[go: up one dir, main page]

JP2834276B2 - Manufacturing method of high strength steel with excellent sulfide stress cracking resistance - Google Patents

Manufacturing method of high strength steel with excellent sulfide stress cracking resistance

Info

Publication number
JP2834276B2
JP2834276B2 JP12444190A JP12444190A JP2834276B2 JP 2834276 B2 JP2834276 B2 JP 2834276B2 JP 12444190 A JP12444190 A JP 12444190A JP 12444190 A JP12444190 A JP 12444190A JP 2834276 B2 JP2834276 B2 JP 2834276B2
Authority
JP
Japan
Prior art keywords
steel
less
strength
temperature
stress cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12444190A
Other languages
Japanese (ja)
Other versions
JPH0421718A (en
Inventor
均 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12444190A priority Critical patent/JP2834276B2/en
Publication of JPH0421718A publication Critical patent/JPH0421718A/en
Application granted granted Critical
Publication of JP2834276B2 publication Critical patent/JP2834276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は油井あるいはガス井やその周辺機材に用いら
れる鋼材として適し、湿潤硫化水素と応力の組み合わせ
下で発生する硫化物応力割れ(以下SSCと称する)に対
する抵抗性の高い高強度鋼、特に降伏強度が70kg f/mm2
以上の高強度でしかもSSCの割れ限界応力と降伏強度の
比(以下RS値)が80%以上という優れたSSC抵抗性を有
する鋼の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention is suitable as a steel material used for oil wells or gas wells and peripheral equipment, and has a sulfide stress crack (SSC) generated under a combination of wet hydrogen sulfide and stress. High-strength steel with a high yield strength of 70 kg f / mm 2
The present invention relates to a method for producing a steel having the above high strength and excellent SSC resistance in which the ratio between the critical stress of cracking of SSC and the yield strength (hereinafter referred to as RS value) is 80% or more.

(従来の技術) 近年エネルギー事情の急迫に伴い、硫化水素を含む原
油の掘削、輸送、貯蔵用に鉄鋼材料が使用に供せられる
場合が増えてきている。特に原油掘削用として用いられ
る油井管に使用される鋼は深井戸化の傾向に伴い厳しい
腐食環境にさらされることになり、高い降伏強度と優れ
た耐SSC性を兼ね備えた鋼が必要とされている。また経
済的な要求から大部分の要求に対しては低合成鋼で対処
する必要がある。
(Prior Art) In recent years, with the urgency of the energy situation, steel materials have been increasingly used for drilling, transportation, and storage of crude oil containing hydrogen sulfide. In particular, steel used for oil well pipes used for crude oil drilling will be exposed to severe corrosive environments with the tendency to deepen wells, and steel that has both high yield strength and excellent SSC resistance is required. I have. Most demands must be met with low synthetic steel for economic reasons.

このような要求に対応して特開昭55−73848号公報、
特開昭55−134156号公報などで紹介されているように、
多くの種類の耐SSC鋼管が開発されている。
In response to such a request, JP-A-55-73848 discloses
As introduced in JP-A-55-134156, etc.,
Many types of SSC-resistant steel tubes have been developed.

(発明が解決しようとする問題点) 硫化水素による硫化物応力割れは、鋼材表面が腐食さ
れる際に発生する水素が鋼材中に拡散することによって
引き起こされる水素脆化が原因とされている。低合金を
基本とする化学成分の鋼材において、鋼材強度が上昇す
るにつれて、この脆化感受性が高まるため鋼材強度およ
び優れた耐SSC性を同時に具備させることは困難であっ
た。
(Problems to be Solved by the Invention) Sulfide stress cracking due to hydrogen sulfide is caused by hydrogen embrittlement caused by diffusion of hydrogen generated when a steel material surface is corroded into the steel material. In a steel material having a chemical composition based on a low alloy, as the strength of the steel material increases, the susceptibility to embrittlement increases, so that it is difficult to simultaneously provide the strength of the steel material and the excellent SSC resistance.

具体的には、従来の技術において耐SSC性に優れた高
強度鋼管はC95クラス(降伏強度66.5〜77kg/mm2)が上
限と考えられており、さらに低コストで製造できる鋼が
要求されている。
Specifically, high-strength steel pipe excellent in SSC resistance in the prior art is considered the upper limit is C95 class (yield strength 66.5~77kg / mm 2), is required steels can be further manufactured at a low cost I have.

(問題点を解決するための手段) 本発明者らは耐SSC性を支配する冶金的因子を詳細に
検討した結果、耐SSC性の低下は旧オーステナイト粒界
割れによって起こること、従って高強度と優れた耐SSC
性を同時に具備させるためには粒界強度を高める処置を
とることが必要との知見を得た。従来粒界強度を高める
方法としては、低合金鋼にMnとPを一定の関係で含有さ
せる。
(Means for Solving the Problems) As a result of a detailed study of the metallurgical factors governing the SSC resistance, the present inventors have found that the decrease in the SSC resistance is caused by the former austenite grain boundary cracking, and Excellent SSC resistance
It has been found that it is necessary to take measures to increase the grain boundary strength in order to simultaneously provide the properties. As a conventional method of increasing the grain boundary strength, low alloy steel contains Mn and P in a certain relationship.

特開昭61−6208号公報やPとMoを一定の関係で含有さ
せた特開昭62−17721号公報のように鋼成分を適正化す
る技術があるが、本発明者は他の方法による抜本的な鋼
の粒界強化法について検討した結果、結晶粒界近傍の転
位密度を粒内に較べて高めることにより粒界強度が向上
することを知見した。
Although there is a technique for optimizing the steel composition as disclosed in JP-A-61-6208 and JP-A-62-17721 in which P and Mo are contained in a certain relationship, the present inventor uses other methods. As a result of studying the fundamental method of strengthening the grain boundary of steel, it was found that the grain boundary strength was improved by increasing the dislocation density in the vicinity of the crystal grain boundary as compared to the inside of the grain.

本発明はこのような知見に基づき、十分な厚さの鋼材
を製造できることを考慮に入れ構成要件を決定したもの
である。その要旨は C :0.15〜0.35%、 Si:0.05〜0.50%、 Mn:0.20〜1.0%、 P :0.015%以下、 S :0.010%以下、 N :0.008%以下、 Mo:0.10〜0.80%、 Nb:0.010〜0.050%、 Ti:0.028%以下でかつ−0.005%≦Ti−3.4N≦0.01
%、 Al:0.005〜0.10%、B :0.0005〜0.0025%、 を含有し、あるいはさらに Cr:1.5%以下 を含有して残部が実質的に鉄からなる鋼を、熱間圧延終
了直後、あるいは熱間圧延終了直後の低温度からオース
テナイト域温度に再加熱した後の950〜700℃の温度範囲
で断面積減少率にして15〜40%加工した後焼き入れ処理
により体積率にて90%以上のマルテンサイトに変態させ
た後580〜720℃の温度範囲で焼もどすことを特徴とする
硫化物反応割れ抵抗性の高い高強度鋼の製造法 である。
Based on such knowledge, the present invention has determined constituent components in consideration of the fact that a steel material having a sufficient thickness can be manufactured. The gist is as follows: C: 0.15-0.35%, Si: 0.05-0.50%, Mn: 0.20-1.0%, P: 0.015% or less, S: 0.010% or less, N: 0.008% or less, Mo: 0.10-0.80%, Nb : 0.010 to 0.050%, Ti: 0.028% or less and -0.005% ≦ Ti−3.4N ≦ 0.01
%, Al: 0.005 to 0.10%, B: 0.0005 to 0.0025%, or Cr: 1.5% or less and the balance substantially consisting of iron. After being reheated from the low temperature immediately after the end of the cold rolling to the austenite temperature, the cross-sectional area is reduced by 15 to 40% in the temperature range of 950 to 700 ° C, and the volume ratio is increased by 90% or more by quenching. This is a method for producing a high-strength steel with high resistance to sulfide reaction cracking, characterized by transforming into martensite and then tempering in a temperature range of 580 to 720 ° C.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

まず本発明の鋼成分を上記のように限定した理由につ
いて述べる。
First, the reason why the steel composition of the present invention is limited as described above will be described.

Cは低合金鋼材の所要強度を確保するために必須な元
素として、その含有量を0.15%以上とした。しかし0.35
%を越える多量な含有は、焼入れ時に割れを生じること
があるため0.35%を上限とした。
C is an element essential for ensuring the required strength of the low alloy steel material, and its content is set to 0.15% or more. But 0.35
% May cause cracking during quenching, so the upper limit was set to 0.35%.

Siは鋼の粒界強度を低下させる成分として少量化する
ことが望ましく、その上限を0.50%とした。
It is desirable to reduce the amount of Si as a component that lowers the grain boundary strength of steel, and the upper limit is set to 0.50%.

Mnは焼入性を向上させ、赤熱脆性を防止する有効な成
分で0.2%以上を添加する。しかし多量に含むと粒界強
度を低下させるため、その上限を1.0%とした。
Mn is an effective component for improving hardenability and preventing red-hot brittleness, and is added in an amount of 0.2% or more. However, if contained in a large amount, the grain boundary strength is reduced, so the upper limit was made 1.0%.

Pは粒界強度を低下させる有害な成分として、その含
有量を低減させる必要がある。従って本発明においては
0.015%以下に限定した。
P is a harmful component that lowers the grain boundary strength, and its content must be reduced. Therefore, in the present invention
Limited to 0.015% or less.

Sは製鋼上完全に除去できない不純物で、多量に含む
とMnSを形成しこれが割れ起点となる。したがってS含
有量の上限を0.010%とした。
S is an impurity that cannot be completely removed from steel production, and when contained in a large amount, forms MnS, which serves as a crack initiation point. Therefore, the upper limit of the S content is set to 0.010%.

N量は総Ti量を減少させる上で低い方が望ましいが、
粒界割れを抑制してオーステナイト粒を細かくする有効
な成分として、その上限を0.008%とした。
Although it is desirable that the N content is low in order to reduce the total Ti content,
As an effective component for suppressing grain boundary cracking and making austenite grains fine, the upper limit was made 0.008%.

MoはPの粒界偏析を抑制し粒界強度を向上させる作用
を有する成分として含有させるが、0.10%以下ではその
効果が小さく、また0.8%を越えて添加しても一層の効
果が望めない。したがってMoの含有量を0.10〜0.80%と
した。
Mo is contained as a component having the effect of suppressing the segregation of P at the grain boundary and improving the grain boundary strength. However, the effect is small at 0.10% or less, and no further effect can be expected even if it exceeds 0.8%. . Therefore, the content of Mo is set to 0.10 to 0.80%.

Alは結晶粒微細化の作用をして鋼の靭性を向上する有
効な成分であり、その含有量を0.005%以上とした。ま
た、0.10%を越える過剰な含有量はAl2O3を増加させ耐S
SC性を低下させる。したがってAlの含有量は0.005〜0.1
0%とした。
Al is an effective component for improving the toughness of steel by acting to refine the crystal grains, and its content is set to 0.005% or more. In addition, an excessive content exceeding 0.10% increases Al 2 O 3 and causes
Reduces SC performance. Therefore, the content of Al is 0.005 to 0.1
0%.

NbはNb炭窒化物を生成して再加熱焼入れ鋼の細晶粒ま
たは圧延中の再結晶粒を細かくする効果を有するが0.01
%以下ではその効果は十分でなく、多量に添加しても一
層の細粒化効果を期待できないばかりか熱間加工時のキ
ズを発生しやすくする恐れもある。したがってNb含有量
の上限を0.05%とした。
Nb forms Nb carbonitride and has the effect of making fine grains of reheat-quenched steel or fine grains recrystallized during rolling.
%, The effect is not sufficient, and even if added in a large amount, not only a further fine-graining effect cannot be expected, but also there is a possibility that scratches are likely to occur during hot working. Therefore, the upper limit of the Nb content is set to 0.05%.

TiはNをTiNとして固定しBの焼入性向上機能を維持
し、B含有鋼の鋳造時の表面割れを抑制する効果を有す
る。しかしTiの過剰添加は粗大なTiNの析出を助長し耐S
SC性を低下させるので、Ti−3.4Nとなる関係において−
0.005〜0.01%としかつ総Ti量の上限を0.028%とした。
Ti fixes N as TiN, maintains the function of improving the hardenability of B, and has the effect of suppressing surface cracking during casting of B-containing steel. However, excessive addition of Ti promotes precipitation of coarse TiN,
Since the SC property is reduced, in the relationship of Ti-3.4N-
0.005 to 0.01% and the upper limit of the total Ti content was set to 0.028%.

Bは焼入性を著しく向上させる元素であるが、0.0005
%以下ではその効果は十分ではなく多量に添加してもそ
の効果が飽和するのみならず、熱間加工時の割れ、キズ
の発生が懸念されるため上限を0.0025%とした。またB
の含有はMn,Crの含有量を低減させて耐SSC性の低下傾向
を抑制する作用効果を奏する。
B is an element that significantly improves hardenability, but 0.0005
%, The effect is not sufficient, and even if it is added in a large amount, not only the effect is saturated, but also the occurrence of cracks and flaws during hot working is concerned, so the upper limit was made 0.0025%. Also B
The effect of reducing the content of Mn and Cr suppresses the tendency of reducing the SSC resistance.

Crは焼入性を高め鋼を強化する有効な成分で、選択的
に含有させるものである。Crは、含有量が少ない場合に
は比較的耐SSC性を低下させない元素であるが、多量に
添加すると明らかに耐SSC性を低下させるので上限を1.5
%とした。
Cr is an effective component that enhances hardenability and strengthens steel, and is selectively contained. Cr is an element that does not relatively lower the SSC resistance when its content is small, but when added in a large amount, it obviously lowers the SSC resistance, so the upper limit is 1.5.
%.

上記のような成分組成の鋼は、転炉、電気炉などの溶
解炉あるいはさらに脱ガス処理を施して溶製された溶鋼
を造塊・分塊法または連続鋳造法で鋼片となし、さらに
熱間圧延を経て製造される。該熱間圧延の仕上圧延後ま
たは熱間圧延終了後低温度からオーステナイト域温度に
再加熱後、950〜700℃の温度範囲で15〜40%の熱間加工
を施した後、焼入れ処理をする。この工程は本発明の最
重要点である。この加工により導入された転位は粒界近
くに高密度に堆積し、この転位は焼入れ処理中に生じる
マルテンサイトに引き継がれる。すなわちこの加工によ
り得られたマルテンサイトは組織特有の高密度の転位を
含むと共にとりわけ旧オーステナイト粒界近傍の転位密
度が高くなる。ここで加工温度を950〜700℃に限定した
理由は950℃以上では加工により導入された転位が有効
に残存せず転位による粒界強度に寄与しない。一方700
℃を下まわる温度では加工によりフェライト変態を起こ
して強度を低下しマルテンサイト組織とフェライト組織
の混合組織を呈して耐SSC特性を劣化する。したがって9
50〜700℃に限定した。加工率を15%以上とした理由は1
5%以下では十分な転位による強化の効果がなく、一方4
0%を越える加工は再結晶を誘起して転位が減少する可
能性があるため15〜40%とした。なお、ここで言う加工
率は{(加工前断面率)−(加工後断面率)}/(加工
前断面積)×100(%)により定義される断面積減少率
である。
Steel of the above component composition, a converter, a melting furnace such as an electric furnace or a molten steel that has been subjected to further degassing and melted to form a slab by ingot-bulking method or continuous casting method. It is manufactured through hot rolling. After the finish rolling of the hot rolling or after the completion of the hot rolling, the steel sheet is reheated from a low temperature to an austenite region temperature, subjected to 15 to 40% hot working in a temperature range of 950 to 700 ° C, and then subjected to a quenching treatment. . This step is the most important point of the present invention. The dislocations introduced by this processing are densely deposited near the grain boundaries, and the dislocations are inherited by martensite generated during the quenching process. That is, the martensite obtained by this processing contains high-density dislocations peculiar to the structure and has a particularly high dislocation density near the prior austenite grain boundary. Here, the reason why the processing temperature is limited to 950 to 700 ° C. is that at 950 ° C. or higher, dislocations introduced by the processing do not effectively remain and do not contribute to the grain boundary strength due to the dislocation. 700
At temperatures below ℃, ferrite transformation occurs during processing to reduce the strength, exhibit a mixed structure of martensite structure and ferrite structure, and degrade SSC resistance. Therefore 9
Limited to 50-700 ° C. The reason for setting the processing rate to 15% or more is 1
If it is less than 5%, the effect of strengthening by sufficient dislocation will not be obtained.
Since processing exceeding 0% may induce recrystallization and reduce dislocations, the content is set to 15 to 40%. Here, the processing rate is a cross-sectional area reduction rate defined by {(cross-sectional area before processing) − (cross-sectional area after processing)} / (cross-sectional area before processing) × 100 (%).

加工された鋼は焼入れ処理によりマルテンサイト変態
させられる。拡散変態が生じると加工により導入された
転位が消滅し、本発明が目的とする効果が得られない。
したがって無拡散変態でマルテンサイト変態させる必要
がある。しかし一定の厚みの鋼を完全にマルテンサイト
変態させることは一般に困難であるため加工の効果がほ
ぼ得られ、また工業的に容易に達成できる90%以上のマ
ルテンサイトとした。
The processed steel is transformed into martensite by quenching. When the diffusion transformation occurs, the dislocations introduced by the processing disappear, and the effect intended by the present invention cannot be obtained.
Therefore, it is necessary to perform martensitic transformation by non-diffusion transformation. However, it is generally difficult to completely transform martensite into steel of a certain thickness, so that the working effect is almost obtained, and the martensite is 90% or more, which can be easily achieved industrially.

このようにして得られた焼入れままの鋼を所望の強度
に調整し、靭性、耐SSC特性を向上させるために焼もど
しを行う必要がある。580℃以下では耐SSC特性が向上す
る強度まで低下させることが困難であり、また720℃以
上の高温で加熱するとオーステナイト相が析出し、冷却
後フェライトに変態し、また場合によりマルテンサイト
に変態し不均一な組織になるため耐SSC性に対し好まし
くない。したがって焼もどし温度は580〜720℃と定め
た。
It is necessary to adjust the as-quenched steel thus obtained to a desired strength and to perform tempering to improve toughness and SSC resistance. At 580 ° C or lower, it is difficult to lower the strength to improve the SSC resistance, and when heated at a temperature of 720 ° C or higher, an austenite phase precipitates, transforms to ferrite after cooling, and sometimes transforms to martensite. It is not preferable for SSC resistance because it has an uneven structure. Therefore, the tempering temperature was set at 580 to 720 ° C.

以上のように製造された鋼は極めて優れた耐SSC特性
を有する。
The steel manufactured as described above has extremely excellent SSC resistance.

(実 施 例) 次に本発明を実施例に基づいて説明する。(Examples) Next, the present invention will be described based on examples.

第1表に示す鋼を用いて、第2表に示す条件で製造し
た。
It was manufactured using the steel shown in Table 1 under the conditions shown in Table 2.

各々の鋼は強度(降伏強度、YS)と硫化物応力割れ特
性を評価した。硫化物応力割れ特性は1気圧のH2Sを飽
和した5%NaCl+0.5%CH3COOH水溶液中で平行部直径が
6.4mmの丸棒引張試験片に引張応力を加え720時間で破断
しない最大応力(σth)を求めた。第2表に示すように
同一強度水準で比較すると本発明鋼は耐硫化物応力割れ
特性RS(σth/YS)が高く優れている。本発明の焼入れ
前の加工の効果は本発明外の鋼にも見られるが、絶対値
として低い。
Each steel was evaluated for strength (yield strength, YS) and sulfide stress cracking characteristics. The sulfide stress cracking characteristic is that the diameter of the parallel part is 5% NaCl + 0.5% CH 3 COOH aqueous solution saturated with 1 atm of H 2 S.
Tensile stress was applied to a 6.4 mm round bar tensile test piece, and the maximum stress (σ th ) that did not break in 720 hours was determined. As shown in Table 2, when compared at the same strength level, the steel of the present invention is excellent in high sulfide stress cracking resistance R Sth / YS). The effect of the working before quenching according to the present invention can be seen in steels other than the present invention, but is low in absolute value.

(発明の効果) このように、本発明にしたがった鋼の製造法によれ
ば、従来の方法では達成できなかった高強度と耐硫化物
応力割れを同時に高い水準で併せもつ鋼が得られ産業上
に寄与するところ極めて大きい。
(Effect of the Invention) As described above, according to the method for producing steel according to the present invention, steel having both high strength and sulfide stress cracking at a high level, which cannot be achieved by the conventional method, can be obtained. It is extremely large where it contributes to the top.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C :0.15〜0.35%、 Si:0.05〜0.50%、 Mn:0.20〜1.0%、 P :0.015%以下、 S :0.010%以下、 N :0.008%以下、 Mo:0.10〜0.80%、 Nb:0.010〜0.050%、 Ti:0.028%以下で かつ−0.005%≦Ti−3.4N≦0.01%、 Al:0.005〜0.10%、B :0.0005〜0.0025% を含有して残部が実質的に鉄からなる鋼を、熱間圧延終
了後、若しくは熱間圧延終了後に低温度からオーステナ
イト域温度に再加熱した後、950〜700℃の温度範囲にお
ける断面積減少率が15〜40%の熱間加工した後焼き入れ
処理し、続いて580〜720℃の温度範囲で焼きもどすこと
を特徴とする硫化物応力割れ抵抗性の高い高強度鋼板の
製造法。
[Claim 1] C: 0.15 to 0.35%, Si: 0.05 to 0.50%, Mn: 0.20 to 1.0%, P: 0.015% or less, S: 0.010% or less, N: 0.008% or less, Mo: 0.10 to 0.80% , Nb: 0.010 to 0.050%, Ti: 0.028% or less and -0.005% ≤ Ti-3.4N ≤ 0.01%, Al: 0.005 to 0.10%, B: 0.0005 to 0.0025%, with the balance being substantially iron Hot-working after completion of hot rolling or after re-heating from low temperature to austenite temperature after completion of hot rolling, the cross-sectional area reduction rate in the temperature range of 950 to 700 ° C is 15 to 40% A method for producing a high-strength steel sheet having a high resistance to sulfide stress cracking, wherein the steel sheet is subjected to a quenching treatment, followed by tempering in a temperature range of 580 to 720 ° C.
【請求項2】C :0.15〜0.35%、 Si:0.05〜0.50%、 Mn:0.20〜1.0%、 P :0.015%以下、 S :0.010%以下、 N :0.008%以下、 Mo:0.10〜0.80%、 Nb:0.010〜0.050%、 Ti:0.028%以下で かつ−0.005%≦Ti−3.4N≦0.01%、 Al:0.005〜0.10%、B :0.0005〜0.0025% を含有して、さらに Cr:1.5%以下、 を含有して残部が実質的に鉄からなる鋼を、熱間圧延終
了後、若しくは熱間圧延終了後に低温度からオーステナ
イト域温度に再加熱した後、950〜700℃の温度範囲にお
ける断面積減少率が15〜40%の熱間加工した後焼き入れ
処理し、続いて580〜720℃の温度範囲で焼きもどすこと
を特徴とする硫化物応力割れ抵抗性の高い高強度鋼板の
製造法。
2. C: 0.15 to 0.35%, Si: 0.05 to 0.50%, Mn: 0.20 to 1.0%, P: 0.015% or less, S: 0.010% or less, N: 0.008% or less, Mo: 0.10 to 0.80% , Nb: 0.010 to 0.050%, Ti: 0.028% or less and -0.005% ≤ Ti-3.4N ≤ 0.01%, Al: 0.005 to 0.10%, B: 0.0005 to 0.0025%, and Cr: 1.5% The steel containing the following and substantially consisting of iron is reheated from the low temperature to the austenite temperature after the completion of the hot rolling or after the completion of the hot rolling, and then cut in a temperature range of 950 to 700 ° C. A method for producing a high-strength steel sheet with high resistance to sulfide stress cracking, characterized by hot working with an area reduction rate of 15 to 40%, quenching, and then tempering at a temperature in the range of 580 to 720 ° C. .
JP12444190A 1990-05-15 1990-05-15 Manufacturing method of high strength steel with excellent sulfide stress cracking resistance Expired - Lifetime JP2834276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12444190A JP2834276B2 (en) 1990-05-15 1990-05-15 Manufacturing method of high strength steel with excellent sulfide stress cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12444190A JP2834276B2 (en) 1990-05-15 1990-05-15 Manufacturing method of high strength steel with excellent sulfide stress cracking resistance

Publications (2)

Publication Number Publication Date
JPH0421718A JPH0421718A (en) 1992-01-24
JP2834276B2 true JP2834276B2 (en) 1998-12-09

Family

ID=14885584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12444190A Expired - Lifetime JP2834276B2 (en) 1990-05-15 1990-05-15 Manufacturing method of high strength steel with excellent sulfide stress cracking resistance

Country Status (1)

Country Link
JP (1) JP2834276B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004097059A1 (en) 2003-04-25 2004-11-11 Tubos De Acero De Mexico, S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
JP2006037147A (en) 2004-07-26 2006-02-09 Sumitomo Metal Ind Ltd Oil well pipe steel
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
WO2009065432A1 (en) 2007-11-19 2009-05-28 Tenaris Connections Ag High strength bainitic steel for octg applications
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
EP2325435B2 (en) 2009-11-24 2020-09-30 Tenaris Connections B.V. Threaded joint sealed to [ultra high] internal and external pressures
US9163296B2 (en) 2011-01-25 2015-10-20 Tenaris Coiled Tubes, Llc Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
BR112015016765A2 (en) 2013-01-11 2017-07-11 Tenaris Connections Ltd drill pipe connection, corresponding drill pipe and method for assembling drill pipes
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
EP2789701A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
EP2789700A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
KR102368928B1 (en) 2013-06-25 2022-03-04 테나리스 커넥션즈 비.브이. High-chromium heat-resistant steel
US20160305192A1 (en) 2015-04-14 2016-10-20 Tenaris Connections Limited Ultra-fine grained steels having corrosion-fatigue resistance
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing

Also Published As

Publication number Publication date
JPH0421718A (en) 1992-01-24

Similar Documents

Publication Publication Date Title
JP2834276B2 (en) Manufacturing method of high strength steel with excellent sulfide stress cracking resistance
JP3358135B2 (en) High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same
JPWO2007023806A1 (en) Seamless steel pipe for line pipe and manufacturing method thereof
JP4381355B2 (en) Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JPS62253720A (en) Production of low-alloy high-tension oil-well steel having excellent resistance to sulfide stress corrosion cracking
JPS63230847A (en) Low alloy steel for oil country tubular goods with excellent corrosion resistance
JP2000256795A (en) Continuously cast slab free from surface cracking and production of non-refining high tensile strength steel material using the slab
JP3857835B2 (en) Steel for high strength bolt and method for producing high strength bolt
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP3218442B2 (en) Manufacturing method of mechanical structural steel with excellent delayed fracture resistance
JPH06172858A (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
KR20000043762A (en) Method of manufacturing super high-strength cold-rolled steel sheet improved in ductility
KR920008133B1 (en) Manufacturing method of welding steel with excellent stress corrosion cracking resistance
JP2672437B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP2001073071A (en) A thick steel plate having a small difference in hardness between a weld heat-affected zone having a tensile strength of 570 to 720 N / mm2 and a base material, and a method for producing the same
JPH09324217A (en) Manufacture of high strength steel for line pipe, excellent in hic resistance
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JPH07179943A (en) Manufacturing method of high toughness martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH09324216A (en) Manufacture of high strength steel or line pipe, excellent in hic resistance
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPS6256929B2 (en)
JPH09263831A (en) Manufacturing method of extra thick and high strength bend pipe with excellent low temperature toughness
JP3241912B2 (en) Manufacturing method of hot rolled steel sheet with excellent sulfide stress corrosion cracking resistance in plastic deformation environment
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic