧延工程における1パス当りの
圧下率はおよそ10%とし、線材の板厚がおよそ0.5mm及
び0.2mmに達した時点で300℃×30分の中間の焼純を行つ
た。この間、およそ0.5mm付近の板厚より薄肉化した時
点で、適度の厚さ間隔をおいて、長さがおよそ100mmで
厚さが異なる線材サンプルを採取した。各サンプルの一
部は第1図(b)に示すように板耳を切り落した。これ
らのサンプルはいずれも第1表に示す第3熱処理を施こ
した。金属層の厚さはいずれも約25%であり、酸化物層
は50%である。第3熱処理は最終冷間圧延後に行われ、
最初の熱処理温度より若干低い温度で行なうのが好まし
い。
このようにして得られた扁平断面の線材は、更に約30
mmの長さに切断し、線材の臨界電流密度:Jc測定に用い
た。Jc測定は通常の4端子法により液体窒素中で行い、
電圧端子間距離をおよそ10mmとしたとき、端子間電圧が
1μVに達した電流値を各サンプル横断面における酸化
物層の断面積で除して算出した。酸化物層の断面積はシ
ース厚さの異なる3本の線材につき、各板厚ロツトごと
に横断面の顕微鏡観察によつて行なつた。各線材の幅は
厚さ約0.5mmで約5mmであり、薄いものが約6mmであつ
た。
第2表(a),(b)および(c)は、線引き工程に
入る前のパイプの肉厚がそれぞれ1mm(外径6mm,内径4m
m)、0.5mm(外径6mm,内径5mm)及び0.3mm(外径6mm,内
径5.4mm)の場合に得られた線引き−圧延材の板厚tと
臨界電流密度Jcの関係を示す。線材横断面における酸化
物層の厚さt0と線材の全板厚tとの比t0/tは線引き前の
銀パイプの肉厚によつて定まり、肉厚1,0.5及び0.3mmの
パイプから出発した線引き−圧延材においては、それぞ
れt0/tが0.42,0.62及び0.74であつて、各肉厚ロツト内
ではサンプリングした板厚が異つていてもt0/tは測定誤
差内で一定であつた。Jcは、同一条件で作製した別々の
サンプル2〜4本について行い、Jcの値はこの2〜4本
の間で相当のパラツキが見られたので、第2表(a)〜
(c)ではJc値を水準区分して記号で示してある。上記
の表で明らかなように、線材のJc値は各t0/tにおいて特
定の板厚tにおいて著しく増大する傾向を示した。ま
た、第1図(b)で示した板耳除去サンプルは板耳を除
去しない場合に比べて一般に高いJc値が得られた。
なお、前記第2表を、酸化物層の厚さt0と、酸化物層
の幅Wとの関係で整理した結果を、下記第2−1表に示
す。
第2−1表において、t0は、第2表中のt0/tの値に基
づいて、下記式より算出した: t0=t×x(mm) 式中tは全板厚、xはt0/tであつて、既述のように、内
径4mmの場合は0.42、5mmの場合は0.62、5.4mmの場合は
0.74である。
またWは下記式より算出した。
W=5×y ここで定数5は、線材の外径寸法における横幅であり、
yは素管の内外径の比、すなわち4/6、5/6又は5.4/6で
ある。
そして第2−1表における○、△及び×印は、各々第
2表と同義である。
上記した本発明を含む実施例のほかに、第1図(c)
で示すように、板状線材のシースを片側だけ除去した扁
平状線材及び上下面シース厚さを不均等にした扁平状線
材についても実験的に作製したが、これらのサンプルは
いずれも第3熱処理後においてシースが除去された面又
はシース厚さが薄い方の面を凹側にして著しい湾曲変形
を生じ、それらのJc値は250A/cm2以下であつた。また、
本発明と比較のため第1図(d)に示した円形断面の線
材を作製した。その製法は第2図に示す工程のうち、圧
延工程を省いた点線経路で行つた。線引き前のパイプ外
径及び肉厚はそれぞれ6mm及び0.5mmであり、線引き後の
パイプ外径は1.7mm〜0.8mmであつた。その第3熱処理は
上記した扁平断面の場合と同等であつた。このようにし
て得られた円形断面の線材のJc値は高々350A/cm2であつ
た。
一連の断面形状及び寸法又は累積圧下率のサンプルに
ついて第3熱処理後の横断面のミクロ組織観察を行つた
結果、線引き−圧延工程を経た扁平断面の板状線材は圧
延工程を経ない円形断面の線材に比べて、シース内部の
酸化物層に空隙が少なく、高密度化していることのほか
に、酸化物層の焼結した結晶粒が著しく微細化している
ことが分つた。
以上の実施例では金属シースに純銀を用いたが、銀と
パラジウム等貴金属との合金であつても同様の効果を期
待できる。
本実施例によれば、酸化物系高温超電導体の線材化が
容易であり、ミクロ組織的にも緻密でかつ結晶粒径も微
細化することによつて高い臨界電流密度が得られる。
実施例2 以下、本発明の実施例2を第3図〜第4図及び第3表
で説明する。
第3図は本発明に係る高温超電導線の横断面図を示
す。線材中央にYBaCuO高温超電導物質である酸化物層1
があり、その外周部にYBaCuOをとり囲んで銀の金属シー
スである金属層2がある。この線材は以下に示す一連の
工程を経て作製した。
初めに超電導物質を合成するための出発原料としてY2
O3,BaCO3及びCuOをY,Ba,Cuの原子モル数がそれぞれ1:2:
3となるように秤量した。次に、これら3種の原料粉末
に純水を加え、遠心ボールミルにより1時間混合粉砕し
た。得られた混合粉末は150℃で脱水したのち950℃で5
時間、酸素雰囲気中で仮焼した後に金属プレスで直径30
mm,厚さ3mmのペレツトに成形し、さらに950℃で5時間
酸素雰囲気中で焼結した。以上の工程で得られたペレツ
トは液体窒素による冷却で、超電導物質の反磁性効果に
より浮上することを確認した。これらのペレツトをらい
かい機で30分間粉砕した後、外径6mm,内径5mmに加工さ
れた純銀製パイプに密度2.7g/cm2で充填封入して線材化
の素材とした。
線材工程は2種類の方法で行なつた。線材工程〔I〕
はドローベンチにより直径を順次減少させて直径の異る
線材を得た。線材工程〔II〕はドローベンチにより直径
2.8mmにまず伸線した。この時の全断面減少率は78.2%
であつた。その後に冷間圧延加工によつて扁平断面化し
て各種の厚さの異る線材を得た。
これらの線材は、約30mmに切断し、910℃で20時間、
酸素雰囲気で熱処理を行ない線材の臨界電流密度:Jc測
定用に用いた。この熱処理の昇温及び降温は200℃/1時
間で行なつた。
Jc測定は通常の4端子法により、液体窒素中で行な
い、電圧端子間距離をおよそ10mmとしたとき、端子間電
圧が1μVに達した電流値を各サンプル横断面における
酸化物層の断面積で除して算出した。酸化物層の断面積
は、横断面の顕微鏡写真を用いて測定した。
第3表に線材工程〔I〕で作製した線材の線径と断面
減少率,酸化物層の密度及び理論密度比、Jcとの関係を
示す。
第3表より明らかなように線材工程〔I〕すなわち線
引き伸線で加工した線材は断面減少率を大きくし、線径
を細くしても密度は5.0g/cm3程度と低く、Jcの値も数百
A/cm2であつた。
線材工程〔II〕で作製した線材の板厚とJcとの関係を
第4図に示す。板厚が0.2mm以下になるとJcは急激に増
加し、板厚0.06mmでJc=3330A/cm2となり、第3表で示
した線引き伸線加工で得た線材に比較して10倍以上のJc
向上がみられた。板厚0.2mm以下の酸化物層の密度はい
ずれも5.7g/cm2、理論密度比の90%以上であつた。又、
板厚0.2mmにおける板厚減少率は93%であつた。板幅は
線材の円周とその板の円周とほぼ同じ大きさとなり、そ
れによつて決まる。
線材工程〔II〕で作製した線材の板厚とシース材の厚
さとの関係はJc値の高い板厚0.2mm以下の線材の全金属
相の厚さは全板厚の35〜65%の範囲であつた。
全板厚が0.2mmのときのシース厚さが約46μm、酸化
物層厚さが約110μm、全板厚が0.1mmのときのシース厚
さが約23μm、酸化物層厚さが約56μm、及び全幅が約
5.8mmで、約1240A/cm2であり、特に全板厚が0.06mmのと
きのシース厚さが約14μm、酸化物層厚さが約34μm
で、約3300A/cm2で著しく高い臨界電流密度が得られ
る。
実施例3 以下、本発明の実施例3を第5図で説明する。
金属容器に充填するYBaCuO粉末の合成は以下の方法で
行なつた。出発原料としてY2O3,BaCO3及びCuOを用い、
Y,Ba,Cuの原子モル数がそれぞれ1:2:3となるように秤量
し、これら3種の原料粉末を遠心ボールミルにより1時
間混合した。次いで、得られた混合粉末は950℃で5時
間、酸素雰囲気で仮り焼結した後に金型プレスで直径30
mm,厚さ3mmのペレツトに成形し、さらに950℃で5時間
酸素雰囲気で焼結した。以上の工程で得られたペレツト
は液体窒素による冷却で、超電導物質の反磁性効果によ
り浮上することを確認した。これらのペレツトをらいか
い機で15分間粉砕した。粉砕後の粉末断面の偏光顕微鏡
(倍率200倍)によつて観察した結果、粉砕が十分行な
われておらず、その大きさは約70μm程であつた。
以上のようにして得たYBaCuO原料粉末は直径6mm,肉厚
0.5mmの純Agパイプにタツプ充填した。このときの充填
密度は2.7g/cm3であつた。次いでドローベンチを用いて
直径2.8mmまで線引き伸線加工を行ない、パイプ内部のY
BaCuOの密度を4.3g/cm3まで高めた後、4段冷間圧延機
で圧延し加工度の異なる線材を得た。
これらの線材は、約30mmに切断し、910℃で20時間、
酸素雰囲気で熱処理を行ない線材の臨界電流密度:Jc測
定用に用いた。この熱処理の昇温及び降温は200℃/1時
間で行なつた。
Jc測定は通常の4端子法により、液体窒素中で行な
い、電圧端子間距離をおよそ10mmとしたとき、端子間電
圧が1μVに達した電流値を各サンプル横断面における
酸化物層の断面積で除して算出した。酸化物層の断面積
は、線材横断面の光学顕微鏡写真を用いて測定した。
第5図の加工度を臨界電流密度Jcとの関係を示す。第
5図より明らかなように、加工度90%以上になるとJc値
は急激に増加し、95%以上で1000A/cm2以上、加工度98
%でJcは3300A/cm2に達した。加工度90%以上の線材の
密度は全て5.7g/cm3以上であつた。
加工度83%及び、加工度96%の線材横断面の偏光顕微
鏡写真(倍率200倍)を観察した結果、加工度83%の線
材中には粉砕が十分に進行していない30μm程度の粗粉
が残存しているが、加工度96%の線材中には加工度83%
の線材で観察された粗粉粒は見られずに、粒径は比較的
均質であつた。
本発明の加工度96%のものの全板厚は約110μmで、
金属層の厚さは20〜25μm、超電導体部分の酸化物層の
厚さは約60〜70μmであつた。
実施例4 第6図にタリウム系超電導線材の加工度と臨界電流密
度の関係を示す。この線材の実験方法を以下に示す。ま
ず、Tl−2223組成(Tl:Ba:Sr:Ca:Cu=2:1.6:0.4:2:2:
3)となるように、酸化タリウム、酸化バリウム、酸化
ストロンチウム、酸化カルシウム、酸化銅を秤量した。
まず、酸化バリウム、酸化ストロンチウム、酸化カルシ
ウム、酸化銅をメノウ製のらいかい機で十分に混合し
た。これを900℃で2時間仮焼した後、粉砕する。この
粉末に酸化タリウムを、らいかい機で十分に混合し、φ
30mm×3mmtにペレット化し845℃で4時間焼成してタリ
ウム系超電導体の高温相(Tc=120K)であるTl−2223超
電導粉末を合成する。これを粉砕した後、外径6mm、内
径5mmの銀パイプに初期密度2.5g/cm3で充填した。次
に、φ2.8mmまで線引き加工を行なつた。この線材に対
して一回の圧延加工で10%の加工度で圧延を行ない最終
的に0.07〜0.5mmまで圧延加工を行なつた後、臨界電流
密度を測定した。このときの超電導体の密度を測定し、
Tl−2223相の理論密度7.0g/cm3の比と臨界電流密度の関
係を第7図に示す。
次に、タリウム系超電導体においてTc=110KであるTl
−2212相を用いて線材化を行なつたときの加工度と臨界
電流密度の関係を第8図に示す。この線材は、以下の様
に実験を行なつた。Tl−2212組成(Tl:Ba:Sr:Ca:Cu=2:
1.6:0.4:2:1:2)となるように、酸化タリウム、酸化バ
リウム、酸化ストロンチウム、酸化カルシウム、酸化銅
を秤量した。まず、酸化バリウム、酸化ストロンチウ
ム、酸化カルシウム、酸化銅をメノウ製のらいかい機で
十分に混合した。これを900℃で2時間仮焼した後、粉
砕する。この粉末に酸化タリウムを、らいかい機で十分
に混合し、φ30mm×3mmtにペレット化し845℃で4時間
焼成してTl−2212超電導体を得た。これを粉砕し、外径
6mm、内径5mmの銀パイプに初期密度2.5g/cm3で充填し
た。次に、φ2.8mmまで線引き加工を行なつた。この線
材に対して一回の圧延加工で10%の加工度で圧延を行な
い最終的に0.07〜0.5mmまで圧延加工を行なつた後、臨
界電流密度を測定した。このときの超電導体の密度を測
定し、Tl−2212相の理論密度7.42g/cm3に対する比と臨
界電流密度の関係を第9図に示す。
実施例5 第10図にビスマス系超電導線材の加工度と臨界電流密
度の関係を示す。この線材は、以下の方法で実験を行な
つた。まず、Bi2O3,SrO,CaO,CuO,PbOをBi:Pb:Sr:Ca:Cu
=1.84:0.34:1.91:2.03:3.06の化学量論組成となるよう
に秤量した後、810℃で12時間仮焼した後、外径6mm、内
径5mmの銀パイプに初期密度2.7g/cm3で充填した。これ
をφ2.8mmまで線引き加工した後、加工度10%の圧延加
工を数回行ない、最終的に板厚0.02〜0.19mmのテープ状
線材とした。この間、845℃の100時間の熱処理を圧延加
工の間に入れ、最終熱処理の後に臨界電流密度を測定し
た。次に、タリウム系線材と同様にBi−2223の理論密度
(2.9g/cm3)との比を求め、臨界電流密度との関係を第
11図に示した。イツトリウム系、タリウム系と同様に、
理論密度比90%以上において、高い臨界電流密度が得ら
れた。次に、ビスマス系超電導体において臨界温度が80
KであるBi−2212相を超電導体として用いて線材化を行
なつたときの臨界電流密度と加工度の関係を第12図に示
す。この線材は、以下の様に実験を行なつた。まず、Bi
2O3,SrO,CaO,CuOをBi:Sr:Ca:Cu=2.2:1.8:10:2.0の化学
量論組成となるように秤量した後、860℃で24時間仮焼
した後、これを外径6mm、内径5mmの銀パイプに初期密度
2.7g/cm3で充填した。次に、φ2.8mmまで線引きを行な
つた。この線材に対して一回の圧延加工で10%の加工度
で圧延を行ない最終的に0.02〜0.19mmまで圧延加工を行
なつた後、臨界電流密度を測定した。このときの超電導
体の密度を測定し、Bi−2212相の理論密度3.2g/cm3に対
する比と臨界電流密度の関係を第13図に示す。
実施例6 第14図にイツトリウム系超電導線材の理論密度比と臨
界電流密度(Jc)の関係を示す。初期密度2.7g/cm3、理
論密度比42%で外径6mm、内径5mm、のAgパイプにY系超
電導体を充填した後、φ2.8mmまで線引き加工を行なつ
た。この線材にさらに線引き加工だけを行なつた場合、
理論密度比は最高79%でJcは300A/cm2であった。これに
対して、φ2.8mmから圧延加工を行なつた場合、理論密
度比は90%に向上しJc3300A/cm2となった。
〔発明の効果〕
以上の説明で明らかなように、本発明によれば、線材
形状における酸化物系高温超電導体焼成のための熱処理
時における結晶粒焼結が十分に行なわれ、金属シースが
酸化物層の焼結収縮を妨害することがなく、また線材形
状を制御し、内部の酸化物層の密度を上昇させること及
び線材加工工程の冷間圧延での加工度を制御させること
で、1000A/cm2以上の高い臨界電流密度を得ることがで
きた。
本発明に係る超電導線は回転機のロータ及びステータ
用コイル,エネルギー貯蔵用コイル,核融合装置磁石用
コイル,送配電用ケーブル,変圧器用コイル,粒子加速
器用コイル,MRI及びNMRの磁石用コイル,電子顕微鏡用
コイル,原子吸光分析装置の磁石用コイル,電車,自動
車,エレベータ,エスカレータの電動機のロータ,ステ
ータ用コイル,リニアモータカーの磁石用コイルとして
用いることができる。
【図面の簡単な説明】
第1(a)〜(d)図は本発明の実施例及び比較例とし
ての酸化物系超電導線材の横断面図、第2図は本発明を
実施した製造プロセスのフローチヤート、第3図は他の
実施例により得られた酸化物系超電導線材の横断面、第
4図は第3図の線材の板厚と臨界電流密度Jcとの関係を
示すグラフ、第5図、第6図、第8図、第10図、及び第
12図は加工度と臨界電流密度Jcとの関係を示すグラフ、
第7図、第9図、第11図、第13図、及び第14図は理論密
度比と臨界電流密度Jcとの関係を示すグラフである。 1……酸化物層、2……金属層、t……全板厚、t0……
酸化物層の厚さ。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森本 忠興 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 松本 俊美 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 矢内 吉美 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 佐藤 宏 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 土井 俊哉 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 田中 和英 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 加藤 隆彦 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (56)参考文献 特開 昭64−72424(JP,A) 特開 昭63−279514(JP,A) 特開 平1−97312(JP,A) 特開 昭64−71005(JP,A) 新超電導体−開発の現状とその応用、 日経マグロウヒル社(1987,6,15) p.152〜155

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】超電導特性を有する酸化物層と、銀、又は
    それと同効の銀基合金よりなる群から選択した金属で該
    酸化物層を被覆した金属層とを有し、酸化物層の厚み
    が、線材の全体の厚みの0.35から0.75であるような酸化
    物超電導線材において、冷間圧延された線材は、少なく
    とも1000A/cm2以上の臨界電流密度を有し、酸化物層と
    金属層が、断面において互いに平行と現れるような平坦
    な形状を有し、線材の全体の厚みが0.2mm以下であり、
    金属層は焼結のための熱処理において酸化物層の収縮変
    形に追従するように変形可能であることを特徴とする酸
    化物超電導線材。
  2. 【請求項2】請求項1に記載の酸化物超電導線材を製造
    するに当り、超電導特性を有する酸化物層と、銀、又は
    それと同効の銀基合金よりなる群から選択した金属で該
    酸化物層を被覆した金属層とを有し、冷間圧延された線
    材は、少なくとも1000A/cm2以上の臨界電流密度を有
    し、酸化物層と金属層が、断面において互いに平行と現
    れるような平坦な形状を有し金属層は焼結のための熱処
    理において酸化物層の収縮変形に追従するように変形可
    能であり、 (a) 超電導性を有する酸化物粉末を金属チューブに
    充てんする工程、 (b) 該チューブを円形断面のロッドワイヤへ延ばす
    工程、 (c) 該ロッドワイヤを平坦な線材とするために冷間
    ローリングを行い、線材の全体の厚みが0.2mm以下で、
    冷間ローリングで加工度が90%以上となるように扁平化
    され、酸化物層の厚みが、線材の全体の厚みの0.35から
    0.75である平坦な線材を得る工程、及び (d) 平坦な線材を超電導酸化物をシンターするため
    に熱処理する工程 の各工程を有することを特徴とする酸化物超電導線材の
    製造方法。
JP63241112A 1987-09-28 1988-09-28 酸化物超電導線材とその製造方法 Expired - Lifetime JP2842537B2 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP62-240773 1987-09-28
JP24077387 1987-09-28
JP62-289353 1987-11-18
JP28935387 1987-11-18
JP62-303168 1987-12-02
JP30316887 1987-12-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3222323A Division JPH056716A (ja) 1987-09-28 1991-08-08 酸化物系高温超電導体

Publications (2)

Publication Number Publication Date
JPH01251515A JPH01251515A (ja) 1989-10-06
JP2842537B2 true JP2842537B2 (ja) 1999-01-06

Family

ID=27332861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63241112A Expired - Lifetime JP2842537B2 (ja) 1987-09-28 1988-09-28 酸化物超電導線材とその製造方法

Country Status (4)

Country Link
US (1) US6103669A (ja)
EP (1) EP0310033B1 (ja)
JP (1) JP2842537B2 (ja)
DE (1) DE3853607T2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2633868B2 (ja) * 1987-10-14 1997-07-23 日立電線株式会社 酸化物系超電導線材
JP2986871B2 (ja) * 1990-08-22 1999-12-06 株式会社日立製作所 酸化物超電導体および酸化物超電導線ならびに超電導コイル
JPH04245113A (ja) * 1991-01-31 1992-09-01 Sumitomo Electric Ind Ltd 酸化物超電導材料の製造方法
JP2871907B2 (ja) * 1991-08-28 1999-03-17 財団法人 工業技術研究院 可撓性超伝導テープを製造する方法
JP4701631B2 (ja) * 2004-05-13 2011-06-15 住友電気工業株式会社 超電導線材の製造方法
JP2006012537A (ja) * 2004-06-24 2006-01-12 Sumitomo Electric Ind Ltd 超電導線材の製造方法
JP2007200870A (ja) * 2006-01-26 2007-08-09 Ls Cable Ltd 超伝導ケーブル用基板の製造方法
CN104376920A (zh) * 2014-11-04 2015-02-25 西部超导材料科技股份有限公司 提高漆包NbTi超导扁线加工质量的方法
CN108027677B (zh) * 2015-09-18 2021-06-25 索尼公司 导电元件及其制造方法、输入装置和电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3243871A (en) * 1963-08-12 1966-04-05 Nat Res Corp Method of making ductile superconductors
FR1376606A (fr) * 1963-08-20 1964-10-31 Commissariat Energie Atomique Perfectionnements aux procédés de mise en forme des métaux sous pression hydrostatique élevée
JPS583761B2 (ja) * 1979-10-31 1983-01-22 吉田 桂一郎 リボン線製造法
AT381596B (de) * 1984-11-14 1986-11-10 Plansee Metallwerk Verfahren zur herstellung eines supraleitenden drahtes unter verwendung von chevrel-phasen
CA1338396C (en) * 1987-02-05 1996-06-18 Kazuo Sawada Process for manufacturing a superconducting wire of compound oxide-type ceramics
JPS63279514A (ja) * 1987-05-11 1988-11-16 Toshiba Corp 超電導体線材、その製造方法および超電導コイル
JPS6472424A (en) * 1987-09-12 1989-03-17 Univ Tokai Manufacture of superconducting tape

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
新超電導体−開発の現状とその応用、日経マグロウヒル社(1987,6,15)p.152〜155

Also Published As

Publication number Publication date
DE3853607T2 (de) 1995-12-07
EP0310033B1 (en) 1995-04-19
EP0310033A3 (en) 1991-10-23
US6103669A (en) 2000-08-15
EP0310033A2 (en) 1989-04-05
DE3853607D1 (de) 1995-05-24
JPH01251515A (ja) 1989-10-06

Similar Documents

Publication Publication Date Title
EP0503746B1 (en) Superconducting wire and method of manufacturing the same
JP2877149B2 (ja) 複合酸化物セラミック系超電導線の製造方法
Haldar et al. Processing high critical current density Bi-2223 wires and tapes
EP0356969B1 (en) Method of producing oxide superconductor
US5063200A (en) Ceramic superconductor article
Mimura et al. Improvement of the critical current density in the silver sheathed Bi‐Pb‐Sr‐Ca‐Cu‐O superconducting tape
JPH06325630A (ja) 酸化物超電導線材及び超電導装置
WO2002035614A2 (en) Filaments for composite oxide superconductors
JP2636049B2 (ja) 酸化物超電導体の製造方法および酸化物超電導線材の製造方法
JP2842537B2 (ja) 酸化物超電導線材とその製造方法
US5851957A (en) Oxide superconductor precursors
EP0661762A1 (en) Multifilamentary oxide superconducting wire and coil formed by the same
Schwartz et al. High temperature mechanical properties and high strength sheaths for powder-in-tube tapes
EP0283197A2 (en) Apparatus comprising a superconductive body, and method for producing such a body
US5874384A (en) Elongate Bi-based superconductors made by freeze dried conducting powders
Kim et al. Effect of the phase assemblage of the precursor powder on the phase transformation and microstructure of Ag/Bi-2223 tapes
JPH056716A (ja) 酸化物系高温超電導体
EP0676817B1 (en) Method of preparing high-temperature superconducting wire
JP2678619B2 (ja) 酸化物超電導線とその製造方法
JPH1092630A (ja) 酸化物超電導コイル
JP3758455B2 (ja) 酸化物超電導線材の製造方法
JP2554659B2 (ja) 複合酸化物超電導体線材の接続部
JP3287028B2 (ja) Tl,Pb系酸化物超電導材及びその製造方法
JP2601694B2 (ja) 酸化物超電導体
JPS63307150A (ja) 酸化物セラミックス系超電導導体およびその製造方法