[go: up one dir, main page]

JP2831755B2 - Oxide superconductor - Google Patents

Oxide superconductor

Info

Publication number
JP2831755B2
JP2831755B2 JP1318253A JP31825389A JP2831755B2 JP 2831755 B2 JP2831755 B2 JP 2831755B2 JP 1318253 A JP1318253 A JP 1318253A JP 31825389 A JP31825389 A JP 31825389A JP 2831755 B2 JP2831755 B2 JP 2831755B2
Authority
JP
Japan
Prior art keywords
temperature
oxide
superconductor
oxide superconductor
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1318253A
Other languages
Japanese (ja)
Other versions
JPH03177316A (en
Inventor
宣二 岸本
浩史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP1318253A priority Critical patent/JP2831755B2/en
Publication of JPH03177316A publication Critical patent/JPH03177316A/en
Application granted granted Critical
Publication of JP2831755B2 publication Critical patent/JP2831755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は酸化物高温超伝導体に関し、詳細には極めて
高い超伝導転移臨界温度(以下、Tcという)を有する酸
化物高温超伝導体に関するものである。
Description: TECHNICAL FIELD The present invention relates to an oxide high-temperature superconductor, and more particularly to an oxide high-temperature superconductor having an extremely high superconducting transition critical temperature (hereinafter, referred to as Tc). Things.

[従来の技術] 酸化物超伝導体は、IBMのベドノルツ ミュラーらに
よりTcが30K級の La2-xBaxCuO4-y (x≦0.3,y≦0.5)が開発され(特開昭63−190712)て
以来、Nb3Snに代表される金属間化合物超伝導体のTcを
飛躍的に上昇させるものとして注目を受け、これまでに
YBa2Cu3O7−δに代表されるTc90K級のY系酸化物超伝
導体(WO88/05029)、Bi2Sr2Ca2Cu3O10−δに代表され
るTc110K級のBi系酸化物超伝導体(特開平1−188456)
やTl2Ba2Ca2Cu3O10−δに代表されるTl系酸化物超伝導
体(特開平1−219007)が知られている。また、Bi系酸
化物超伝導体においては、その製造上の困難さを改善す
るものとしてBiの一部をPbで置換した系も知られてい
る。
[Prior art] As a superconducting oxide, La 2-x Ba x CuO 4-y (x ≦ 0.3, y ≦ 0.5) having a Tc of 30 K class was developed by Bednorz Müller of IBM et al. −190712), since it has received attention as a material that dramatically increases the Tc of intermetallic compound superconductors represented by Nb 3 Sn.
YBa 2 Cu 3 O of 7-δ Tc90K class represented by Y-based oxide superconductor (WO88 / 05029), Bi-based oxide of Tc110K class represented by Bi 2 Sr 2 Ca 2 Cu 3 O 10-δ Superconductor (JP-A-1-188456)
And Tl - based oxide superconductors represented by Tl 2 Ba 2 Ca 2 Cu 3 O 10-δ (JP-A-1-219007) are known. In addition, as a Bi-based oxide superconductor, a system in which a part of Bi is substituted by Pb is known as an improvement in the difficulty in the production.

上記酸化物超伝導体に見られる様に、Tcが77Kを超え
たことによって、超伝導体の冷媒として安価で入手性の
良い液体窒素の使用が可能となり、実用化への期待は高
まりつつある。
As seen in the above oxide superconductor, when Tc exceeds 77 K, it becomes possible to use inexpensive and easily available liquid nitrogen as a refrigerant for the superconductor, and expectations for practical use are increasing. .

しかしながら超伝導体はTc付近の温度で使用している
と突如超伝導性が低下して常伝導体となる危険性を有し
ており液体窒素を冷媒として使用するにあたっては、現
状のY系酸化物超伝導体やBi系酸化物超伝導体よりも更
に高いTcを有するものが望まれている。一方T1系酸化物
超伝導体は前記酸化物超伝導体の中で最も高いTcを有し
ているが、Tlの単体及び化合物は有毒であり、皮膚に触
れたり吸いこんだりすると危険であるので、工業的な製
造や使用には安全性の面で問題を有している。
However, superconductors have the danger of suddenly becoming superconductors when used at temperatures near Tc, and may become normal conductors. A material having a higher Tc than a material superconductor or a Bi-based oxide superconductor is desired. On the other hand, T1-based oxide superconductors have the highest Tc among the above-mentioned oxide superconductors, but simple substances and compounds of Tl are toxic and dangerous when touching or inhaling the skin. However, there is a problem in terms of safety in industrial production and use.

[発明が解決しようとする課題] 本発明は上記事情に着目してなされたものであって、
液体窒素温度で使用しても安定なTcをもち、工業的な製
造及び使用に際して安全である超伝導材料を提供しよう
とするものである。
[Problem to be Solved by the Invention] The present invention has been made by focusing on the above circumstances,
An object of the present invention is to provide a superconducting material which has stable Tc even when used at the temperature of liquid nitrogen and is safe in industrial production and use.

[課題を解決するための手段] 上記目的を達成した本発明の酸化物超伝導体とはBiお
よびPbと、Sr,La,Ca,Cuとを含有してなる酸化物であっ
て、各金属元素の組成比が下記の式で表わされる酸化物
であることを要旨とするものである。
[Means for Solving the Problems] The oxide superconductor of the present invention that has achieved the above objects is an oxide containing Bi and Pb and Sr, La, Ca, Cu, The gist is that the composition ratio of the element is an oxide represented by the following formula.

(Bi1-xPbx(Sr1-yLaybCacCud …… 但し0<x≦0.5,0.01≦y≦0.3であり、b,c,dはa=
1としたとき、 0.7≦b≦1.2, 0.3≦c≦3, 0.8≦d≦5 尚高いTcを得るには、特に上記組成式において、0.1
≦x≦0.4,0.05≦y≦0.2,a=1であるとき、0.8≦b≦
1.1,0.8≦c≦2,1.3≦d≦3とするか、若しくは0.8≦
b≦1.1,0.3≦c≦0.6,0.8≦d≦1.2とすることが有効
である。
(Bi 1-x Pb x ) a (Sr 1-y La y ) b Ca c Cu d … where 0 <x ≦ 0.5,0.01 ≦ y ≦ 0.3, and b, c, d is a =
Assuming that 1, 0.7 ≦ b ≦ 1.2, 0.3 ≦ c ≦ 3, 0.8 ≦ d ≦ 5 In order to obtain a still higher Tc, particularly in the above composition formula, 0.1
When ≦ x ≦ 0.4, 0.05 ≦ y ≦ 0.2, a = 1, 0.8 ≦ b ≦
1.1,0.8 ≦ c ≦ 2,1.3 ≦ d ≦ 3 or 0.8 ≦
It is effective that b ≦ 1.1, 0.3 ≦ c ≦ 0.6, 0.8 ≦ d ≦ 1.2.

[作用] 本発明者はBi系酸化物超伝導体について、該酸化物構
成元素を種々の元素及び組成比で置換実験を繰り返し行
なった。その結果Bi−Sr−Ca−Cu系酸化物にLaを有効に
導入することによって、Tcを大幅に向上させることがで
きるとの知見を得た。X線解折等による分析から本発明
におけるLaは、従来のBi−Sr−Ca−Cu系の結晶構造にお
いてSrサイトの一部を置換しているものであると推定で
きる。
[Operation] The present inventors repeatedly performed substitution experiments on the Bi-based oxide superconductor with various elements and composition ratios of the oxide constituent elements. As a result, it was found that by effectively introducing La into the Bi-Sr-Ca-Cu-based oxide, Tc can be greatly improved. From the analysis by X-ray diffraction and the like, it can be estimated that La in the present invention replaces part of the Sr site in the conventional Bi—Sr—Ca—Cu crystal structure.

尚本発明の超伝導体は特許請求の範囲を示す組成を有
するものであれば良く、製造方法によって限定されるも
のではないが、上記La導入は従来のBi系超伝導体の製造
方法をそのまま採用した場合には有効に行なわれない場
合があり、特に焼成条件には留意する必要があるので、
本発明の超伝導体の代表的な製造法について以下に述べ
る。
The superconductor of the present invention may be any one having a composition as set forth in the claims, and is not limited by the manufacturing method. However, the above-mentioned La introduction is the same as the conventional Bi-based superconductor manufacturing method. If it is adopted, it may not be performed effectively, and it is necessary to pay particular attention to the firing conditions.
A typical method for producing the superconductor of the present invention will be described below.

Bi,Pb,Sr,La,Ca,Cuの各化合物を前記式の原子比と
なる様に秤取し、均一混合する。本発明は使用する化合
物の種類によっても限定されるものではなく、化合物と
しては酸化物の他にも炭酸塩,硝酸塩,硫酸塩等の無機
酸塩や酢酸塩,しゅう酸塩など各種の有機酸塩、アルコ
キシド化合物,各種錯化合物などが適用可能である。ま
た混合方法についても特に限定されず、例えば機械的混
合,均一溶液化,共沈法等の公知の方法から、化合物の
種類や物性により適宜選択すればよい。
The compounds of Bi, Pb, Sr, La, Ca, and Cu are weighed so as to have the atomic ratio of the above formula, and are uniformly mixed. The present invention is not limited by the type of the compound used. The compound may be an oxide, an inorganic acid salt such as a carbonate, a nitrate or a sulfate, or an organic acid such as an acetate or an oxalate. Salts, alkoxide compounds, various complex compounds and the like are applicable. The mixing method is also not particularly limited, and may be appropriately selected from known methods such as, for example, mechanical mixing, uniform solution, coprecipitation, and the like, depending on the type and physical properties of the compound.

次に上記混合物を必要に応じて乾燥させた後、750〜8
50℃で仮焼を行なう。仮焼時間、回数は特に制約はない
が、通常2〜20時間、1回で良いが、仮焼品を一度粉砕
してから再混合し、仮焼を繰り返すと一層安定したTcを
有するものが得られる。仮焼後の粉末をプレスして円盤
状成形品とし、酸素雰囲気下または不活性ガス雰囲気
下、その雰囲気における仮焼混合物の溶融下限温度より
20℃下を下限とする温度範囲において焼成を行なう。好
ましくは溶融下限温度ないしそれより30℃高い温度の範
囲で焼成を行なう。焼成時間10時間以上が好ましい。尚
本発明における仮焼混合物の溶融下限温度とは示差熱分
析において相変化の吸熱ピークの立ち上がりが見られる
温度であり、この温度より20℃程度高い温度で焼成を行
なっても成形品が変形するような溶融は起こらない。
Next, after drying the above mixture as necessary, 750 to 8
Perform calcination at 50 ° C. Although the calcining time and the number of times are not particularly limited, it is usually only 2 to 20 hours, but it is sufficient that the calcined product has a more stable Tc when the calcined product is pulverized once, remixed, and calcined repeatedly. can get. Pressing the powder after calcination into a disk-shaped molded article, under an oxygen atmosphere or an inert gas atmosphere, from the melting lower limit temperature of the calcination mixture in that atmosphere
The firing is performed in a temperature range having a lower limit of 20 ° C. Preferably, the calcination is carried out at a temperature within the range of the lower limit of melting temperature or 30 ° C. higher than the lower limit. The firing time is preferably 10 hours or more. The lower limit of the melting temperature of the calcined mixture in the present invention is a temperature at which the endothermic peak of the phase change rises in the differential thermal analysis, and the molded product is deformed even if it is fired at a temperature about 20 ° C. higher than this temperature. Such melting does not occur.

上記溶融下限温度はLaを添加することによって高温側
にシフトするのでそれに応じて焼成温度を設定すれば良
い。焼成雰囲気における酸素分圧は特に限定されない
が、焼成温度との関係において、低酸素分圧の方が溶融
下限温度が低下させる方向にあり、最適焼成温度を下げ
ることができるので好ましい。また全く酸素を含まない
雰囲気を採用する事も可能であるが、この場合後工程で
酸素処理を施すことが推奨される。
Since the lower limit of the melting temperature is shifted to a higher temperature by adding La, the firing temperature may be set accordingly. Although the oxygen partial pressure in the firing atmosphere is not particularly limited, a low oxygen partial pressure is preferable in relation to the firing temperature because the lower limit of melting temperature is in the direction of lowering and the optimum firing temperature can be lowered. It is also possible to adopt an atmosphere containing no oxygen at all, but in this case, it is recommended to perform an oxygen treatment in a post-process.

以上の工程を経て製造された酸化物超伝導体はTcが極
めて高く従来のBiを含む酸化物超伝導体より密度,強度
も大きく線材化等に有利である。
The oxide superconductor manufactured through the above steps has an extremely high Tc and has a higher density and strength than conventional oxide superconductors containing Bi, which is advantageous for forming wires.

[実施例] 実施例1 Bi(NO3・5H2O,Pb(NO32,Sr(NO32,La(N
O3・6H2O,Ca(NO3・4H2O,Cu(NO3・3H2Oの
市販試薬(和光純薬製、純度99.9%)を、前記式にお
ける金属原子比がx=0.2,y=0.1,a=1,b=0.9,c=1.0,
d=1.5となる様に秤取し、混合撹拌して加熱を行ない、
上記硝酸塩を徐々に融解して均一液とした。これを230
℃の乾燥器中で20時間乾燥した。これを大気中800℃で1
0時間仮焼・粉砕再混合を3回繰り返した。最後に得ら
れた粉末を示差熱分析したところ溶融下限温度は845℃
であった。この粉末を加圧して直径約15mm,厚さ約2mmの
円盤に成形し、酸素分圧0.1atm,865℃で150時間焼成し
て試験片を得た。該試験片を通常の四端子法によりTcを
測定したところ、超伝導転移開始温度(以下Tc onsetと
いう)が133K,ゼロ抵抗温度(以下Tc0という)が121Kを
示した。
[Example] Example 1 Bi (NO 3) 3 · 5H 2 O, Pb (NO 3) 2, Sr (NO 3) 2, La (N
O 3) 3 · 6H 2 O , Ca a (NO 3) 2 · 4H 2 O, Cu (NO 3) 2 · 3H 2 O commercial reagent (manufactured by Wako Pure Chemical Industries, Ltd., purity: 99.9%), metal atoms in the formula When the ratio is x = 0.2, y = 0.1, a = 1, b = 0.9, c = 1.0,
Weigh so that d = 1.5, mix and stir to heat,
The nitrate was gradually melted to make a homogeneous liquid. This is 230
It was dried for 20 hours in a dryer at ℃. This at 800 ° C in air
The calcining / crushing / remixing for 0 hour was repeated three times. When the powder obtained at the end was subjected to differential thermal analysis, the lower limit melting point was 845 ° C.
Met. This powder was pressed to form a disk having a diameter of about 15 mm and a thickness of about 2 mm, and calcined at 865 ° C for 150 hours at an oxygen partial pressure of 0.1 atm to obtain a test piece. Was measured Tc by an ordinary four-terminal method the test piece, superconducting transition beginning temperature (hereinafter referred to as Tc onset) is 133K, zero resistance temperature (hereinafter referred to as Tc 0) showed 121K.

実施例2 Bi2O3,PbO,SrCO3,La2O3,CaCO3,CuOの市販試薬(和光
純薬製、純度99.9%)を、前記式における金属原子比
がx=0.35,y=0.15,a=1,b=0.9,c=1.0,d=1.5となる
様に秤取し、乳鉢で十分混合した。該混合粉末を800℃
で10時間仮焼した後加圧して直径約15mm,厚さ約2mmの円
盤に成形し、酸素分圧0.1atm,870℃で200時間焼成して
試験片を得た。該試験片を通常の四端子法によりTcを測
定したところ、Tc onset 132K,Tc0が120Kを示した。
Example 2 Commercially available reagents of Bi 2 O 3 , PbO, SrCO 3 , La 2 O 3 , CaCO 3 , and CuO (purity: 99.9%, manufactured by Wako Pure Chemical Industries, Ltd.) were used with the metal atom ratio x = 0.35, y = 0.15, a = 1, b = 0.9, c = 1.0, d = 1.5 were weighed and thoroughly mixed in a mortar. 800 ° C
After calcination for 10 hours, a disk was formed by pressurizing to form a disk having a diameter of about 15 mm and a thickness of about 2 mm, and baked at 870 ° C for 200 hours at an oxygen partial pressure of 0.1 atm to obtain a test piece. Was measured Tc by an ordinary four-terminal method the test piece, Tc onset 132K, Tc 0 showed 120K.

実施例3〜5 第1表に示す金属原子比及び酸素分圧,焼成温度以外
は実施例1と同様にして試験片を得、通常の四端子法に
よりTcの測定を行なった。結果は第1表に示す。
Examples 3 to 5 Test pieces were obtained in the same manner as in Example 1 except for the metal atomic ratio, the oxygen partial pressure, and the firing temperature shown in Table 1, and Tc was measured by a usual four-terminal method. The results are shown in Table 1.

この様に本発明の酸化物超伝導体のTcは少なくとも77
K以上であり、実施例1,2においては120K以上のTcを示す
超伝導体が得られた。
Thus, the oxide superconductor of the present invention has a Tc of at least 77.
In Examples 1 and 2, a superconductor having a Tc of 120 K or more was obtained.

[発明の効果] 本発明は以上の様に構成されているので、液体窒素を
冷媒としても安定的な超伝導性を示し、しかも製造及び
使用に際しても安全なTc120K級の酸化物超伝導材料を提
供できることとなった。
[Effects of the Invention] Since the present invention is configured as described above, a Tc120K-class oxide superconducting material that exhibits stable superconductivity even when liquid nitrogen is used as a refrigerant and that is safe during production and use is also provided. It can be provided.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C01G 1/00 - 57/00 H01L 39/00 - 39/24 H01B 12/00──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C01G 1/00-57/00 H01L 39/00-39/24 H01B 12/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】BiおよびPbと、Sr,La,Ca,Cuとを含有して
なる酸化物であって、各金属元素の組成比が下記の式で
表わされる酸化物であることを特徴とする酸化物超伝導
体。 (Bi1-xPbx(Sr1-yLaybCacCud 但し0x≦0.5,0.01≦y≦0.3であり、b,c,dはa=1
としたとき、 0.7≦b≦1.2, 0.3≦c≦3, 0.8≦d≦5
An oxide comprising Bi and Pb and Sr, La, Ca, Cu, wherein the composition ratio of each metal element is represented by the following formula: Oxide superconductor. (Bi 1-x Pb x ) a (Sr 1-y La y ) b Ca c Cu d where 0x ≦ 0.5,0.01 ≦ y ≦ 0.3 and b, c, d is a = 1
0.7 ≦ b ≦ 1.2, 0.3 ≦ c ≦ 3, 0.8 ≦ d ≦ 5
【請求項2】0.1≦x≦0.4,0.05≦y≦0.2であり、a=
1とするとき、 0.8≦b≦1.1,0.8≦c≦2,1.3≦d≦3である請求項
(1)に記載の酸化物超伝導体。
(2) 0.1 ≦ x ≦ 0.4, 0.05 ≦ y ≦ 0.2, and a =
The oxide superconductor according to claim 1, wherein when 1 is satisfied, 0.8 ≦ b ≦ 1.1, 0.8 ≦ c ≦ 2, 1.3 ≦ d ≦ 3.
【請求項3】0.1≦x≦0.4,0.05≦y≦0.2であり、a=
1とするとき、 0.8≦b≦1.1,0.3≦c≦0.6,0.8≦d≦1.2である請求項
(1)に記載の酸化物超伝導体。
3. The condition of 0.1 ≦ x ≦ 0.4, 0.05 ≦ y ≦ 0.2, and a =
The oxide superconductor according to claim 1, wherein, when 1, 1, 0.8 ≦ b ≦ 1.1, 0.3 ≦ c ≦ 0.6, 0.8 ≦ d ≦ 1.2.
JP1318253A 1989-12-07 1989-12-07 Oxide superconductor Expired - Fee Related JP2831755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1318253A JP2831755B2 (en) 1989-12-07 1989-12-07 Oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1318253A JP2831755B2 (en) 1989-12-07 1989-12-07 Oxide superconductor

Publications (2)

Publication Number Publication Date
JPH03177316A JPH03177316A (en) 1991-08-01
JP2831755B2 true JP2831755B2 (en) 1998-12-02

Family

ID=18097145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1318253A Expired - Fee Related JP2831755B2 (en) 1989-12-07 1989-12-07 Oxide superconductor

Country Status (1)

Country Link
JP (1) JP2831755B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08725B2 (en) * 1989-12-28 1996-01-10 日本碍子株式会社 Manufacturing method of bismuth superconductor

Also Published As

Publication number Publication date
JPH03177316A (en) 1991-08-01

Similar Documents

Publication Publication Date Title
EP0281753B1 (en) Electrically superconducting compositions and processes for their preparation
EP0330305B1 (en) High-temperature oxide superconductor
EP0303249B1 (en) Method of manufacturing oxide superconductor, and method of manufacturing composite oxide powder which is the precursor of the oxide superconductor
US5145831A (en) High-tc oxide superconductor and method for producing the same
EP0701980B1 (en) Oxide superconductor and method for manufacturing the same
JP2831755B2 (en) Oxide superconductor
JP2767283B2 (en) Bi-Pb-Sr-Ba-Ca-Cu-O based superconducting material
EP0452423B1 (en) Preparation of a uniform mixed metal oxide
JPH02503789A (en) Improved manufacturing method for 90K superconductor
Gilbert et al. Bulk crystalline BaPb34Bi14O3: A ceramic superconductor
JP3121001B2 (en) Method for producing Tl-based oxide superconductor
EP0400666A2 (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
JP2556712B2 (en) Method for manufacturing oxide superconductor
JP2696689B2 (en) Oxide superconducting material
JPS63260853A (en) Superconductive material
JP2748942B2 (en) Oxide superconductor
JP2748943B2 (en) Oxide superconductor
JP2893405B2 (en) Bi-Pb-Sr-Ca-Cu-o based superconducting material
US5215962A (en) 90 K Tl-Ba-Ce-Cu-O superconductor and processes for making same
JP2854338B2 (en) Copper oxide superconductor
US5229035A (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
WO1988005604A1 (en) Superconductors and method for manufacturing thereof
JP2590242B2 (en) Manufacturing method of oxide superconductor
JP2838312B2 (en) Oxide superconducting material
JP2696691B2 (en) Oxide superconducting material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees