[go: up one dir, main page]

JP2839627B2 - Rechargeable battery - Google Patents

Rechargeable battery

Info

Publication number
JP2839627B2
JP2839627B2 JP2061819A JP6181990A JP2839627B2 JP 2839627 B2 JP2839627 B2 JP 2839627B2 JP 2061819 A JP2061819 A JP 2061819A JP 6181990 A JP6181990 A JP 6181990A JP 2839627 B2 JP2839627 B2 JP 2839627B2
Authority
JP
Japan
Prior art keywords
discharge
alloy
secondary battery
negative electrode
mah
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2061819A
Other languages
Japanese (ja)
Other versions
JPH03263769A (en
Inventor
利一 獅々倉
正隆 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2061819A priority Critical patent/JP2839627B2/en
Publication of JPH03263769A publication Critical patent/JPH03263769A/en
Application granted granted Critical
Publication of JP2839627B2 publication Critical patent/JP2839627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、エネルギー密度が高く、自己放電率が少な
く、サイクル寿命が長い等、性能の良好な二次電池に関
する。
The present invention relates to a secondary battery having good performance such as high energy density, low self-discharge rate, and long cycle life.

[従来の技術] 従来、アルカリ金属の一つであるリチウム金属を負極
に用いた二次電池は古くから注目されており、例えば、
M.Hughes,et al,Journal of Power.Sources,12,P83〜14
4(1984)にその総説が載っている。
[Related Art] Conventionally, secondary batteries using lithium metal, which is one of alkali metals, as a negative electrode have been attracting attention for a long time.
M. Hughes, et al, Journal of Power.Sources, 12 , pp.83-14
4 (1984) provides a review.

その中にリチウム金属が、あまりにも活性なため、溶
媒と反応し、絶縁被膜を形成し、さらにデンドライト成
長を起し、二次電池用負極へ適用の難かしさが示されて
いる。そのため、アルカリ金属を用いた性能の良好な二
次電池は、いまだ開発されておらず、現在の鉛電池やニ
ッケルカドミウム蓄電池に匹敵するまでに、実用化され
たものはない。
Among them, lithium metal is so active that it reacts with a solvent to form an insulating film and further causes dendrite growth, indicating difficulty in application to a negative electrode for a secondary battery. For this reason, a secondary battery with good performance using an alkali metal has not been developed yet, and none has been put to practical use until it is comparable to current lead batteries and nickel cadmium storage batteries.

このように、アルカリ金属負極が実用化されにくい最
大の原因は、アルカリ金属と電解液との反応およびそれ
に起因するデンドライト成長による短絡現象にある。
As described above, the biggest cause of the practical use of the alkali metal negative electrode is the short-circuit phenomenon due to the reaction between the alkali metal and the electrolytic solution and the dendrite growth caused by the reaction.

上記問題点を解決する方法としてアルカリ金属負極を
アルカリ金属合金にかえて活性を低下させたり、或いは
アルカリ金属表面をイオン伝導性被膜で覆って、アルカ
リ金属が直接、反応性溶液と接触しないようにする方法
等があるが、必ずしも充分な対策ではない。
As a method of solving the above problems, the activity is reduced by replacing the alkali metal negative electrode with an alkali metal alloy, or the alkali metal surface is covered with an ion conductive film so that the alkali metal does not come into contact with the reactive solution directly. There are methods to do this, but this is not always a sufficient measure.

また、アルカリ金属合金を用いる場合、充放電を繰返
えすと、合金粒子そのものが微細化し、期待したサイク
ル寿命が得られない問題がある。
Further, when an alkali metal alloy is used, there is a problem that if charge and discharge are repeated, the alloy particles themselves become finer and an expected cycle life cannot be obtained.

そのため、本発明者らは、先にアルカリ金属合金、炭
素材および結着材を複合化した負極を用いる非水二次電
池を提案した(特願昭63−169384号等)。
Therefore, the present inventors have previously proposed a non-aqueous secondary battery using a negative electrode in which an alkali metal alloy, a carbon material and a binder are combined (Japanese Patent Application No. 63-169384).

上記結着材は、合金微細化による電極崩壊を防止する
ために加えられ、また炭素材は比表面積や空孔度を増大
させ、高電流での充放電特性を改善するために加えられ
たものである。
The binder is added to prevent electrode collapse due to alloy miniaturization, and the carbon material is added to increase specific surface area and porosity and improve charge / discharge characteristics at high current. It is.

[問題が解決しようとする課題] しかしながら、上記二次電池は高性能を示す電池であ
るが、炭素材を添加しているので、合金単独に比べて電
極嵩密度が小さくなり、電極体積当りの電気容量密度に
限界を生じる。
[Problem to be Solved by the Problem] However, although the above secondary battery is a battery showing high performance, since the carbon material is added, the electrode bulk density is smaller than that of the alloy alone, and the volume per electrode volume is small. There is a limit on the capacitance density.

この場合、特に高速電流を必要としない用途には、ア
ルカリ金属合金単独を負極として使用しても問題ないと
考えたが、あまりに高嵩密度の合金では、電極全体が作
用せず、かえって電気容量が上がらないことが判明し
た。
In this case, it was considered that there was no problem in using an alkali metal alloy alone as a negative electrode, especially for applications that do not require high-speed current.However, with an alloy having a too high bulk density, the entire electrode did not work, and instead the electric capacity Turned out not to rise.

そのため、アルカリ金属合金を粉砕し、その微粒子を
結着材とともに成形することを試みた。
Therefore, an attempt was made to pulverize the alkali metal alloy and to form the fine particles together with the binder.

結着材として、一般的なポリエチレンやポリプロピレ
ンを用いると、その使用量は5重量%以上必要となり、
そのため結着材が電極反応の抵抗となって、スムースな
電池反応が得られなかった。また5重量%未満では、充
放電に伴なってアルカリ金属合金の体積膨張、収縮によ
り次第に電極が崩壊し、可逆性は改善されなかった。
When general polyethylene or polypropylene is used as the binder, the amount of use is required to be 5% by weight or more.
As a result, the binder becomes a resistance of the electrode reaction, and a smooth battery reaction cannot be obtained. If the content is less than 5% by weight, the electrode gradually collapses due to volume expansion and contraction of the alkali metal alloy during charging and discharging, and the reversibility is not improved.

しかし、上記本発明者らが提案したように負極中に炭
素材を混合して複合化すれば、電極面積が増大し、かつ
アルカリ金属合金の体積膨張、収縮の緩衝材として作用
するので、電極容量密度に限界を生ずることを除けばか
なり高性能な二次電池となることは実証されている。し
かし炭素材を負極中に混合すると、他の欠点が発生する
ことがわかった。
However, if a carbon material is mixed into the negative electrode to form a composite as proposed by the present inventors, the electrode area increases, and the alkali metal alloy acts as a buffer material for volume expansion and contraction. It has been demonstrated that the resulting secondary battery has a rather high performance except that the capacity density is limited. However, it has been found that mixing the carbon material into the negative electrode causes other disadvantages.

すなわち、殆んどの炭素材は一次粒子の集合体で、カ
ーボンブラック、活性炭、黒鉛粉等多くの種類がある
が、充放電で長サイクル稼動すると、いずれも少なから
ず炭素材が崩壊等によって電解液中に浮遊したり、セパ
レータの電解液通孔口に放出したり、或いは、セパレー
タを貫通して対極と接触してショート現象を起したりし
て、サイクル寿命が半永久的なものでなくなる。
In other words, most carbon materials are aggregates of primary particles, and there are many types such as carbon black, activated carbon, and graphite powder. The cycle life is not semi-permanent due to floating in the electrolyte, discharging to the electrolyte hole of the separator, or contacting the counter electrode through the separator to cause a short phenomenon.

このように、炭素材を負極中に混合する場合、利点、
欠点があり、長サイクル中での炭素材の崩壊を防止する
には、結着剤を大量に使用することが必要となる。しか
し結着剤の使用量の増大は、上記のように抵抗増大など
の問題を生ずる。そのため、二次電池の使用目的に応じ
て、負極に混合する炭素材の種類を選択し、量を調整し
て用いているのが現状である。
As described above, when the carbon material is mixed in the negative electrode, advantages are obtained.
It has drawbacks and requires a large amount of binder to prevent the carbon material from collapsing during long cycles. However, an increase in the amount of binder used causes problems such as an increase in resistance as described above. Therefore, at present, the type of the carbon material to be mixed with the negative electrode is selected and adjusted according to the purpose of use of the secondary battery.

本発明者らは、使用目的によって処方の調整等を必要
としない負極を用い、性能の優れた二次電池を得るべ
く、鋭意研究した結果、炭素材の代りに繊維状物質を添
加することが有効なことを発見した。
The present inventors have conducted intensive studies in order to obtain a secondary battery having excellent performance using a negative electrode that does not require adjustment of the formulation or the like depending on the purpose of use, and as a result, it has been found that a fibrous substance can be added instead of a carbon material. I found something useful.

本発明は、上記の発見に基づいてなされたもので、実
効電極面積が大きく、性能の良好な二次電池を提供する
ことを目的とする。
The present invention has been made based on the above findings, and has as its object to provide a secondary battery having a large effective electrode area and good performance.

[課題を解決するための手段] 上記の目的を達成するため本発明の二次電池において
は、 アルカリ金属合金に繊維状物質と電解質とを混合し、
これに結着剤を添加、成形した負極を用いる。
[Means for Solving the Problems] To achieve the above object, in a secondary battery of the present invention, a fibrous substance and an electrolyte are mixed with an alkali metal alloy,
A negative electrode to which a binder is added and molded is used.

本発明の二次電池の負極に用いられる繊維状物質は、
負極に用いられるアルカリ金属と合金化しないことが必
要で、例えばステンレススチール繊維、炭素(黒鉛を含
む)繊維、ガラス繊維等があげられるが、金属繊維、炭
素繊維が好ましく、特にニッケル繊維が好適である。上
記繊維状物質は、数種類混合して用いてもよい。
Fibrous material used for the negative electrode of the secondary battery of the present invention,
It is necessary not to alloy with the alkali metal used for the negative electrode, and examples thereof include stainless steel fiber, carbon (including graphite) fiber, glass fiber, and the like. Metal fiber and carbon fiber are preferable, and nickel fiber is particularly preferable. is there. The fibrous substance may be used by mixing several kinds.

上記繊維状物質を負極中に混合する方法は特に制限は
ないが、アルカリ金属合金を製造する際、事前に繊維状
物質を混ぜ、これを加熱して繊維状物質を内包した状態
でアルカリ金属合金を溶融法によって製造して、繊維状
物質が内包した合金とする方法或いは、成形時に、アル
カリ金属合金粉に繊維状物質を混合し、これに電解質お
よび結着剤を添加して成形する方法等があり、いずれの
方法を用いてもよいが、操作が簡単なため、後者の方が
便利である。
The method of mixing the fibrous substance in the negative electrode is not particularly limited, but when producing an alkali metal alloy, the fibrous substance is mixed in advance, and heated to contain the fibrous substance. Or a method of producing an alloy containing a fibrous substance by a melting method, or a method of mixing a fibrous substance with an alkali metal alloy powder at the time of molding, adding an electrolyte and a binder thereto, and molding the same. Although any method may be used, the latter is more convenient because the operation is simple.

また、負極に混合される電解質は電池を組立てた場
合、電池用溶媒に溶解するものでなければならないが、
その溶解の程度は特に規定はない。これは、負極中に混
合した電解質が、電池用の溶媒に溶解して多孔質化し、
負極内部にまで電解液が浸透し、電極反応が速進されれ
ばよく、必ずしも負極中に用いた電解質が電池用溶液に
完全に溶解しなくてもよいからである。
Also, the electrolyte mixed with the negative electrode must be one that dissolves in the battery solvent when the battery is assembled,
The degree of dissolution is not particularly defined. This is because the electrolyte mixed in the negative electrode is dissolved in the battery solvent and becomes porous,
This is because the electrolyte may penetrate into the inside of the negative electrode to accelerate the electrode reaction, and the electrolyte used in the negative electrode does not necessarily need to be completely dissolved in the battery solution.

しかし、電極中の電解液の電気伝導度の点からは、当
然のことながら、電解質が完全に溶解する方が望まし
い。
However, in view of the electric conductivity of the electrolytic solution in the electrode, it is naturally preferable that the electrolyte is completely dissolved.

上記電解質の種類としては、負極のアルカリ金属と同
じアルカリ金属塩を用いるのが最適であるが、電池の電
解液の溶媒に溶解するものであれば固体電解質でもよ
い。
As the type of the electrolyte, it is optimal to use the same alkali metal salt as the alkali metal of the negative electrode. However, a solid electrolyte may be used as long as it is soluble in the solvent of the battery electrolyte.

アルカリ金属塩としては、負極がナトリウム合金の場
合、例えばNaPF6,NaBF4 NaAsF6,NaCF3SO3,NaCl,NaB(CH
4等があげられ、負極がリチウム合金の場合は、LiP
F6,LiBF4,LiAsF6,LiCF3SO3,LiCl,LiB(CH4等があげ
られるが、これらに制限されるものではない。
As the alkali metal salt, when the negative electrode is a sodium alloy, for example, NaPF 6 , NaBF 4 NaAsF 6 , NaCF 3 SO 3 , NaCl, NaB (CH
4 ) 4 etc., and when the negative electrode is a lithium alloy, LiP
Examples include, but are not limited to, F 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCl, LiB (CH 4 ) 4 and the like.

また固体電解質も特に制限はないがそれぞれのアルカ
リ金属塩とポレオレフィンオキシドとの混合物が好まし
い。例えばNaCF3SO3やLiBF4をポリエチレンオキシドと
錯化したもの等があげられる。
The solid electrolyte is not particularly limited, but is preferably a mixture of each alkali metal salt and polyolefin oxide. For example, those obtained by complexing NaCF 3 SO 3 or LiBF 4 with polyethylene oxide can be mentioned.

また、本発明に用いるアルカリ金属合金に用いられる
アルカリ金属としては、ナトリウムまたはリチウムが用
いられる。ナトリウムの場合の合金としては、鉛または
錫との合金が、電極に用いた場合の、可逆性が良いこと
から好ましく、リチウの場合は、アルミニウム、鉛、錫
の少なくとも1種の金属との合金が好ましい。
As the alkali metal used for the alkali metal alloy used in the present invention, sodium or lithium is used. As an alloy in the case of sodium, an alloy with lead or tin is preferable because of good reversibility when used for an electrode, and in the case of lithium, an alloy with at least one metal of aluminum, lead, and tin Is preferred.

また、負極の結着剤としては、ポリエチレン、ポリプ
ロピレン、ポリテトラフルオロエチレン、またはオレフ
ィン系共重合体ゴム等が推奨できるが、負極のアルカリ
金属との反応性がなく、しかも、少量用いただけでも結
着効果が大きいことからオレフィン系共重合体ゴムが最
も好ましい。
As the binder for the negative electrode, polyethylene, polypropylene, polytetrafluoroethylene, olefin-based copolymer rubber, or the like can be recommended, but it has no reactivity with the alkali metal of the negative electrode, and can be used even in a small amount. Olefin-based copolymer rubber is most preferred because of its large adhesion effect.

上記オレフィン系共重合体ゴムとは、例えばエチレン
−プロピレンゴム(EPR)、エチレン−ブテンゴム(EB
R)、エチレン−プロピレン−ジエンゴム(EPDM)等が
挙げられるが、特に少量でかつ結着効果の大きいEPDMが
良い。ここで言うEPDMとは合成ゴムの一種で、エチレン
とプロピレンの共重合体であり、第三成分として、二重
結合を持つ不飽和化合物を導入したものである。
The olefin copolymer rubber is, for example, ethylene-propylene rubber (EPR), ethylene-butene rubber (EB
R), ethylene-propylene-diene rubber (EPDM), and the like. Particularly, EPDM having a small amount and a large binding effect is preferable. EPDM here is a kind of synthetic rubber, which is a copolymer of ethylene and propylene, into which an unsaturated compound having a double bond is introduced as a third component.

上記オレフィン系共重合体ゴムは添加しすぎると、負
極全体の電気容量を下げてしまうばかりか、電極全体の
電気抵抗を高くし、電池反応の分極を大きくし、性能低
下の原因となる。また、少な過ぎると結着剤としての効
果が発揮されない。したがって添加する量は0.3〜5重
量%の範囲で、特に0.5〜3重量%が好ましい。
If the olefin copolymer rubber is added too much, it not only lowers the electric capacity of the entire negative electrode, but also increases the electric resistance of the entire electrode, increases the polarization of the battery reaction, and causes a decrease in performance. If the amount is too small, the effect as a binder is not exhibited. Therefore, the amount to be added is in the range of 0.3 to 5% by weight, particularly preferably 0.5 to 3% by weight.

本発明の電池に用いる正極しては、特に制限はない
が、負極と適度の電位差を有し、可逆的に電荷を出し入
れできる電気容量密度が高いものが良い。例えば、無機
酸化物、カルコゲナイド、導電性高分子、炭素材料等を
挙げることができる。さらに具体例を挙げればナトリウ
ム・コバルト酸化物、ナトリウム・マンガン酸化物、リ
チウム・マンガン酸化物,リチウム・コバルト酸化物、
酸化バナジウム、酸化クロム、ポリアニリン、ポリピロ
ール、黒鉛、活性炭等が挙げられる。
The positive electrode used in the battery of the present invention is not particularly limited, but it is preferable that the positive electrode has an appropriate potential difference with respect to the negative electrode, and has a high electric capacity density capable of reversibly transferring electric charges. For example, inorganic oxides, chalcogenides, conductive polymers, carbon materials, and the like can be given. Further specific examples include sodium cobalt oxide, sodium manganese oxide, lithium manganese oxide, lithium cobalt oxide,
Vanadium oxide, chromium oxide, polyaniline, polypyrrole, graphite, activated carbon and the like can be mentioned.

この中で特に優れた組み合せとしては、負極にナトリ
ウム合金を用いる場合には正極は、ナトリウム・コバル
ト酸化物が良い。また負極にリチウム合金を用いる場合
には正極はリチウム・マンガン酸化物、またはリチウム
・コバルト酸化物が適する。
As a particularly excellent combination among them, when a sodium alloy is used for the negative electrode, the positive electrode is preferably sodium-cobalt oxide. When a lithium alloy is used for the negative electrode, lithium manganese oxide or lithium cobalt oxide is suitable for the positive electrode.

正極は上に挙げた活物質自身に電気伝導度が高いもの
があり、必ずしも導電助剤を必要としないものもあるが
電極比表面積向上等の目的で、炭素材、特にカーボンブ
ラックを添加するものが一般的である。また結着材とし
て、ポリテトラフルオロエチレンやオレフィン共重合体
ゴム等を用いることができる。
Some of the positive electrodes have a high electrical conductivity in the active materials listed above, and some do not necessarily require a conductive additive.However, for the purpose of improving the specific surface area of the electrode, a carbon material, particularly carbon black, is added. Is common. In addition, polytetrafluoroethylene, olefin copolymer rubber, or the like can be used as the binder.

[実施例] 次に実施例、比較例を示して本発明の二次電池を説明
する。
[Example] Next, the secondary battery of the present invention will be described with reference to examples and comparative examples.

実施例 1 <負極の製造> アルゴン雰囲気下で負極活物質として溶融法によって
得られたNaとPbの原子比が2.2:1.0の合金を粉砕し粒径1
50μm以下の微粒子にした。
Example 1 <Production of Negative Electrode> An alloy having an atomic ratio of Na: Pb of 2.2: 1.0 obtained by a melting method as an anode active material under an argon atmosphere was pulverized to a particle size of 1
Fine particles of 50 μm or less were obtained.

次いでこの合金粉100重量部に対し9重量部のニッケ
ル繊維(日本精線株式会社製,平均直径35μm、平均長
さ2000μm)を高速回転ミキサーで細かく切断して添加
した。これをよく混合したものに、さらに合金に対し3
重量部のEPDMをキシレンに溶解した溶液を加え、乳鉢で
念入りに混合した。この混合物を減圧下で乾燥してキシ
レンを除去した後、再び高速回転ミキサーで混合粉砕し
た。この混合物に対し、18重量部の電解質であるNaPF6
を添加し、さらによく混合した。次いで、この混合物の
所定量を採取し、ニッケル製エキスバンドメタルを集電
体として包含する形で40×330mmの長方形の電極をプレ
ス法にて成形した。
Next, 9 parts by weight of nickel fiber (manufactured by Nippon Seisen Co., Ltd., average diameter 35 μm, average length 2000 μm) was added to 100 parts by weight of the alloy powder by fine cutting with a high-speed rotary mixer. This is mixed well, and 3
A solution obtained by dissolving parts by weight of EPDM in xylene was added, and mixed thoroughly in a mortar. This mixture was dried under reduced pressure to remove xylene, and then mixed and pulverized again with a high-speed rotary mixer. 18 parts by weight of NaPF 6
Was added and mixed well. Next, a predetermined amount of the mixture was collected, and a rectangular electrode of 40 × 330 mm was formed by a press method so as to include a nickel-made extra band metal as a current collector.

<正極の製造> Na2Co3とCo3O4を酸素雰囲気下、820℃、50時間加熱反
応させNa0.7CoO2なるナトリウム・コバルト酸化物を合
成した。このNa0.7CoO2とケッチェンブラックとテトラ
フルオロエチレンとを重量比で96:1:3の割合で、キシレ
ン中で混合し、ステンレススチール製エキスパンドメタ
ルを集電体にして、負極と同様の方法で、40×290mmの
長方形の電極を成形した。
<Production of Positive Electrode> Na 2 Co 3 and Co 3 O 4 were heated and reacted at 820 ° C. for 50 hours in an oxygen atmosphere to synthesize sodium-cobalt oxide of Na 0.7 CoO 2 . This Na 0.7 CoO 2 , Ketjen Black and tetrafluoroethylene were mixed in xylene at a weight ratio of 96: 1: 3 in xylene, and a stainless steel expanded metal was used as a current collector, in the same manner as the negative electrode. Thus, a rectangular electrode of 40 × 290 mm was formed.

<電池実験> 上記正極及び負極をアルゴン雰囲気のグローブボック
ス内で、セパレーターとして、ポリプロピレン製マイク
ロポーラスフィルム(ポリプラスチックス社製)をはさ
んで捲回し、電解液に1モル/になるようにNaPF6
1,2−ジメトキシエタンとテトラグライムとを容量比で
9:2の割合で混合した混合溶液に溶かした溶液を用い、
単3型電池を組みたてた。なお、電池シールはレーザー
溶液法を用いた。
<Battery Experiment> The above positive electrode and negative electrode were wound in a glove box in an argon atmosphere with a polypropylene microporous film (manufactured by Polyplastics) sandwiched therebetween as a separator, and NaPF was added to the electrolyte at 1 mol / mol. 6
1,2-dimethoxyethane and tetraglyme in a volume ratio
Using a solution dissolved in a mixed solution mixed at a ratio of 9: 2,
AA batteries were assembled. In addition, the battery seal | sticker used the laser solution method.

この電池の組立直後の電圧は2.5Vであった。この電池
を室温下300mAの電流で放電し、電池電圧が1.8Vになっ
たところで放電を停止し、開回路にて30分間のレスト時
間をおいて、次いで300mAの電流で充電し、電池電圧
が、3.3Vに達したところで、充電を終了し、30分間のレ
スト後、また放電を行ない、以降レスト時間を入れなが
ら放充電を繰り返した。
The voltage immediately after assembly of this battery was 2.5V. The battery was discharged at room temperature at a current of 300 mA, and stopped when the battery voltage reached 1.8 V. After a rest time of 30 minutes in an open circuit, the battery was charged at a current of 300 mA, and the battery voltage was lowered. When the voltage reached 3.3 V, the charging was terminated. After resting for 30 minutes, the battery was discharged again. Thereafter, discharging and charging were repeated with a rest time.

その結果、この電池の300mA放電での最大放電容量は6
30mAhで、放電平均電圧は2.8Vであった。
As a result, the maximum discharge capacity of this battery at 300 mA discharge was 6
At 30 mAh, the discharge average voltage was 2.8V.

100回、充放電を繰返したところ、充放電の電流効率
は100%で、放電容量は605mAhであり、高エネルギーで
サイル性能の良好な二次電池であった。
When charging and discharging were repeated 100 times, the current efficiency of charging and discharging was 100%, the discharge capacity was 605 mAh, and the secondary battery was high in energy and excellent in sile performance.

さらに、この電池をサイクル実験途中に充電終了後、
開回路にして、40℃の恒温槽に10日間放置し、自己放電
率を調べた。また充電電流値は300mA一定にして、放電
電流値をサイクル毎に50mA、100mA、300mA、500mA、ま
たは1000mAに変化させて、その時の放電容量を測り、放
電レート特性を調べた。
Furthermore, after charging this battery during the cycle experiment,
The circuit was opened, left in a constant temperature bath at 40 ° C. for 10 days, and the self-discharge rate was examined. The charge current value was kept constant at 300 mA, and the discharge current value was changed to 50 mA, 100 mA, 300 mA, 500 mA, or 1000 mA for each cycle, the discharge capacity at that time was measured, and the discharge rate characteristics were examined.

その結果40℃、10日間での自己放電率は、3.5%、ま
た50mA放電時の容量は655mAh、100mAでは645mAh、300mA
では630mAh、500mAでは590mAh、1000mA放電では538mAh
の容量が得られ、放電レート特性が極めて良いことを示
した。
As a result, the self-discharge rate at 40 ° C for 10 days is 3.5%, the capacity at 50mA discharge is 655mAh, and at 100mA is 645mAh, 300mA
630mAh, 500mA 590mAh, 1000mA discharge 538mAh
And the discharge rate characteristics were extremely good.

実施例2 <負極の製造> アルゴン雰囲気下でNaとPbの原子比が2.2:1.0になる
ように溶融法で得た合金を微粉砕し、粒径150μm以下
の微粒子にした。この合金粉100重量部にニッケル繊維
(直径約25μm、長さ200μm)9重量部を加え、よく
混合した後、るつぼに移し、Na−Pb合金が溶融する温度
以上の500℃に加熱した。2時間後加熱を停止し、自然
冷却した後、よく粉砕した。この混合粉に、キシレンに
溶解したEPDMを3.5%加え、よく混合した。キシレンを
除去し再び粉砕した後、NaBF4とPEO(ポリエチレンオキ
シド、平均分子量、30000)の錯体(NaBF4がPEOの0原
子8ツに1ケの割合で入っているもの)粉末を上記混合
物100重量部に対し10重量部を加え、よく混合した。
Example 2 <Production of Negative Electrode> An alloy obtained by a melting method in an argon atmosphere so that the atomic ratio of Na and Pb was 2.2: 1.0 was pulverized into fine particles having a particle size of 150 μm or less. To 100 parts by weight of the alloy powder, 9 parts by weight of nickel fiber (about 25 μm in diameter and 200 μm in length) was added, mixed well, transferred to a crucible, and heated to 500 ° C. or higher, at which the Na—Pb alloy melted. After 2 hours, the heating was stopped, the mixture was cooled naturally, and then pulverized well. To this mixed powder, 3.5% of EPDM dissolved in xylene was added and mixed well. After removing xylene and pulverizing again, a powder of a complex of NaBF 4 and PEO (polyethylene oxide, average molecular weight, 30,000) (one with eight NaBF 4 atoms per eight atoms of PEO) was mixed with 100 parts of the above mixture. 10 parts by weight with respect to parts by weight were added and mixed well.

これをニッケル製エキスパンドメタルを内包する形で
40×280mmの長方形にプレスして負極とした。
This is a form that contains nickel expanded metal
It was pressed into a rectangle of 40 × 280 mm to obtain a negative electrode.

<正極の製造> 正極は実施例1と全く同じものを用い、電極の厚みと
長さだけを変え、40×250mmの形状のものをプレス法に
て成形した。
<Production of Positive Electrode> The same positive electrode as that of Example 1 was used, and only the thickness and length of the electrode were changed, and a 40 × 250 mm shape was formed by a press method.

<電池実験> 電解液に、1モル/になるようにNaBF4を1.2−ジメ
トキシエタンとテトラグライムとを容積比1:1に混合し
た混合溶媒に溶かした溶液を用いた以外は実施例1と全
く同様にして単3型電池を組み立て、電池性能試験を行
なった。3の結果300mAでの最大放電容量は、640mAh
で、また100サイクル目の放電容量量は610mAhであっ
た。さらに途中のサイクルで行なった自己放電試験や放
電レート特性試験の結果は次のとおりである。自己放電
率は、3.4%、また50mA放電時の容量は670mAh、100mAで
は658mAh、300mAでは640mAh、500mAでは575mAh、1000mA
では470mAhであった。
<Battery experiment> Example 1 was repeated except that a solution obtained by dissolving NaBF 4 in a mixed solvent of 1.2-dimethoxyethane and tetraglyme at a volume ratio of 1: 1 so as to be 1 mol / was used as the electrolyte. AA batteries were assembled in exactly the same manner, and a battery performance test was performed. 3. As a result, the maximum discharge capacity at 300 mA is 640 mAh
The discharge capacity at the 100th cycle was 610 mAh. Further, the results of the self-discharge test and the discharge rate characteristic test performed in the middle cycle are as follows. Self-discharge rate is 3.4%, and capacity at 50mA discharge is 670mAh, 658mAh at 100mA, 640mAh at 300mA, 575mAh, 1000mA at 500mA
It was 470mAh.

実施例3 <負極の製造> アルゴン雰囲気下で、負極活物質として、電解法でAl
基盤にLiを析出させて得たLiとAlの原子比が3:1の合金
を粉砕し、150μm以下の微粒子にした。
Example 3 <Manufacture of Negative Electrode> In an argon atmosphere, a negative electrode active material was formed by electrolysis using Al.
An alloy having a 3: 1 atomic ratio of Li to Al obtained by depositing Li on the substrate was pulverized into fine particles of 150 μm or less.

次いで、この合金粉100重量部に対し10重量部のニッ
ケル繊維を加え、よく混合したものに、さらに合金に対
し3重量部のEPDMをキシレンに溶解した溶液を加え乳鉢
で念入りに混合した。
Next, 10 parts by weight of nickel fiber was added to 100 parts by weight of the alloy powder, and a well-mixed mixture was further mixed with a solution obtained by dissolving 3 parts by weight of EPDM in xylene with respect to the alloy.

次いで、この混合物を減圧下で乾燥してキシレンを除
去した後、再び高速回転ミキサーで混合粉砕した。この
混合物に対して、10重量部の電解質LiPF6を添加し、さ
らによく混合した。次いで、この混合物をニッケル製の
薄い(厚み20μm)パンチングメタルを集電体として内
包して40×330mmの長方形の電極をプレス法にて成型し
て得た。
Next, this mixture was dried under reduced pressure to remove xylene, and then mixed and pulverized again with a high-speed rotary mixer. To this mixture, 10 parts by weight of electrolyte LiPF 6 was added and mixed well. Next, this mixture was obtained by molding a 40 × 330 mm rectangular electrode by a press method by enclosing a thin (20 μm thick) punching metal made of nickel as a current collector.

[正極の製造] LiOH−MnO2酸化物(サンヨー・テクニカル・レビュー
VoL20.No3.11月1988年.69頁の方法で製造)とケッチェ
ンブラックとテトラフルオロエチレンとの重量比で90:
5:5の割合の混合物を、集電体としてステンレススチー
ル(SVS430)製のエキスパンドメタルを内包する形で40
×290mmの大きさにプレス成型した。
[Manufacture of positive electrode] LiOH-MnO 2 oxide (Sanyo Technical Review)
VoL20. No3.11 manufactured by the method of January 1988, p.69) and Ketjen black and tetrafluoroethylene in a weight ratio of 90:
A mixture of 5: 5 in a ratio of 40 to 40% with a stainless steel (SVS430) expanded metal as current collector is included.
It was press-molded to a size of × 290 mm.

<電池実験> 電解液としては1モル/のLiPF6の2−メチル−テ
トラヒドロフラン溶液を用い、実施例1と同じようにし
て単3型電池を組み立てた。
<Battery Experiment> An AA battery was assembled in the same manner as in Example 1 using a 1 mol / liter solution of LiPF 6 in 2-methyl-tetrahydrofuran as an electrolyte.

電池性能試験は実施例1と全く同様にして行なった。 The battery performance test was performed in exactly the same manner as in Example 1.

その結果、300mAh放電時の最大放電容量は、610mAhで
100サイクル目の放電容量は565mAhであった。
As a result, the maximum discharge capacity at 300 mAh discharge is 610 mAh.
The discharge capacity at the 100th cycle was 565 mAh.

また自己放電率は、2.9%で放電レート特性として
は、50mA放電での容量が645mAh、100mAで635mAh、300mA
で608mAh、500mAで580mAh、1000mAでは、520mAhであっ
た。
The self-discharge rate is 2.9% and the discharge rate characteristics are 645mAh at 50mA discharge, 635mAh at 300mA, 300mA at 100mA.
At 608 mAh, at 580 mAh at 500 mA, and at 520 mAh at 1000 mA.

[実施例4] 実施例3で用いた正極の代わりにLi0.7C0O2なるリチ
ウム・コバルト酸化物を用い、電解液に1モル/のLi
PF6を溶解したγ−ブチロラクトン溶液を用いた以外は
実施例3と全く同様にして電池を組み立て実験した。
Example 4 A lithium cobalt oxide of Li 0.7 C 0 O 2 was used in place of the positive electrode used in Example 3, and 1 mol / Li of Li
Except for using γ- butyrolactone solution of PF 6 was experimented assembled battery in the same manner as in Example 3.

但し電池性能試験では、作動電圧範囲を上限4.1V下限
2.5Vとした。
However, in the battery performance test, the operating voltage range is the upper limit of 4.1 V and the lower limit
2.5V.

その結果300mA放電時の平均放電電圧3.2Vで、最大放
電容量は615mAhであった。
As a result, the average discharge voltage at the time of 300 mA discharge was 3.2 V, and the maximum discharge capacity was 615 mAh.

しかし、15サイクル目で放電容量が500mAhを割ってし
まい、その他の特性試験は行なわれなかった。
However, the discharge capacity fell below 500 mAh at the 15th cycle, and no other characteristic tests were performed.

[実施例5] <負極の製造> 負極活物質としてアルゴン雰囲気下溶融法で得たLiと
Pbの原子比が3:1の合金を用いた。
[Example 5] <Production of negative electrode> Li obtained by a melting method under an argon atmosphere as a negative electrode active material was used.
An alloy having an atomic ratio of Pb of 3: 1 was used.

この合金を微粉砕した後、ニッケル繊維を混ぜ、さら
に結着剤としてEPDMを用い、よく混合した。キシレンを
除去した後、LiSO3CF3とPEOとからなる固体電解質(LiS
O3CF3のLiがPEOの0に対し1/6入っている)を上記混合
物100重量部に対し10重量部加えよく粉砕混合した。
After finely pulverizing this alloy, nickel fibers were mixed, and EPDM was further used as a binder, followed by thorough mixing. After removing xylene, a solid electrolyte composed of LiSO 3 CF 3 and PEO (LiS
O 3 Li of CF 3 was 0 to well pulverized and mixed added 10 parts by weight per the mixture 100 parts by weight and are) contained 1/6 of PEO.

これを、加圧プレスし、40×180mmの長方形負極とし
た。
This was pressed under pressure to obtain a rectangular negative electrode of 40 × 180 mm.

<正極の製造> 正極には、実施例3と全く同じものを用い、電極形状
だけを40×150mmにした。
<Production of Positive Electrode> The same positive electrode as in Example 3 was used, and only the electrode shape was 40 × 150 mm.

<電池実験> 電池性能試験の方法は実施例3と全く同様にして行な
った。
<Battery Experiment> A battery performance test was performed in exactly the same manner as in Example 3.

その結果、300mA放電時の最大放電容量は、620mAhで1
00サイクル目の放電容量は520mAhであった。
As a result, the maximum discharge capacity at 300 mA discharge is 1 at 620 mAh.
The discharge capacity at the 00th cycle was 520 mAh.

また自己放電率は4.2%で放電レート特性としては、5
0mAh放電での容量が、652mAh、100mAでは643mAh、300mA
では620mAh、500mAでは575mAh、100mAでは508mAhであっ
た。
The self-discharge rate is 4.2% and the discharge rate characteristic is 5%.
Capacity at 0mAh discharge is 652mAh, 643mAh at 100mA, 300mA
It was 620mAh at 500mA, 575mAh at 500mA, and 508mAh at 100mA.

[実施例6] Na合金がNaとSnの原子比が2.2:1.0の合金を用いた以
外は実施例1と同じにて電池を組立て、試験を行なっ
た。その結果300mA放電時の最大放電容量は597mAhで100
サイクル目の容量は480mAhであった。
Example 6 A battery was assembled and tested in the same manner as in Example 1 except that the Na alloy used was an alloy having an atomic ratio of Na to Sn of 2.2: 1.0. As a result, the maximum discharge capacity at 300 mA discharge is 100 at 597 mAh.
The capacity at the cycle was 480 mAh.

また自己放電率は3.6%で放電レート特性としては50m
Ah放電時の容量は、615mAh、100mAでは612mAh、300mAで
は595mAh、500mAでは540mAh1000mAでは470mAhであっ
た。
The self-discharge rate is 3.6% and the discharge rate characteristic is 50m
The capacity at the time of Ah discharge was 615 mAh, 612 mAh at 100 mA, 595 mAh at 300 mA, 540 mAh at 500 mA, and 470 mAh at 1000 mA.

[実施例7] LiとPbの合金の代わりにLiとSnの原子比が1:3の合金
を用いた以外は実施例5と全く同様にした。
Example 7 The procedure was the same as in Example 5, except that an alloy of Li and Sn having an atomic ratio of 1: 3 was used instead of the alloy of Li and Pb.

その結果、300mA放電時の最大放電容量は、570mAhで1
00サイクル目の放電容量は470mAhであった。
As a result, the maximum discharge capacity at 300 mA discharge is 1 at 570 mAh.
The discharge capacity at the 00th cycle was 470 mAh.

また自己放電率は4.3%で放電レート特性としては、5
0mA放電での容量が、610mAh、100mAでは600mAh、300mA
で568mAh、500mAで530mAh、1000mAでは460mAhであっ
た。
The self-discharge rate is 4.3%.
610mAh at 0mA discharge, 600mAh, 300mA at 100mA
568 mAh at 500 mA, 530 mAh at 500 mA, and 460 mAh at 1000 mA.

[実施例8] ニッケル繊維の代わりに気相成長法で製造した黒鉛繊
維(昭和電工株式会社製平均直径15μm、平均長さ100
μm)を合金100重量部に対し5重量部用いた以外は実
施例1と全く同様にして電池を組み立て性能評価を行な
った。
Example 8 Instead of nickel fibers, graphite fibers (average diameter 15 μm, average length 100 manufactured by Showa Denko KK) manufactured by vapor phase growth method
(μm) was used in the same manner as in Example 1 except that 5 parts by weight was used with respect to 100 parts by weight of the alloy.

その結果、300mAの電流で放電した場合の最大放電電
気量は、600mAhで、100サイクル目の放電容量は580mAh
であった。
As a result, when discharged at a current of 300 mA, the maximum amount of discharged electricity is 600 mAh, and the discharge capacity at the 100th cycle is 580 mAh.
Met.

また自己放電率は、3.7%であり、放電レート特性
は、50mA電流値での放電容量は、630mAh、100mA電流値
では620mAh、300mAでは600mAhで、500mA放電では580mA
h、1000mA放電でも540mAhの容量が得られた。
The self-discharge rate is 3.7%, and the discharge rate characteristics are: 630mAh at 50mA current value, 620mAh at 100mA current value, 600mAh at 300mA, 580mA at 500mA discharge
h, a capacity of 540 mAh was obtained even at 1000 mA discharge.

比較例1 実施例1で負極中に電解質としてNaPF6を添加した
が、全くNaPF6等の電解質を添加しないで電池を組みた
て評価した。
It was added NaPF 6 as the electrolyte in Comparative Example 1 Example 1 in the negative electrode, but was evaluated assembling the battery without at all added electrolyte such as NaPF 6.

その結果、300mA放電時の最大放電容量は、595mAhで1
00サイクル目の容量は520mAhであったが充放電効率が80
%に低下してしまった。
As a result, the maximum discharge capacity at 300 mA discharge is 1 at 595 mAh.
The capacity at the 00th cycle was 520 mAh, but the charge / discharge efficiency was 80
%.

また途中で行なった自己放電試験の結果、自己放電率
は4.2%であった。
As a result of a self-discharge test performed in the middle, the self-discharge rate was 4.2%.

一方放電レート特性を調べたところ50mA放電時の放電
容量は、680mAhあったが、100mAhでは650mAh、300mAで5
95mAh、500mA放電では510mAh、1000mA放電では380mAhと
電流依存性が大きかった。
On the other hand, when the discharge rate characteristics were examined, the discharge capacity at 50 mA discharge was 680 mAh, but 650 mAh at 100 mAh and 5 at 300 mA.
The current dependency was large at 510 mAh at 95 mAh, 500 mA discharge, and 380 mAh at 1000 mA discharge.

比較例2 実施例1で負極中に、ニッケル繊維を入れたがそのニ
ッケル繊維を入れずに実施例1と同様にして電池を組
み、電池性能を調べた。
Comparative Example 2 A battery was assembled in the same manner as in Example 1 except that nickel fibers were inserted into the negative electrode in Example 1, but the nickel fibers were not inserted, and the battery performance was examined.

その結果、300mA放電時の最大放電容量は618mAhであ
ったが、100サイクル目には容量が320mAhに落ちてしま
った。
As a result, the maximum discharge capacity at the time of 300 mA discharge was 618 mAh, but at the 100th cycle, the capacity dropped to 320 mAh.

また途中のサイクルで自己放電試験を行なったとこ
ろ、自己放電率は、5.3%であった。サイクル毎の容量
低下が激しかったので放電レート特性は調べなかった。
When a self-discharge test was performed in the middle cycle, the self-discharge rate was 5.3%. The discharge rate characteristics were not examined because the capacity was significantly reduced in each cycle.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明の二次電池はエネルギー密
度が高く、可逆性が良く、自己放電も少なく、放電レー
ト特性にも優れた電池でありこれを電源とする分野に寄
与することが極めて大きい。
As described above, the secondary battery of the present invention has a high energy density, good reversibility, low self-discharge, and excellent discharge rate characteristics. large.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極と負極と非水電解質とからなる二次電
池において、アルカリ金属合金に繊維状物質と電解質と
を混合し、これに結着剤を添加し、成形した負極を用い
ることを特徴とする二次電池。
1. A secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte, wherein a fibrous substance and an electrolyte are mixed with an alkali metal alloy, a binder is added thereto, and a molded negative electrode is used. Features a secondary battery.
【請求項2】繊維状物質が金属繊維である請求項(1)
記載の二次電池。
2. The method according to claim 1, wherein the fibrous substance is a metal fiber.
The secondary battery according to any one of the preceding claims.
【請求項3】繊維状物質が炭素繊維である請求項(1)
記載の二次電池。
3. The fibrous substance is a carbon fiber.
The secondary battery according to any one of the preceding claims.
【請求項4】電解質が、二次電池に用いられる非水電解
液の溶媒に溶解するアルカリ金属塩である請求項
(1),(2)または(3)記載の二次電池。
4. The secondary battery according to claim 1, wherein the electrolyte is an alkali metal salt dissolved in a solvent of the non-aqueous electrolyte used for the secondary battery.
【請求項5】電解質が二次電池に用いられる非水電解液
の溶媒に溶解する固体電解質である請求項(1),
(2)または(3)記載の二次電池。
5. The electrolyte according to claim 1, wherein the electrolyte is a solid electrolyte dissolved in a solvent of a non-aqueous electrolyte used for a secondary battery.
The secondary battery according to (2) or (3).
【請求項6】アルカリ金属合金がナトリウムと鉛、或い
はナトリウムと錫の合金である請求項(1),(2),
(3),(4)、または(5)記載の二次電池。
6. The method according to claim 1, wherein the alkali metal alloy is an alloy of sodium and lead or sodium and tin.
The secondary battery according to (3), (4), or (5).
【請求項7】アルカリ金属合金が、リチウムと、アルミ
ニウム、鉛、錫のうち少なくとも1種の金属との合金で
ある請求項(1),(2),(3),(4)、または
(5)記載の二次電池。
7. The method according to claim 1, wherein the alkali metal alloy is an alloy of lithium and at least one of aluminum, lead and tin. 5) The secondary battery as described above.
JP2061819A 1990-03-13 1990-03-13 Rechargeable battery Expired - Fee Related JP2839627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2061819A JP2839627B2 (en) 1990-03-13 1990-03-13 Rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2061819A JP2839627B2 (en) 1990-03-13 1990-03-13 Rechargeable battery

Publications (2)

Publication Number Publication Date
JPH03263769A JPH03263769A (en) 1991-11-25
JP2839627B2 true JP2839627B2 (en) 1998-12-16

Family

ID=13182076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2061819A Expired - Fee Related JP2839627B2 (en) 1990-03-13 1990-03-13 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP2839627B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236948A (en) * 2000-02-23 2001-08-31 Toyota Motor Corp Positive electrode for lithium ion secondary battery
JP2011192474A (en) * 2010-03-12 2011-09-29 Sumitomo Electric Ind Ltd Battery negative electrode material, battery negative electrode precursor material, and battery
JP5758753B2 (en) * 2011-09-09 2015-08-05 株式会社リコー Non-aqueous electrolyte secondary battery
DE102014207233A1 (en) * 2014-04-15 2015-10-15 Bayerische Motoren Werke Aktiengesellschaft Lithium cell, battery with the lithium cell, as well as motor vehicle, mobile device or stationary storage element comprising the battery
CN110140253B (en) * 2016-10-26 2024-10-15 新加坡国立大学 Non-inflammable sodium ion battery

Also Published As

Publication number Publication date
JPH03263769A (en) 1991-11-25

Similar Documents

Publication Publication Date Title
US4668596A (en) Negative electrodes for non-aqueous secondary batteries composed on conjugated polymer and alkali metal alloying or inserting material
JP3726958B2 (en) battery
US5051325A (en) Secondary battery
EP0883199A1 (en) Negative electrode materials for non-aqueous electrolyte secondary batteries and said batteries employing the same materials
JPH0729602A (en) Non-aqueous electrolyte secondary battery and manufacture thereof
JPH05174818A (en) Manufacture of nonaqueous electrolyte secondary battery and negative electrode active material thereof
US5294503A (en) Anode for rechargeable ambient temperature lithium cells
Yamaura et al. High voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material
JP2001126733A (en) Nonaqueous electrolytic material
CA1268205A (en) Conjugated polymer as substrate for the plating of alkali metal in a nonaqueous secondary battery
KR101044561B1 (en) Anode Material and Battery Using Same
JP2839627B2 (en) Rechargeable battery
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JPH09115546A (en) Secondary battery provided with non-aqueous solvent
JPH11162467A (en) Non-aqueous secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP2003282147A (en) Lithium ion secondary battery
US5342711A (en) Rechargeable battery with nonaqueous electrolyte
JPH03196467A (en) Secondary battery
Takehara Development of lithium rechargeable batteries in Japan
JPH02207464A (en) secondary battery
JPH08106920A (en) Lithium secondary battery
JP3081981B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2898056B2 (en) Rechargeable battery
JPH1083837A (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091016

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees