JP2839028B2 - Desulfurization and denitrification method and desulfurization and denitrification equipment - Google Patents
Desulfurization and denitrification method and desulfurization and denitrification equipmentInfo
- Publication number
- JP2839028B2 JP2839028B2 JP10045336A JP4533698A JP2839028B2 JP 2839028 B2 JP2839028 B2 JP 2839028B2 JP 10045336 A JP10045336 A JP 10045336A JP 4533698 A JP4533698 A JP 4533698A JP 2839028 B2 JP2839028 B2 JP 2839028B2
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- low
- desulfurization
- denitrification
- temperature plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000006477 desulfuration reaction Methods 0.000 title claims description 31
- 230000023556 desulfurization Effects 0.000 title claims description 31
- 238000000034 method Methods 0.000 title claims description 20
- 239000007789 gas Substances 0.000 claims description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 150000003839 salts Chemical class 0.000 claims description 14
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 6
- 239000000428 dust Substances 0.000 claims description 5
- 230000007935 neutral effect Effects 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 238000006386 neutralization reaction Methods 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 239000007921 spray Substances 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 239000000498 cooling water Substances 0.000 description 6
- 150000008043 acidic salts Chemical class 0.000 description 5
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910017464 nitrogen compound Inorganic materials 0.000 description 3
- 150000002830 nitrogen compounds Chemical class 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012717 electrostatic precipitator Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012716 precipitator Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/32—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
- B01D53/323—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 by electrostatic effects or by high-voltage electric fields
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/265—Drying gases or vapours by refrigeration (condensation)
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/302—Sulfur oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/402—Dinitrogen oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/404—Nitrogen oxides other than dinitrogen oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/80—Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
- B01D2259/818—Employing electrical discharges or the generation of a plasma
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H2245/00—Applications of plasma devices
- H05H2245/10—Treatment of gases
- H05H2245/17—Exhaust gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Thermal Sciences (AREA)
- Treating Waste Gases (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は火力発電所、製鉄
所、一般事業所から排出される排ガスに含まれる亜硫酸
ガスSO2および窒素化合物NOXを同時に取り除く低温
プラズマ法に関するものであり、より詳細にいえば低温
プラズマ反応器内に凝縮器を設けることによって脱硫及
び脱窒効率の向上、低温腐蝕の防止、運転温度範囲の拡
大、運転費用の節約、2次廃水量の削減および反応器の
小型化などの効果を目的にした脱硫及び脱窒方法に関す
るものである。The present invention is thermal power plants BACKGROUND OF THE INVENTION, steelworks, relates rid general sulfur dioxide SO 2 contained in the exhaust gas discharged from the plant and nitrogen compounds NO X at the same time low-temperature plasma method, more Speaking of which, installing a condenser in a low temperature plasma reactor improves desulfurization and denitrification efficiency, prevents low temperature corrosion, expands the operating temperature range, saves operating costs, reduces the amount of secondary wastewater, and makes the reactor smaller. TECHNICAL FIELD The present invention relates to a desulfurization and denitrification method for the purpose of effecting gasification.
【0002】[0002]
【従来の技術】従来の脱硫及び脱窒方法に用いられる低
温プラズマ法説明するにあたり、便宜的に図1を用い
る。図1に示した従来の方法は、低温プラズマ反応器を
用いて、次の過程を経て、排ガス内の亜硫酸ガスおよび
窒素化合物を除去する。2. Description of the Related Art FIG. 1 is used for convenience in describing a low-temperature plasma method used in a conventional desulfurization and denitrification method. The conventional method shown in FIG. 1 uses a low-temperature plasma reactor to remove sulfur dioxide and nitrogen compounds in exhaust gas through the following steps.
【0003】1)産業用ボイラーの排出する排ガスをプ
ラズマ反応器に入る前に設けた熱交換器1で排ガスの温
度を110℃以下に一担下げてから反応器2に供給す
る。 2)更に、反応器2で排ガス温度はスプレーノズル4を
通して水を噴霧することにより80℃以下に下げられ
る。 3)プラズマ電極棒と集塵板とで構成された産業用集塵
器と類似の構造をもつプラズマ電極棒の両極に、パルス
電力発生機5により高電圧パルス電力を供給する。この
とき、両極にストリーマコロナが発生し、同時に強力な
電子の集合体で反応器内の空間が満たされる。 4)反応器2内の電子群は、排ガスの主要な構成分子で
ある酸素、水蒸気、窒素などと衝突して酸化力の強いラ
ジカルな状態とする、これらのラジカルな状態となった
気体の主要な構成分子は亜硫酸ガスおよび窒素化合物を
エアロゾル状の酸性塩に変える役割を果たすことにな
る。 5)酸性塩のエアロゾルは粒成長する際に、反応器に注
入されるアンモニアと反応して1μm径の粒子状の中性
塩になり電気集塵器6で捕集される。1) The exhaust gas discharged from an industrial boiler is supplied to a reactor 2 after the temperature of the exhaust gas is reduced to 110 ° C. or less by a heat exchanger 1 provided before entering the plasma reactor. 2) Further, the temperature of the exhaust gas in the reactor 2 is reduced to 80 ° C. or less by spraying water through the spray nozzle 4. 3) A high-voltage pulse power is supplied by a pulse power generator 5 to both poles of a plasma electrode rod having a structure similar to an industrial dust collector composed of a plasma electrode rod and a dust collecting plate. At this time, a streamer corona is generated at both poles, and at the same time, the space inside the reactor is filled with a collection of strong electrons. 4) The electron group in the reactor 2 collides with oxygen, water vapor, nitrogen, etc., which are the main constituent molecules of the exhaust gas, to form radicals having strong oxidizing power. The various constituent molecules serve to convert sulfurous acid gas and nitrogen compounds into aerosol-like acidic salts. 5) The aerosol of the acidic salt reacts with the ammonia injected into the reactor during the grain growth to become a particulate neutral salt having a diameter of 1 μm and is collected by the electrostatic precipitator 6.
【0004】このような従来の低温プラズマ法による脱
硫脱窒の運転電力を決定する重要な要因は酸性塩および
中性塩の生成過程にあり、この生成過程効率を上げるた
めに反応器に供給する排ガス温度を、反応器の入口側に
設けた熱交換器および反応器内での水の噴霧によって8
0℃以下に下げるか、噴霧された水が塩を吸収するよう
にしている。An important factor that determines the operating power of desulfurization and denitrification by the conventional low-temperature plasma method is the production process of acidic salts and neutral salts, and is supplied to a reactor in order to increase the efficiency of the production process. The temperature of the exhaust gas was controlled by a heat exchanger provided on the inlet side of the reactor and water spray in the reactor.
Either cool below 0 ° C or allow the sprayed water to absorb the salt.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、前記し
た従来の方法で排ガスの運転温度を80℃以下に下げて
反応器に供給すると、1)亜硫酸ガスが硫酸に変化し反
応器の低温腐蝕を促す。2)大容量の排ガスを反応器の
前に配置した熱交換機を通して温度を下げるためのエネ
ルギーコストが大きいという問題がある。However, when the operating temperature of the exhaust gas is reduced to 80 ° C. or less and supplied to the reactor by the above-mentioned conventional method, 1) the sulfurous acid gas changes to sulfuric acid, which promotes low-temperature corrosion of the reactor. . 2) There is a problem in that the energy cost for lowering the temperature of a large amount of exhaust gas through a heat exchanger disposed in front of the reactor is large.
【0006】また、スプレーノズルを通じての水の噴霧
する反応器で塩の生成を促進する場合、1)噴霧された
水の分布が不均一になり生成塩の分布が空間内で遍在
し、2)スプレーノズルの腐蝕による水の供給停止がお
こり、3)飛散した液滴による反応器の腐蝕を招き、
4)水の噴霧により2次廃水が発生し、5)噴霧を用い
ると反応器の体積が増加せざるを得ないことになる。In the case of promoting the formation of salt in a reactor that sprays water through a spray nozzle, 1) the distribution of the sprayed water becomes uneven, and the distribution of the generated salt is ubiquitous in space; ) Water supply stop due to corrosion of spray nozzle, 3) Corrosion of reactor caused by scattered droplets,
4) Secondary spray water is generated by spraying water, and 5) If spray is used, the volume of the reactor must be increased.
【0007】従って、本発明の目的は、低温腐蝕がな
く、運転所要電力が少なく、2次廃水の発生をなくし、
脱硫及び脱窒効率に優れ、しかもランニングコストの低
い脱硫脱窒方法を提供することにある。Accordingly, an object of the present invention is to eliminate low temperature corrosion, reduce the required power for operation, and eliminate the generation of secondary wastewater.
An object of the present invention is to provide a desulfurization and denitrification method which is excellent in desulfurization and denitrification efficiency and has a low running cost.
【0008】[0008]
【課題を解決するための手段】上述のような従来法の諸
々の問題を解決すべく熱交換器を通して排ガスの温度を
下げ、反応器内に水を噴霧する代りに図2に図示するよ
うに、反応器内部に凝縮器を備えた低温プラズマ反応器
を用いて脱硫及び脱窒を遂行しようとするのである。In order to solve the above-mentioned problems of the conventional method, the temperature of the exhaust gas is lowered through a heat exchanger, and instead of spraying water into the reactor, as shown in FIG. In order to perform desulfurization and denitrification using a low temperature plasma reactor having a condenser inside the reactor.
【0009】本発明による脱硫及び脱窒方法と装置を用
いれば、産業用ボイラーなどから排出された排ガスを、
直接低温プラズマ反応器2に供給すれば、反応器2内に
供給された排ガス中の水分が反応器内に備えられた凝縮
器9の表面で凝縮し、この凝縮した液滴または液膜によ
り、塩の生成および排ガスの中性化がおこる。この際、
凝縮器には冷却水供給器10から冷却水が連続供給され
る、循環式冷却器を用いる。By using the desulfurization and denitrification method and apparatus according to the present invention, the exhaust gas discharged from an industrial boiler or the like can be
If supplied directly to the low-temperature plasma reactor 2, the moisture in the exhaust gas supplied to the reactor 2 is condensed on the surface of the condenser 9 provided in the reactor, and this condensed droplet or liquid film causes Salt generation and exhaust gas neutralization occur. On this occasion,
As the condenser, a circulating cooler to which the cooling water is continuously supplied from the cooling water supplier 10 is used.
【0010】本発明に用いられる低温プラズマ反応器に
用いられる凝縮器に求められる条件は次のとおりであ
る。The conditions required for the condenser used in the low-temperature plasma reactor used in the present invention are as follows.
【0011】1)凝縮器の冷却管は、反応器内を通過す
る排ガスとの接触面積を広くとり、水分が十分に凝縮で
きるように反応器の断面に応じたサイズとすべきであ
る。 2)凝縮器は、反応器の各プラズマ電極棒の排ガス流の
下流側に設けられる。このプラズマ電極棒と凝縮器との
一組を1ユニットと称す。 3)凝縮器は、反応器のサイズに応じ、複数ユニットを
多段に反応器内に設けることもできる。[0011] 1) The cooling pipe of the condenser should have a large contact area with the exhaust gas passing through the reactor, and be sized according to the cross section of the reactor so that the water can be sufficiently condensed. 2) A condenser is provided downstream of the exhaust gas flow of each plasma electrode rod of the reactor. One set of the plasma electrode rod and the condenser is referred to as one unit. 3) Depending on the size of the reactor, a plurality of units can be provided in the reactor in multiple stages.
【0012】反応器サイズが大きい場合、凝縮器の数が
多いほど脱硫及び脱窒の性能は向上する。従って、目的
とする処理能力に応じ凝縮器のサイズおよびユニット数
を適切に配置しなければならない。When the reactor size is large, the desulfurization and denitrification performance improves as the number of condensers increases. Therefore, the size and the number of units of the condenser must be appropriately arranged according to the target processing capacity.
【0013】留意すべきは反応器内に供給される排ガス
の温度の全体温度を数十度以上下げるような配置、例え
ば、凝縮器のサイズが大きすぎる、ユニット数が多すぎ
る、或は冷却水量が多すぎたりすると、却って低温プラ
ズマ脱硫及び脱窒の性能向上を期待することができなく
なる。また、凝縮器の冷却管の配置に因っては、通過排
ガスの圧損が大きくなり経済性が落ちることになる。It should be noted that the arrangement is such that the total temperature of the exhaust gas supplied into the reactor is lowered by several tens of degrees or more, for example, the size of the condenser is too large, the number of units is too large, or the amount of cooling water is too large. If the amount is too large, improvement in low-temperature plasma desulfurization and denitrification performance cannot be expected. Further, depending on the arrangement of the cooling pipes of the condenser, the pressure loss of the passing exhaust gas increases and the economic efficiency decreases.
【0014】このような不具合を回避するためには、反
応器の内部温度が110℃以下になることを防止し、圧
力の損失が100mmAを超えないようにして排ガス中
の水分を凝縮できるよう凝縮器のサイズ、ユニット数、
冷却水量などを適切に調節することが望ましい。In order to avoid such a disadvantage, the internal temperature of the reactor is prevented from lowering to 110 ° C. or less, and the pressure loss is prevented from exceeding 100 mmA so that the water in the exhaust gas can be condensed. Container size, number of units,
It is desirable to appropriately adjust the amount of cooling water and the like.
【0015】そして、従来の低温プラズマ反応器(図
1)で冷却スプレーがプラズマ電極棒の前段に設けられ
るのと違って、本発明においては凝縮器をプラズマ電極
棒の後部に設けたのは、プラズマ電極棒から発生する電
子が亜硫酸ガスと窒素酸化物を酸性塩に変化させたあ
と、これら酸性塩を凝縮器と接触させ中性塩に変えてや
るためである。すなわち、凝縮器がプラズマ電極棒の前
に設けられると、凝縮器が酸性塩と接触しないことにな
り、酸性塩を中性塩に変える凝縮器の意味がなくなるた
めである。以上のような本発明に係る脱硫及び脱窒方法
の利点は、次のとおりである。Unlike the conventional low-temperature plasma reactor (FIG. 1) in which the cooling spray is provided in front of the plasma electrode rod, in the present invention, the condenser is provided behind the plasma electrode rod. This is because electrons generated from the plasma electrode rod change sulfurous acid gas and nitrogen oxide into acidic salts, and then contact these acidic salts with a condenser to change them into neutral salts. That is, if the condenser is provided in front of the plasma electrode rod, the condenser does not come into contact with the acid salt, and the meaning of the condenser for converting the acid salt to the neutral salt is lost. The advantages of the desulfurization and denitrification method according to the present invention as described above are as follows.
【0016】1)従来は塩の生成を促すために反応器前
端の熱交換器と噴霧システムとが用いられたが、本発明
に係る方法では反応器内部の凝縮器のみでこの機能を果
たすことができ、工程の簡素化が可能となる。 2)本発明において、凝縮器の果たす役割は、排ガスの
温度を下げるためのものではなく、排ガス中の水分を冷
却管上で凝縮させることにある。従って、反応器の運転
温度を、従来の80℃以下から110℃以上とすること
ができ、反応器構成材料の低温腐蝕を有効に防止するこ
とができる。 3)凝縮器の表面に均一に分布した液滴または液膜で塩
の吸収反応がおこるので除却効率が向上する。 4)本発明に係る方法及び装置では、反応器に水を供給
することがないため、2次廃水は発生しない。 5)本発明に係る装置では、反応器の体積を小型化する
ことが容易である。 6)従来法と比べて脱硫及び脱窒の率が著しく向上す
る。1) Conventionally, a heat exchanger at the front end of the reactor and a spray system have been used to promote the formation of salt. However, in the method according to the present invention, this function is performed only by the condenser inside the reactor. And the process can be simplified. 2) In the present invention, the role of the condenser is not to reduce the temperature of the exhaust gas, but to condense the moisture in the exhaust gas on the cooling pipe. Therefore, the operating temperature of the reactor can be reduced from the conventional 80 ° C. or lower to 110 ° C. or higher, and low-temperature corrosion of the reactor constituent material can be effectively prevented. 3) Since the salt absorption reaction occurs in droplets or liquid films uniformly distributed on the surface of the condenser, the removal efficiency is improved. 4) In the method and apparatus according to the present invention, no water is supplied to the reactor, so that no secondary wastewater is generated. 5) In the apparatus according to the present invention, it is easy to reduce the volume of the reactor. 6) The rate of desulfurization and denitrification is remarkably improved as compared with the conventional method.
【0017】以上に述べた脱硫及び脱窒方法に用いる脱
硫脱窒装置は、排ガスを低温プラズマ反応器側から電気
集塵機へ流し脱硫及び脱窒を行う構造を持つもので使用
できる。低温プラズマ反応器は低温プラズマ反応容器と
その内部に納められるプラズマ電極棒及び排ガスに含ま
れた水分を冷却凝固する凝縮器からなる。The desulfurization and denitrification apparatus used in the above-mentioned desulfurization and denitrification method can be used in a device having a structure in which exhaust gas is passed from the low-temperature plasma reactor to an electric dust collector to perform desulfurization and denitrification. The low-temperature plasma reactor includes a low-temperature plasma reaction vessel, a plasma electrode housed therein, and a condenser for cooling and coagulating water contained in exhaust gas.
【0018】このとき、プラズマ電極棒と冷却器である
凝縮器とは低温プラズマ反応容器内で排ガスの流れに沿
って直列に配置されている。特に好ましいのは、排ガス
を最初にプラズマ電極棒に接触させ、その後冷却器であ
る凝縮器と接触させる流れを形成するのがよい。排ガス
を、このプラズマ電極棒と冷却器である凝縮器との接触
を交互に繰り返し行うものとすると、より高い脱硫及び
脱窒効率を高めることができる。At this time, the plasma electrode rod and the condenser as a cooler are arranged in series in the low-temperature plasma reactor along the flow of the exhaust gas. It is particularly preferred to form a stream in which the exhaust gas is first brought into contact with the plasma electrode rods and then into contact with a condenser which is a cooler. When the exhaust gas is alternately and repeatedly contacted with the plasma electrode rod and the condenser as the cooler, higher desulfurization and denitrification efficiency can be enhanced.
【0019】更に、処理排ガスの特性、処理量等を考慮
して、適宜プラズマ電極棒及び凝縮器の配置及び配置数
を調整使用することが可能である。ここで用いる電気集
塵機は、一般的に産業用に使用されているものの使用が
可能である。Furthermore, it is possible to adjust and use the arrangement and number of the plasma electrode rods and condensers as appropriate in consideration of the characteristics of the treated exhaust gas, the amount of treatment, and the like. As the electric precipitator used here, those generally used for industrial purposes can be used.
【0020】[0020]
【発明の実施の形態】以下、最適と思われる実施形態を
通じて、本発明に係る方法をより詳しく説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method according to the present invention will be described below in more detail with reference to embodiments that are considered to be optimal.
【0021】第1実施形態:この実施形態は、プラズマ
脱硫脱窒パイロット・プラントの製作前に本発明に係る
方法を採用したプラズマ反応器の凝縮現象によるNOX
の除去性能着目し小型反応器を作成しで実験したもので
ある。図3に排ガスと接触する冷却管9の配置が分かる
よう反応器2を上方からながめた横断面図を示してい
る。[0021] First Embodiment: This embodiment, NO by condensation phenomenon of the plasma reactor employing the method according to the present invention prior to fabrication of the plasma desulfurization denitrification pilot plant X
A small reactor was prepared and an experiment was conducted with the focus on the removal performance. FIG. 3 is a cross-sectional view of the reactor 2 viewed from above so that the arrangement of the cooling pipe 9 that contacts the exhaust gas can be seen.
【0022】プラズマ反応器内に上述の凝縮器を備えた
場合と凝縮器を備えていない場合とのNOX除去率を比
べた。比較条件は、排ガス流量が20Nm3/hの小型
プラズマ反応器で初期NOX濃度200ppm、パルス
反復率60Hz、パルス幅1000nsecの条件下で
実施した。結果は図4に示したとおりである。[0022] comparing the NO X removal rate of the case where the plasma reactor is not equipped with a condenser and a case having the above-mentioned condenser. Comparison condition, the exhaust gas flow rate is carried out at an initial NO X concentration 200 ppm, pulse repetition rate 60 Hz, under the conditions of pulse width 1000nsec small plasma reactor 20 Nm 3 / h. The results are as shown in FIG.
【0023】図4に表われたように、プラズマ反応器内
に凝縮器がある場合には凝縮器がない場合と比べ、NO
X除去率が遥かに高くなり、反応器に付加された電圧を
最高50kVに上げても凝縮器のない場合にはNOX除
去率が15%の水準に過ぎない結果となっている。 即
ち、この結果よりプラズマ反応器内に凝縮器を設ける場
合NOX除去率が著しく向上できることが分かる。As shown in FIG. 4, when the condenser is provided in the plasma reactor, the NO.
X removal rate is much higher, if no condenser also Maximizes 50kV an added voltage to the reactor has resulted in NO X removal rate is only on the level of 15%. That is, it can be seen that can result from the case NO X removal rate improved considerably to provide a condenser plasma reactor.
【0024】第2実施形態:ここでは、本発明に係る凝
縮器を備えた反応器を用いた場合と凝縮器を備えていな
いプラズマ反応器を利用した場合との脱硫及び脱窒効果
を比べた。 Second Embodiment Here, the desulfurization and denitrification effects of a case where a reactor having a condenser according to the present invention is used and a case where a plasma reactor without a condenser according to the present invention is used are compared. .
【0025】凝縮器を備えたプラズマ脱硫脱窒パイロッ
ト・プラント(本発明)と凝縮器が設けられていない従
来法によるパイロット・プラント(イタリア国立電力会
社のデータ)とを比較したその結果は表1に示すとおり
であった。The results of a comparison between a plasma desulfurization and denitrification pilot plant with a condenser (invention) and a conventional pilot plant without a condenser (data from the Italian National Electric Power Company) are shown in Table 1. Was as shown in FIG.
【0026】[0026]
【表1】 [Table 1]
【0027】表1から分かるように、同一の電圧を供給
した場合に凝縮器が設けられた本発明に係るプラントは
凝縮器が設けられていない従来法のプラントの場合と比
べ脱硫及び脱窒効率が高く、運転のための所要電力が少
なく、しかも運転温度が高くでき反応器の低温腐蝕の発
生を防止できた。As can be seen from Table 1, the efficiency of desulfurization and denitrification in the plant according to the present invention provided with the condenser when the same voltage is supplied is higher than that in the conventional plant without the condenser. , The power required for operation was low, and the operating temperature was high, so that low-temperature corrosion of the reactor could be prevented.
【0028】[0028]
【発明の効果】本発明に係る低温プラズマ反応法および
反応器を用いることで、従来の装置に発生していた低温
腐蝕を防止し装置のライフサイクルを延ばし、無駄なエ
ネルギーコストを低減することでランニングコストの削
減が可能となった。しかも、本発明に係る反応器は、排
ガス冷却水を用いないため2次廃水が発生せず環境保護
の観点からも優れたものである。By using the low-temperature plasma reaction method and the reactor according to the present invention, it is possible to prevent low-temperature corrosion occurring in the conventional apparatus, extend the life cycle of the apparatus, and reduce unnecessary energy costs. Running costs can be reduced. In addition, the reactor according to the present invention does not use exhaust gas cooling water, so that secondary wastewater does not occur and is excellent in terms of environmental protection.
【図1】 従来法の低温プラズマ反応器を示す図面であ
る。FIG. 1 is a drawing showing a conventional low-temperature plasma reactor.
【図2】 本発明に係る低温プラズマ反応器を示す図面
である。FIG. 2 is a view showing a low-temperature plasma reactor according to the present invention.
【図3】 本発明に係る低温プラズマ反応器の横断面図
である。FIG. 3 is a cross-sectional view of a low-temperature plasma reactor according to the present invention.
【図4】 本発明に係る実験結果を示すグラフである。FIG. 4 is a graph showing experimental results according to the present invention.
1:熱交換器 2:低温プラズマ反応器 3、3’:プラズマ電極棒 4:スプレーノズル 5:パルス電力発生機 6:電気集塵器 7:排ガス吸入器 8:直流電力発生機 9:凝縮器(冷却管) 10:冷却水供給機 1: Heat exchanger 2: Low-temperature plasma reactor 3, 3 ': Plasma electrode rod 4: Spray nozzle 5: Pulse power generator 6: Electric dust collector 7: Exhaust gas inhaler 8: DC power generator 9: Condenser (Cooling pipe) 10: Cooling water feeder
───────────────────────────────────────────────────── フロントページの続き (72)発明者 申完浩 大韓民国 忠清北道 清州市 上堂區 大成洞 5宇成アパートメント 103棟 202號 (72)発明者 金碩準 大韓民国 大田市 西區 月評洞 累理 アパートメント 106棟 401號 (72)発明者 張吉洪 大韓民国 慶尚南道 馬山市 會原區 陽徳2洞 158−2番地 正友アパート メント 1213號 (58)調査した分野(Int.Cl.6,DB名) B01D 53/60 B01D 53/74 B01D 53/34────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shen-Han, Korea 103 No. 202, 103, 5 Ue-sung Apartment, Sejong-gu, Cheongju-si, Chungcheongbuk-do, South Korea No. 202 Wing No. 401 (72) Inventor Zhang Jihong 158-2 Masade Apartment 2158, Yongde 2-dong, Aiwon-gu, Masan-si, Gyeongsangnam-do, Republic of Korea No. 1213 No. 58 (58) Field surveyed (Int.Cl. 6 , DB name) B01D 53/60 B01D 53/74 B01D 53/34
Claims (5)
および窒素酸化物を酸化させ最終的にアンモニアで中性
塩を生成除去する方法であって、処理する排ガス温度を
予め下げることなく、低温プラズマ反応器内部設けた凝
縮器で排ガスに含まれた水分を凝縮器の表面に凝縮させ
て塩の生成および中性化を促進することを特徴とする低
温プラズマ反応器を用いた脱硫脱窒方法。1. A method for oxidizing sulfurous acid gas and nitrogen oxides using a low-temperature plasma reactor and finally producing and removing neutral salts with ammonia. A desulfurization and denitrification method using a low-temperature plasma reactor, wherein water contained in exhaust gas is condensed on the surface of the condenser in a condenser provided inside the reactor to promote salt formation and neutralization.
いる脱硫脱窒装置であって、排ガスを低温プラズマ反応
器側から電気集塵機へ流し脱硫及び脱窒を行うものであ
り、第1反応槽は低温プラズマ反応容器とその内部に納
められるプラズマ電極棒及び排ガスに含まれた水分を冷
却凝固する凝縮器からなり、プラズマ電極棒と冷却器で
ある凝縮器とは低温プラズマ反応容器内で排ガスの流れ
に沿って直列に配置されていることを特徴とする低温プ
ラズマ脱硫脱窒装置。2. A desulfurization and denitrification apparatus used in the desulfurization and denitrification method according to claim 1, wherein the exhaust gas flows from a low-temperature plasma reactor to an electric dust collector to perform desulfurization and denitrification. The reactor is composed of a low-temperature plasma reactor, a plasma electrode contained in the reactor, and a condenser that cools and solidifies the water contained in the exhaust gas. A low-temperature plasma desulfurization and denitrification device, which is arranged in series along the flow of exhaust gas.
マ電極棒および/または凝縮器を複数個配置することを
特徴とする請求項2に記載の低温プラズマ脱硫脱窒装置3. The low-temperature plasma desulfurization and denitrification apparatus according to claim 2, wherein a plurality of plasma electrode rods and / or condensers provided inside the low-temperature plasma reactor are arranged.
ズマ電極棒の排ガス流の下流側に配置することを特徴と
する請求項2に記載の低温プラズマ脱硫脱窒装置。4. The low-temperature plasma desulfurization and denitrification apparatus according to claim 2, wherein the condenser is disposed downstream of the exhaust gas flow of the plasma electrode rod inside the low-temperature plasma reactor.
℃以上に上げることで反応器の低温腐蝕防止を図ること
を特徴とする請求項1に記載の低温プラズマ脱硫脱窒の
方法。5. The operating temperature of the low-temperature plasma reactor is 110
The method for low-temperature plasma desulfurization and denitrification according to claim 1, wherein the low-temperature plasma desulfurization and denitrification are prevented by raising the temperature to at least ℃.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1997P7855 | 1997-03-08 | ||
KR1019970007855A KR100213812B1 (en) | 1997-03-08 | 1997-03-08 | Desulfurization and Denitrification Method Using Low Temperature Plasma Reactor with Condenser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10249151A JPH10249151A (en) | 1998-09-22 |
JP2839028B2 true JP2839028B2 (en) | 1998-12-16 |
Family
ID=19499191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10045336A Expired - Fee Related JP2839028B2 (en) | 1997-03-08 | 1998-02-26 | Desulfurization and denitrification method and desulfurization and denitrification equipment |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2839028B2 (en) |
KR (1) | KR100213812B1 (en) |
CN (1) | CN1088390C (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4529209B2 (en) * | 1999-12-22 | 2010-08-25 | パナソニック株式会社 | Gas cracker |
KR100481398B1 (en) * | 2001-04-11 | 2005-04-07 | (주)케이.씨.텍 | Method of Treating Perfluoro-Carbon Compound Gas And Apparatus For Treating Thereof |
KR100479468B1 (en) * | 2001-10-31 | 2005-03-30 | (주) 오클린 | A processing apparatus of food garbage |
KR20030067241A (en) * | 2002-02-07 | 2003-08-14 | 주식회사 유민이엔씨 | Method and Apparatus for excluding dioxin and fly ash using high temperature plasma |
KR100987978B1 (en) * | 2008-10-27 | 2010-10-18 | (주)트리플코어스코리아 | Gas scrubbing device and gas scrubbing method |
CN102219274B (en) * | 2011-03-30 | 2012-08-22 | 东南大学 | Evaporation apparatus for wastewater discharged from flue gas desulphurization process |
KR101300194B1 (en) * | 2011-08-29 | 2013-08-26 | 한국기계연구원 | Pulsed plasma reactor With Cooling Heat Exchanger |
CN102847396A (en) * | 2012-04-19 | 2013-01-02 | 绍兴文理学院 | Coal-fired flue gas plasma purification device and purification method thereof |
KR101567746B1 (en) * | 2015-06-16 | 2015-11-09 | 박정봉 | Apparatus for treating exhaust gas |
CN111389196B (en) * | 2020-03-24 | 2022-02-15 | 安吉旺能再生资源利用有限公司 | Flue gas low-temperature plasma co-processing method and system |
CN111514709A (en) * | 2020-04-12 | 2020-08-11 | 蔚复来(浙江)科技股份有限公司 | Garbage odor deodorizing and dehumidifying device and method |
CN113769551B (en) * | 2021-09-28 | 2023-07-28 | 中国华能集团清洁能源技术研究院有限公司 | Method and system for low-temperature desulfurization and denitrification of flue gas from biomass power plants |
CN114100365A (en) * | 2021-12-27 | 2022-03-01 | 河南中顺过滤研究院有限公司 | High-efficiency low-temperature plasma catalytic oxidation organic waste gas treatment equipment and method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2692237B2 (en) * | 1989-02-09 | 1997-12-17 | 株式会社明電舎 | NOx denitration method in exhaust gas and exhaust gas treatment device |
JPH04122417A (en) * | 1990-09-11 | 1992-04-22 | Mitsubishi Heavy Ind Ltd | Exhaust gas treating device |
JPH07213859A (en) * | 1994-02-09 | 1995-08-15 | Mitsubishi Heavy Ind Ltd | Waste gas treating device |
CN1114236A (en) * | 1995-04-10 | 1996-01-03 | 华中理工大学 | Flue gas discharge catalytic reduction desulfurization method and device |
-
1997
- 1997-03-08 KR KR1019970007855A patent/KR100213812B1/en not_active IP Right Cessation
-
1998
- 1998-02-25 CN CN98107708A patent/CN1088390C/en not_active Expired - Fee Related
- 1998-02-26 JP JP10045336A patent/JP2839028B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR19980072869A (en) | 1998-11-05 |
JPH10249151A (en) | 1998-09-22 |
CN1088390C (en) | 2002-07-31 |
CN1203829A (en) | 1999-01-06 |
KR100213812B1 (en) | 1999-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2839028B2 (en) | Desulfurization and denitrification method and desulfurization and denitrification equipment | |
CN107032428B (en) | System and method for zero emission treatment of undersaturated flue gas concentration crystallization desulfurization wastewater | |
US7285250B2 (en) | Apparatus for treating perfluorocompound gas | |
EA032709B1 (en) | Apparatus and method for particulate capture from gas streams and method of removing soluble particulates from a gas | |
CN109985505B (en) | Waste gas treatment process for traditional Chinese medicine plaster production | |
CN104226479A (en) | Efficient wet type electric dedusting and purifying device and method for smoke obtained after wet desulphurization | |
CN109876585B (en) | Traditional chinese medicine plaster production exhaust gas treatment system | |
CN102872671B (en) | Asphalt waste gas purifying method and device | |
CN202876599U (en) | Purifying device of asphalt waste gas | |
EP2868384B1 (en) | Wet electric dust-collecting device and exhaust gas treatment method | |
CN114345098B (en) | CO (carbon monoxide) 2 Method and system for trapping absorbent decomposition inhibition and high-efficiency pollution reduction | |
CN109772124A (en) | A flue gas desulfurization, denitration and whitening equipment | |
JP2015073955A (en) | Exhaust gas treatment method, and exhaust gas treatment device | |
CN113304591A (en) | Method and system for purifying flue gas of carbon roasting furnace | |
CN204018028U (en) | A kind of high-efficient wet-type electric precipitation purifier of wet-method desulfurized fume | |
CN1116917C (en) | Wet electron beam fume desulfurizing process | |
WO2020098574A1 (en) | Method and apparatus for purifying waste incineration flue gas | |
CN1559651A (en) | Dry pulse corona discharge flue gas purification method and device | |
JP6804233B2 (en) | Particle remover | |
CN209378775U (en) | A kind of off-gas cleaning equipment | |
CN209501281U (en) | The processing unit and coal-fired flue-gas processing system of condensable particulate matter and moisture in flue gas | |
KR101300194B1 (en) | Pulsed plasma reactor With Cooling Heat Exchanger | |
CN1077444C (en) | Fog-net type desulfurating dust-removing equipment | |
KR100818638B1 (en) | Wet electric ionizer | |
CN112642277A (en) | Cremation machine tail gas treatment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081016 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |