JP2827752B2 - Heating control device for electrothermal catalytic converter - Google Patents
Heating control device for electrothermal catalytic converterInfo
- Publication number
- JP2827752B2 JP2827752B2 JP26386392A JP26386392A JP2827752B2 JP 2827752 B2 JP2827752 B2 JP 2827752B2 JP 26386392 A JP26386392 A JP 26386392A JP 26386392 A JP26386392 A JP 26386392A JP 2827752 B2 JP2827752 B2 JP 2827752B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel ratio
- air
- catalyst
- catalytic converter
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Exhaust Gas After Treatment (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、電熱式触媒コンバータ
の加熱制御装置に関し、特に、三元触媒の他にリーン空
燃比でも良好なNOx 転換効率を有するリーン空燃比用
触媒を設けた触媒コンバータに好適な加熱制御装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating control device for an electrothermal catalytic converter, and more particularly to a catalytic converter provided with a lean air-fuel ratio catalyst having good NOx conversion efficiency even at a lean air-fuel ratio in addition to a three-way catalyst. The present invention relates to a heating control device suitable for
【0002】[0002]
【従来の技術】従来、電熱式触媒コンバータとしては、
例えば特開昭53−95417号公報等に開示されるよ
うなものがある。このものは、機関温度と触媒温度とを
それぞれ検出し、機関温度が所定値以下で且つ触媒温度
が所定値以下の時に加熱装置を動作させて触媒を加熱
し、触媒を早期に活性化させることで排気中の有害成分
を低減させるようにしている。2. Description of the Related Art Conventionally, as an electrothermal catalytic converter,
For example, there is one disclosed in JP-A-53-95417. This technology detects an engine temperature and a catalyst temperature, respectively, and operates a heating device to heat the catalyst when the engine temperature is equal to or lower than a predetermined value and the catalyst temperature is equal to or lower than a predetermined value, thereby quickly activating the catalyst. To reduce harmful components in the exhaust gas.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記の
従来装置の加熱制御方式は、一般的な三元触媒のみを設
けた触媒コンバータを対象としたもので、この場合は問
題はないが、運転条件に応じて理論空燃比とリーン空燃
比に切換える内燃機関に好適な触媒コンバータ、即ち、
理論空燃比よりもリーンになると急激にNOx転換効率
が低下する三元触媒の他に、排気中に酸素がたくさんあ
っても(リーン燃焼時であっても)NOxをある程度還
元できる触媒(以下、リーンNOx触媒という。)も設
けて、リーン燃焼時もNOx 排出量を低減できるように
した触媒コンバータに適用する場合には以下に述べるよ
うな問題を生じる。However, the heating control method of the above-described conventional apparatus is intended for a catalytic converter provided with only a general three-way catalyst, and there is no problem in this case. A catalytic converter suitable for an internal combustion engine that switches between a stoichiometric air-fuel ratio and a lean air-fuel ratio in accordance with
In addition to a three-way catalyst in which the NOx conversion efficiency drops sharply when the air-fuel ratio becomes leaner than the stoichiometric air-fuel ratio, a catalyst capable of reducing NOx to some extent even when the exhaust gas contains a large amount of oxygen (even during lean combustion) When the present invention is applied to a catalytic converter which is also provided with a lean NOx catalyst so that the NOx emission can be reduced even during lean combustion, the following problems occur.
【0004】即ち、三元触媒とリーンNOx触媒とで
は、担持成分の違い等から触媒がNOx 転換性能を有効
に発揮できる触媒の活性化温度が異なり、リーンNOx
触媒の方が高い。このため、従来装置のように機関運転
条件に関係なく加熱目標温度を設定するものでは、目標
加熱温度を三元触媒の活性化温度に合わせて設定する
と、リーンNOx触媒が活性化せずリーン空燃比運転条
件でのNOx 転換作用が不充分となる。かかる問題は、
目標加熱温度をリーンNOx触媒の活性化温度に合わせ
て設定すれば解決できるが、この場合、理論空燃比運転
条件において三元触媒の活性化温度を越えても加熱が継
続されることになり、無駄な電力が消費されるという問
題を生じる。That is, between the three-way catalyst and the lean NOx catalyst, the activation temperature of the catalyst at which the catalyst can effectively exhibit the NOx conversion performance differs due to the difference in the supported components and the like.
The catalyst is higher. For this reason, in a conventional apparatus in which the target heating temperature is set irrespective of the engine operating conditions, if the target heating temperature is set in accordance with the activation temperature of the three-way catalyst, the lean NOx catalyst is not activated and the lean NOx catalyst is not activated. The NOx conversion under the fuel ratio operation condition becomes insufficient. Such problems are:
This can be solved by setting the target heating temperature in accordance with the activation temperature of the lean NOx catalyst, but in this case, the heating is continued even if the activation temperature of the three-way catalyst is exceeded under the stoichiometric air-fuel ratio operating condition, There is a problem that wasteful power is consumed.
【0005】本発明は上記問題点に鑑みなされたもので
あり、無駄な電力消費を無くし燃費節約を図ることので
きる触媒コンバータの加熱制御装置を提供することを目
的とする。[0005] The present invention has been made in view of the above problems, and has as its object to provide a heating control device for a catalytic converter capable of eliminating wasteful power consumption and saving fuel consumption.
【0006】[0006]
【課題を解決するための手段】このため本発明は、図1
に示すように、触媒を担持させたメタル担体に通電し触
媒を加熱して活性化させる電熱式触媒コンバータの加熱
制御装置において、触媒コンバータのメタル担体に、理
論空燃比でNOx の転換効率が良い三元触媒とリーン空
燃比でも良好なNOx 転換効率を有するリーン空燃比用
触媒とを担持させる一方、機関運転条件検出手段と、触
媒温度検出手段と、前記機関運転条件検出手段の検出結
果に基づいて空燃比を設定する空燃比設定手段と、該空
燃比設定手段により設定された空燃比に応じて触媒コン
バータの加熱目標温度を可変設定する目標温度設定手段
と、該目標温度設定手段の設定値と前記触媒温度検出手
段の検出値とを比較する比較手段と、該比較手段の比較
結果に基づいて検出値が目標温度以下の時にメタル担体
に通電する通電制御手段とを備えて構成した。SUMMARY OF THE INVENTION For this reason, the present invention has been described with reference to FIG.
As shown in the figure, in a heating control device for an electrothermal catalytic converter in which a metal carrier carrying a catalyst is energized by heating and activating the catalyst, the metal carrier of the catalytic converter has a high NOx conversion efficiency at a stoichiometric air-fuel ratio. While carrying a three-way catalyst and a lean air-fuel ratio catalyst having a good NOx conversion efficiency even at a lean air-fuel ratio, the engine operating condition detecting means, the catalyst temperature detecting means, and the engine operating condition detecting means are used based on the detection results. Air-fuel ratio setting means for setting the air-fuel ratio by
Target temperature setting means for variably setting a heating target temperature of the catalytic converter in accordance with the air-fuel ratio set by the fuel ratio setting means , and comparing the set value of the target temperature setting means with the detection value of the catalyst temperature detecting means. Means, and energization control means for energizing the metal carrier when the detected value is equal to or lower than the target temperature based on the comparison result of the comparison means.
【0007】前記目標温度設定手段は、前記空燃比設定
手段により設定された空燃比がリーン空燃比か理論空燃
比かを判定する判定手段の判定結果に応じて、理論空燃
比の時は三元触媒の活性化温度に、リーン空燃比の時は
リーン空燃比用触媒の活性化温度に、それぞれ触媒コン
バータの加熱目標温度を切換設定する構成としてもよ
い。The target temperature setting means is configured to set the air-fuel ratio.
The air-fuel ratio set by the means is lean air-fuel ratio or stoichiometric air-fuel
According to the determination result of determination means for determining the ratio, the stoichiometric air-fuel
The configuration may be such that the target heating temperature of the catalytic converter is switched to the activation temperature of the three-way catalyst at the time of the ratio and to the activation temperature of the catalyst for the lean air-fuel ratio at the time of the lean air-fuel ratio.
【0008】また、前記目標温度設定手段は、前記空燃
比設定手段により設定された空燃比と触媒コンバータに
おける排気の通過流速とに応じた触媒コンバータの加熱
目標温度に可変設定する構成としてもよい。 Further, the target temperature setting means, the air-fuel ratio and the catalytic converter is set by the air-fuel ratio setting means
But it may also be configured to variably set the target temperature of the catalytic converter in accordance with the passing flow rate of the definitive exhaust.
【0009】[0009]
【作用】かかる構成においては、機関運転条件検出手段
が、その時の運転条件を検出し、検出された運転条件に
応じて空燃比設定手段により空燃比が設定されると、目
標温度設定手段は、設定空燃比に応じて触媒コンバータ
の加熱目標温度を設定する。この加熱温度の設定方法と
しては、例えば、設定空燃比が理論空燃比かリーン空燃
比かに応じて、理論空燃比のときは三元触媒の活性化温
度に設定し、リーン空燃比の時にはリーンNOx触媒の
活性化温度に設定する。そして、触媒温度検出手段の検
出値と目標値とを比較手段で比較し、検出値が目標値以
下では通電制御手段によりメタル担体への通電を行い触
媒の加熱を実行する。In this configuration, when the engine operating condition detecting means detects the operating condition at that time and the air-fuel ratio is set by the air-fuel ratio setting means according to the detected operating condition , the target temperature setting means : The heating target temperature of the catalytic converter is set according to the set air-fuel ratio . As a method of setting the heating temperature, for example, when the set air-fuel ratio is the stoichiometric air-fuel ratio or the lean air-fuel ratio
Depending on whether the ratio is the stoichiometric air-fuel ratio is set to the activation temperature of the three-way catalyst, when the lean air-fuel ratio is set to the activation temperature of the lean NOx catalyst. Then, the detected value of the catalyst temperature detecting means is compared with the target value by the comparing means, and when the detected value is equal to or less than the target value, the electric current is supplied to the metal carrier by the power supply controlling means to heat the catalyst.
【0010】このように、機関運転条件の検出結果に基
づいて設定される空燃比に応じて触媒の加熱目標値を可
変設定すれば、それぞれの運転領域でNOx を効果的に
浄化できると共に、電力の無駄な消費をなくすことがで
きるようになる。Thus , based on the detection result of the engine operating condition ,
If the target heating value of the catalyst is variably set in accordance with the air-fuel ratio set based on the above , NOx can be effectively purified in each operation region, and unnecessary power consumption can be eliminated.
【0011】[0011]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。実施例のシステム構成を示す図2において、V型
内燃機関1の各気筒には、エアクリーナ2,スロットル
弁3,吸気マニホールド4を介して空気が吸引される。
前記吸気マニホールド4の各ブランチ部には、それぞれ
電磁式のインジェクタ5が設けられている。Embodiments of the present invention will be described below with reference to the drawings. In FIG. 2 showing the system configuration of the embodiment, air is sucked into each cylinder of the V-type internal combustion engine 1 through an air cleaner 2, a throttle valve 3, and an intake manifold 4.
Each of the branch portions of the intake manifold 4 is provided with an electromagnetic injector 5.
【0012】機関1からの排気は、排気マニホールド6
a,6bによって片バンク毎に集められた後、それぞれ
排気管7a,7bによってマフラ8に導かれる。前記排
気管7a,7bには、それぞれに電熱式の触媒コンバー
タ9A,9Bが介装されている。前記触媒コンバータ9
A,9Bは具体的には、図3及び図4に示す構造を有し
ている。The exhaust gas from the engine 1 is supplied to an exhaust manifold 6.
After being collected for each bank by a and 6b, they are guided to the muffler 8 by exhaust pipes 7a and 7b, respectively. Electrothermal catalytic converters 9A and 9B are interposed in the exhaust pipes 7a and 7b, respectively. The catalytic converter 9
Specifically, A and 9B have the structure shown in FIGS.
【0013】即ち、図3に示すように、メタル担体31
に、基材32aに銅(Cu)やパラジウム(Pd)でイオ
ン交換したゼオライト32bを混ぜ合わせたリーンNOx
ウオッシュコートのリーンNOx触媒32を表層側にし、
基材33aに貴金属33b及び貴金属33bの働きを助ける助
触媒33cを混ぜ合わせたウオッシュコートの三元触媒33
を内層にして担持させたハニカム触媒9aを、図4に示
すように、ケース9b内に絶縁材9cを介して収納して
ある。尚、表層側に三元触媒を配置すると、表層側でH
Cが酸化されてHC/NOx が高い程NOx の転換効率
が良好となるリーンNOx 触媒のHC/NOx が小とな
り、転換効率が低下してしまうため、表層側にリーンN
Ox 触媒を配設している。そして、前記ハニカム触媒9
aに、プラス(+)電極9dとマイナス(−)電極9e
を接続してある。絶縁材9fは各電極9d,9eとケー
ス9bとを絶縁するものである。これにより、理論空燃
比領域では、内層の三元触媒33及び表層のリーンNOx
触媒32によりNOx を還元し、リーン空燃比領域では表
層のリーンNOx触媒32によりNOx を良好に還元し、
各運転領域においてNOx 排出量を効果的に抑制できる
ようになっている。また、三元触媒33の活性化温度(約
350 ℃)とリーンNOx触媒32の活性化温度(約450
℃)が異なっているので、この触媒コンバータ9A,9
BのNOx 転換効率は、図5に示すように、空燃比に対
応してその温度特性は異なっている。尚、破線は三元触
媒33、実線はリーンNOx 触媒32の温度特性を示す。That is, as shown in FIG.
Lean NOx in which zeolite 32b ion-exchanged with copper (Cu) or palladium (Pd) is mixed with a base material 32a.
The lean NOx catalyst 32 of the wash coat is placed on the surface side,
Wash-coated three-way catalyst 33 in which a precious metal 33b and a co-catalyst 33c that assists the function of the precious metal 33b are mixed with a base material 33a.
As shown in FIG. 4, a honeycomb catalyst 9a having the inner layer supported thereon is housed in a case 9b via an insulating material 9c. If a three-way catalyst is disposed on the surface layer, H
As HC is oxidized and the HC / NOx is higher, the conversion efficiency of NOx becomes better. The HC / NOx of the lean NOx catalyst becomes smaller, and the conversion efficiency is lowered.
An Ox catalyst is provided. Then, the honeycomb catalyst 9
a has a plus (+) electrode 9d and a minus (-) electrode 9e.
Is connected. The insulating material 9f insulates the electrodes 9d and 9e from the case 9b. Thus, in the stoichiometric air-fuel ratio region, the inner three-way catalyst 33 and the surface lean NOx
NOx is reduced by the catalyst 32, and in the lean air-fuel ratio region, NOx is reduced favorably by the lean NOx catalyst 32 on the surface layer.
In each operation region, NOx emissions can be effectively suppressed. Also, the activation temperature of the three-way catalyst 33 (about
350 ° C) and the activation temperature of the lean NOx catalyst 32 (about 450
° C), the catalytic converters 9A, 9C
As shown in FIG. 5, the NOx conversion efficiency of B has different temperature characteristics depending on the air-fuel ratio. The broken line indicates the temperature characteristics of the three-way catalyst 33, and the solid line indicates the temperature characteristics of the lean NOx catalyst 32.
【0014】各触媒コンバータ9A,9Bの+電極9d
には、バッテリ21,22の+極が接続し、各−電極9eに
は、後述するコントロールユニット10によってON・O
FF制御されるパワートランジスタ23,24のコレクタが
それぞれ接続している。コントロールユニット10は、マ
イクロコンピュータを内蔵し、各種センサからの検出信
号に基づいて後述のようにインジェクタ5による燃料噴
射量Tiを演算し、該燃料噴射量Tiに基づいてインジ
ェクタ5を開駆動制御することで、機関1への燃料供給
を電子制御すると共に、前記パワートランジスタ23,24
のON・OFFを制御して触媒コンバータ9A,9Bの
加熱を制御する。The positive electrode 9d of each of the catalytic converters 9A and 9B
Are connected to the positive poles of the batteries 21 and 22, and each of the negative electrodes 9e is turned on / off by a control unit 10 described later.
The collectors of the power transistors 23 and 24 that are FF controlled are connected to each other. The control unit 10 incorporates a microcomputer, calculates a fuel injection amount Ti by the injector 5 based on detection signals from various sensors as described later, and controls the opening of the injector 5 based on the fuel injection amount Ti. Thus, the fuel supply to the engine 1 is electronically controlled, and the power transistors 23 and 24 are controlled.
Of the catalytic converters 9A and 9B by controlling ON / OFF of the control.
【0015】前記各種センサとしては、スロットル弁3
の上流側で機関1の吸入空気量Qaを検出するエアフロ
ーメータ11、カム軸から回転信号を取り出すクランク角
センサ12、機関1の冷却水温度Twを検出する冷却水温
度センサ13、排気マニホールド6a,6bの集合部にそ
れぞれ設けられて各バンク毎に排気中の酸素濃度を連続
的に検出する酸素センサ14a,14b、スロットル弁3の
開度を検出するポテンショメータ式のスロットルセンサ
15、各触媒コンバータ9A,9Bの出口温度Tbを検出
する触媒温度センサ16a,16bが設けられている。The various sensors include a throttle valve 3
An air flow meter 11 for detecting an intake air amount Qa of the engine 1 upstream of the engine 1, a crank angle sensor 12 for extracting a rotation signal from a camshaft, a cooling water temperature sensor 13 for detecting a cooling water temperature Tw of the engine 1, an exhaust manifold 6a, Oxygen sensors 14a and 14b which are provided in the collecting section 6b to continuously detect the oxygen concentration in the exhaust for each bank, and a potentiometer type throttle sensor which detects the opening of the throttle valve 3
15, catalyst temperature sensors 16a and 16b for detecting the outlet temperatures Tb of the respective catalytic converters 9A and 9B are provided.
【0016】尚、17はアイドル時の吸入空気量を調整す
るためのコントロールバルブであり、スロットル弁3を
バイパスして設けられたバイパス通路18を介して機関1
に供給される空気量を調整する。具体的には、コントロ
ールユニット10は、エアフローメータ11で検出された吸
入空気量Qaと、クランク角センサ12からの出力信号に
基づいて演算される機関回転数Nとに基づいて基本燃料
噴射量Tpを演算し、更に、前記基本燃料噴射量Tpに
対して冷却水温度Tw等の運転条件に応じて種々の補正
を施して最終的な燃料噴射量Tiを演算し、該演算結果
に基づいてインジェクタ5をデューティ駆動制御して運
転条件に応じた燃料量を噴射供給する。Reference numeral 17 denotes a control valve for adjusting the amount of intake air at the time of idling. The control valve 17 bypasses the throttle valve 3 and is provided with a bypass passage 18.
Adjust the amount of air supplied to the. Specifically, the control unit 10 determines the basic fuel injection amount Tp based on the intake air amount Qa detected by the air flow meter 11 and the engine speed N calculated based on the output signal from the crank angle sensor 12. Is calculated, and the final fuel injection amount Ti is calculated by performing various corrections on the basic fuel injection amount Tp according to operating conditions such as the cooling water temperature Tw, and the injector is determined based on the calculation result. 5 is subjected to duty drive control to inject and supply a fuel amount according to the operating conditions.
【0017】そして、本実施例では、図6に示すよう
に、基本燃料噴射量Tpで代表される機関負荷と機関回
転数Nとによって区分される運転領域上で、機関吸入混
合気の空燃比を理論空燃比(空燃比=14.7)に制御する
理論空燃比領域と、理論空燃比よりも大幅にリーンな空
燃比(例えば空燃比=21)に制御するリーン空燃比領域
とに分けられており、現在の運転条件がいずれの領域に
該当するかを判別し、該当領域の設定空燃比に見合った
燃料噴射量Tiが演算される。In this embodiment, as shown in FIG. 6, the air-fuel ratio of the engine intake air-fuel mixture on the operating range divided by the engine load represented by the basic fuel injection amount Tp and the engine speed N. Stoichiometric air-fuel ratio (air-fuel ratio = 14.7) and a lean air-fuel ratio region that controls the air-fuel ratio to be significantly leaner than the stoichiometric air-fuel ratio (for example, air-fuel ratio = 21). Then, it is determined which region the current operating condition corresponds to, and the fuel injection amount Ti corresponding to the set air-fuel ratio of the corresponding region is calculated.
【0018】また、触媒コンバータ9A,9BのNOx
転換効率が空燃比によって異なる温度特性を有している
ことから、前記領域の判定結果に基づいて触媒コンバー
タ9A,9Bの目標加熱温度を、三元触媒の活性化温度
に設定するか、これよりも高いリーンNOx触媒の活性
化温度に設定するかを決定し、この決定値と各触媒温度
センサ16a,16bからの検出値とを比較して検出値が目
標温度以下の時にパワートランジスタ23,24をON制御
し、検出値が目標温度を越えればパワートランジスタ2
3,24をOFFとして触媒コンバータ9A,9Bの加熱
を停止するようにしている。The NOx of the catalytic converters 9A and 9B
Since the conversion efficiency has different temperature characteristics depending on the air-fuel ratio, the target heating temperature of the catalytic converters 9A and 9B is set to the activation temperature of the three-way catalyst based on the determination result of the region, or Is determined to be higher than the activation temperature of the lean NOx catalyst, and the determined value is compared with the detected value from each of the catalyst temperature sensors 16a, 16b. When the detected value is lower than the target temperature, the power transistors 23, 24 are determined. Is turned on, and if the detected value exceeds the target temperature, the power transistor 2
By turning off 3, 24, the heating of the catalytic converters 9A, 9B is stopped.
【0019】次に本実施例装置の触媒コンバータへの通
電制御動作を図7のフローチャートを参照しながら説明
する。このプログラムは10ms毎に実行される。まず、ス
テップ1(図中S1と記し、以下同様とする。)では、
エアフローメータ11からの信号により吸入空気量Qaを
測定する。Next, the operation of controlling the energization of the catalytic converter of the present embodiment will be described with reference to the flowchart of FIG. This program is executed every 10ms. First, in step 1 (referred to as S1 in the figure, the same applies hereinafter),
The intake air amount Qa is measured based on a signal from the air flow meter 11.
【0020】ステップ2では、クランク角センサ12から
の信号により機関回転数Nを測定する。ステップ3で
は、測定した吸入空気量Qa と機関回転数Nとから基本
噴射量Tpを演算する(Tp=K・Qa/N、K:定
数)。ステップ4では、演算した基本噴射量Tpと機関
回転数Nとに基づいて図5により、現在の運転条件がリ
ーン領域か理論空燃比領域かを決定する。尚、燃料噴射
量Tiは、基本噴射量Tpに各運転領域に見合った空燃
比とするための補正係数や酸素センサ14a,14bによる
空燃比フィードバック補正係数等を加味して演算され
る。In step 2, the engine speed N is measured based on a signal from the crank angle sensor 12. In step 3, it computes the basic injection amount Tp and a measured intake air amount Q a and the engine speed N (Tp = K · Qa / N, K: constant). In step 4, based on the calculated basic injection amount Tp and engine speed N, it is determined from FIG. 5 whether the current operating condition is a lean region or a stoichiometric air-fuel ratio region. Note that the fuel injection amount Ti is calculated by adding to the basic injection amount Tp a correction coefficient for obtaining an air-fuel ratio appropriate for each operation region, an air-fuel ratio feedback correction coefficient by the oxygen sensors 14a and 14b, and the like.
【0021】ステップ5では、ステップ4の決定に基づ
いてリーン領域か否かを判定する。ここで、YESなら
ば、ステップ6に進み、NOならば後述するステップ11
に進む。運転条件がリーン領域と判定されステップ6に
進んだ場合には、リーン領域での設定空燃比における加
熱目標値TbLに設定する。即ち、リーンNOx触媒の活
性化温度(例えば450 ℃)に加熱目標温度TbLを設定す
る。In step 5, it is determined whether or not the area is a lean area based on the determination in step 4. Here, if YES, the process proceeds to a step 6, and if NO, a step 11 described later is performed.
Proceed to. When the operating condition is determined to be in the lean region and the process proceeds to step 6, the target heating value TbL at the set air-fuel ratio in the lean region is set. That is, the target heating temperature T bL is set to the activation temperature (for example, 450 ° C.) of the lean NOx catalyst.
【0022】ステップ7では、触媒温度センサ16a,16
bからの信号により触媒出口温度Tbを測定する。ステ
ップ8では、前記加熱目標温度TbLと測定値Tbとを比
較し、Tb>TbLならば触媒の活性は十分としてステッ
プ9に進みパワートランジスタ23,24をOFFとしてメ
タル担体への通電を停止する。一方、Tb≦TbLの場合
は、ステップ10に進みパワートランジスタ23,24をON
にしてメタル担体への通電を実行して触媒の早期活性化
を図る。In step 7, the catalyst temperature sensors 16a, 16
The catalyst outlet temperature Tb is measured based on the signal from b. In step 8, the target heating temperature TbL is compared with the measured value Tb. If Tb> TbL , the activity of the catalyst is determined to be sufficient, and the process proceeds to step 9 where the power transistors 23 and 24 are turned off to stop energizing the metal carrier. I do. On the other hand, if Tb ≦ T bL , the process proceeds to step 10 and the power transistors 23 and 24 are turned on.
Then, the metal carrier is energized to activate the catalyst at an early stage.
【0023】また、ステップ5で、NOと判定された場
合は、ステップ11で、理論空燃比領域での加熱目標値T
bRに設定する。即ち、三元触媒の活性化温度(例えば35
0 ℃)に加熱目標温度TbRを設定する。以後は、ステッ
プ7〜10と同様にして、ステップ12で、触媒温度センサ
16a,16bからの信号により触媒出口温度Tbを測定
し、ステップ13で、前記加熱目標温度TbRと測定値Tb
とを比較し、Tb>TbRならば触媒の活性は十分として
ステップ14に進みパワートランジスタ23,24をOFFと
して通電を停止する一方、Tb≦TbRの場合は、ステッ
プ15に進みパワートランジスタ23,24をONにして通電
を実行して触媒の早期活性化を図る。On the other hand, if NO is determined in step 5, the target heating value T in the stoichiometric air-fuel ratio region is determined in step 11.
Set to bR . That is, the activation temperature of the three-way catalyst (for example, 35
(0 ° C.) to set the heating target temperature T bR . Thereafter, in the same manner as in steps 7 to 10, in step 12, the catalyst temperature sensor
The catalyst outlet temperature Tb is measured based on signals from 16a and 16b, and in step 13, the target heating temperature TbR and the measured value TbR are measured.
If Tb> T bR , the catalyst activity is determined to be sufficient and the process proceeds to step 14 to turn off the power transistors 23 and 24 to stop energization. If Tb ≦ T bR , the process proceeds to step 15 and the process proceeds to step 15. , 24 are turned on to carry out the energization to achieve early activation of the catalyst.
【0024】このように、理論空燃比領域の時には、加
熱目標値を三元触媒の活性化温度に設定し、リーン空燃
比領域では、加熱目標値を三元触媒より高いリーンNO
x触媒の活性化温度に設定することで、それぞれの空燃
比領域において触媒コンバータ9A,9BによりNOx
を良好に還元でき、NOx の排出量を低減できる。しか
も、理論空燃比領域の時に、触媒を無駄に加熱すること
を防止でき無駄な電力消費を防止でき燃費を節約でき
る。As described above, in the stoichiometric air-fuel ratio region, the target heating value is set to the activation temperature of the three-way catalyst, and in the lean air-fuel ratio region, the target heating value is set to a higher lean NO.
By setting the activation temperature of the x-catalyst, the catalytic converters 9A and 9B perform NOx
Can be satisfactorily reduced and NOx emission can be reduced. In addition, in the stoichiometric air-fuel ratio region, the catalyst is prevented from being unnecessarily heated, so that unnecessary power consumption can be prevented and fuel efficiency can be saved.
【0025】尚、上記実施例では、加熱目標値の設定を
リーン領域と理論空燃比領域の2段階としたが、図8に
示す如く機関運転条件に応じて設定される空燃比(A/
F)に応じて加熱目標値をアナログ的に連続して可変設
定するようにすれば、更に電力の節約の効果を高められ
る。また、触媒コンバータ9A,9BにおけるNOx 転
換効率の温度特性は、図9に示すように、そのときの空
間速度S/Vによって、同じ空燃比状態であっても大き
く変化し、空間速度S/Vが遅いときほど活性化温度が
低くなる。In the above embodiment, the heating target value is set in two steps of the lean region and the stoichiometric air-fuel ratio region. However, as shown in FIG. 8, the air-fuel ratio (A / A /
If the target heating value is continuously and variably set in an analog manner according to F), the effect of power saving can be further enhanced. Further, as shown in FIG. 9, the temperature characteristic of the NOx conversion efficiency in the catalytic converters 9A and 9B greatly changes depending on the space velocity S / V at that time even in the same air-fuel ratio state, and the space velocity S / V The slower the activation temperature, the lower the activation temperature.
【0026】ここで、前記空間速度S/Vとは、所定の
表面積,体積を通過する排気流速であり、これはそのと
きの吸入空気量Qaに対応するから、前記通過流速のデ
ータとして吸入空気量Qaのデータを代表させることが
できる。従って、図10のフローチャートに示すように、
空間速度S/Vと空燃比A/Fとに基づいて加熱目標温
度を設定すれば、更に、制御精度を向上できる。Here, the space velocity S / V is a flow velocity of the exhaust gas passing through a predetermined surface area and volume, which corresponds to the intake air amount Qa at that time. The data of the quantity Qa can be represented. Therefore, as shown in the flowchart of FIG.
If the heating target temperature is set based on the space velocity S / V and the air-fuel ratio A / F, the control accuracy can be further improved.
【0027】図10のフローチャートについて説明する
と、ステップ21〜ステップ25までは、図7と同様であ
り、ステップ25でリーン領域と判定されると、ステップ
26に進む。ステップ26では、測定した吸入空気量Qaに
基づいて空間速度S/Vを算出する。Referring to the flowchart of FIG. 10, steps 21 to 25 are the same as those in FIG.
Proceed to 26. In step 26, the space velocity S / V is calculated based on the measured intake air amount Qa.
【0028】ステップ27では、算出した空間速度S/V
と空燃比A/Fとに基づいて図11のマップから加熱目標
温度TbLを設定する。以下はステップ28〜ステップ31ま
では、図7のフローチャートと同様で、目標値TbLと測
定値Tbとの比較により、パワートランジスタ23,24を
ON又はOFFに制御して触媒コンバータ9A,9Bへ
の通電を制御する。In step 27, the calculated space velocity S / V
The heating target temperature TbL is set from the map shown in FIG. 11 based on the air-fuel ratio A / F. The following steps 28 to 31 are the same as those in the flowchart of FIG. 7. By comparing the target value TbL with the measured value Tb, the power transistors 23 and 24 are controlled to be ON or OFF to control the catalytic converters 9A and 9B. Is controlled.
【0029】同様にして、ステップ25でリーン領域でな
いと判定されたら、ステップ32で、空間速度S/Vを算
出し、ステップ33で、算出した空間速度S/Vと空燃比
A/Fとから図11のマップにより加熱目標温度TbRを設
定し、この目標値TbRと測定値Tbとの比較により、パ
ワートランジスタ23,24をON又はOFFに制御して触
媒コンバータ9A,9Bへの通電を制御する。Similarly, if it is determined in step 25 that the region is not the lean region, a space velocity S / V is calculated in step 32, and in step 33, the space velocity S / V and the air-fuel ratio A / F are calculated from the calculated space velocity S / V. The heating target temperature T bR is set according to the map shown in FIG. 11, and by comparing this target value T bR with the measured value Tb, the power transistors 23 and 24 are controlled to be ON or OFF to energize the catalytic converters 9A and 9B. Control.
【0030】このようにすれば、触媒の温度制御をきめ
細かく行なうことができ、電力消費量を最小限に抑えつ
つ、触媒の転換効率を常に最適値にコントロールするこ
とができる。In this manner, the temperature control of the catalyst can be finely controlled, and the conversion efficiency of the catalyst can always be controlled to an optimum value while minimizing the power consumption.
【0031】[0031]
【発明の効果】以上説明したように本発明によれば、リ
ーンNOx触媒と三元触媒とを備えた触媒コンバータの
加熱目標値を、機関の運転条件に基づいて設定される設
定空燃比に応じて可変設定する構成としたので、リーン
空燃比或いは理論空燃比に合わせて必要最小限の電力供
給ができ、電力の無駄を防止することができる。これに
より、燃費の節約ができる。As described above, according to the present invention, the heating target value of the catalytic converter having the lean NOx catalyst and the three-way catalyst is set based on the operating conditions of the engine.
Since it is configured to be variably set according to the constant air-fuel ratio, it is possible to supply the minimum necessary electric power in accordance with the lean air-fuel ratio or the stoichiometric air-fuel ratio, thereby preventing waste of electric power. Thereby, fuel economy can be saved.
【0032】また、触媒コンバータの加熱目標温度を空
燃比に応じて連続的に設定すれば、更に、効果を高めら
れる。また、転換効率に影響を与える空間速度を考慮し
て、この空間速度と空燃比とにより加熱目標温度を設定
すれば、より一層制御精度の向上を図れる。Further, if the heating target temperature of the catalytic converter is continuously set according to the air-fuel ratio, the effect can be further enhanced. If the heating target temperature is set based on the space velocity and the air-fuel ratio in consideration of the space velocity that affects the conversion efficiency, control accuracy can be further improved.
【図1】本発明の構成を説明するブロック図。FIG. 1 is a block diagram illustrating a configuration of the present invention.
【図2】本発明の実施例のシステム構成を示す概略図。FIG. 2 is a schematic diagram illustrating a system configuration according to an embodiment of the present invention.
【図3】同上実施例の触媒コンバータのハニカム触媒の
構成を示す図で、(A)は斜視図、(B)は断面図、
(C)は組織図3A and 3B are diagrams showing a configuration of a honeycomb catalyst of the catalytic converter according to the embodiment, wherein FIG. 3A is a perspective view, FIG.
(C) is an organization chart
【図4】同上触媒コンバータの構成を示す図で、(A)
は側面断面図、(B)は正面図FIG. 4 is a diagram showing a configuration of the catalytic converter according to the first embodiment;
Is a side sectional view, and (B) is a front view.
【図5】空燃比に応じたNOx 転換効率と温度との関係
を示す特性図FIG. 5 is a characteristic diagram showing a relationship between NOx conversion efficiency and temperature according to an air-fuel ratio.
【図6】理論空燃比領域とリーン空燃比領域とを示す図FIG. 6 is a diagram showing a stoichiometric air-fuel ratio region and a lean air-fuel ratio region;
【図7】第1実施例の加熱制御動作を示すフローチャー
トFIG. 7 is a flowchart showing a heating control operation of the first embodiment.
【図8】加熱目標温度を空燃比に応じて設定する場合の
一例を示した空燃比と加熱目標温度との関係を示す図FIG. 8 is a diagram illustrating an example of a case where a heating target temperature is set according to an air-fuel ratio, and illustrating a relationship between an air-fuel ratio and a heating target temperature.
【図9】空間速度に応じてNOx 転換効率と温度との関
係を示す特性図FIG. 9 is a characteristic diagram showing a relationship between NOx conversion efficiency and temperature according to space velocity.
【図10】第2実施例の加熱制御動作を示すフローチャー
トFIG. 10 is a flowchart illustrating a heating control operation according to the second embodiment.
【図11】同上第2実施例における空間速度と空燃比とに
基づいて設定される加熱目標温度の特性図FIG. 11 is a characteristic diagram of a target heating temperature set based on the space velocity and the air-fuel ratio in the second embodiment.
1 内燃機関 5 インジェクタ 9A,9B 触媒コンバータ 10 コントロールユニット 11 エアフローメータ 12 クランク角センサ 16a,16b 触媒温度センサ 23,24 パワートランジスタ DESCRIPTION OF SYMBOLS 1 Internal combustion engine 5 Injector 9A, 9B Catalytic converter 10 Control unit 11 Air flow meter 12 Crank angle sensor 16a, 16b Catalyst temperature sensor 23, 24 Power transistor
Claims (3)
を加熱して活性化させる電熱式触媒コンバータの加熱制
御装置において、触媒コンバータのメタル担体に、理論
空燃比でNOx の転換効率が良い三元触媒とリーン空燃
比でも良好なNOx 転換効率を有するリーン空燃比用触
媒とを担持させる一方、機関運転条件検出手段と、触媒
温度検出手段と、前記機関運転条件検出手段の検出結果
に基づいて空燃比を設定する空燃比設定手段と、該空燃
比設定手段により設定された空燃比に応じて触媒コンバ
ータの加熱目標温度を可変設定する目標温度設定手段
と、該目標温度設定手段の設定値と前記触媒温度検出手
段の検出値とを比較する比較手段と、該比較手段の比較
結果に基づいて検出値が目標温度以下の時にメタル担体
に通電する通電制御手段とを備えて構成したことを特徴
とする電熱式触媒コンバータの加熱制御装置。1. A heating control device for an electrothermal catalytic converter in which a metal carrier carrying a catalyst is energized by heating and activating the catalyst, the metal carrier of the catalytic converter has a high NOx conversion efficiency at a stoichiometric air-fuel ratio. While carrying a three-way catalyst and a lean air-fuel ratio catalyst having a good NOx conversion efficiency even at a lean air-fuel ratio, the engine operating condition detecting means, the catalyst temperature detecting means, and the engine operating condition detecting means are used based on the detection results. Air-fuel ratio setting means for setting an air-fuel ratio by
Target temperature setting means for variably setting a heating target temperature of the catalytic converter in accordance with the air-fuel ratio set by the ratio setting means , and a comparison comparing a set value of the target temperature setting means with a detection value of the catalyst temperature detecting means. And a power supply control means for supplying power to the metal carrier when a detected value is equal to or lower than a target temperature based on a comparison result of the comparison means.
手段により設定された空燃比がリーン空燃比か理論空燃
比かを判定する判定手段の判定結果に応じて、理論空燃
比の時は三元触媒の活性化温度に、リーン空燃比の時は
リーン空燃比用触媒の活性化温度に、それぞれ触媒コン
バータの加熱目標温度を切換設定する構成であることを
特徴とする請求項1記載の電熱式触媒コンバータの加熱
制御装置。2. The method according to claim 1, wherein the target temperature setting means sets the air-fuel ratio.
The air-fuel ratio set by the means is lean air-fuel ratio or stoichiometric air-fuel
According to the determination result of determination means for determining the ratio, the stoichiometric air-fuel
The heating target temperature of the catalytic converter is switched to the activation temperature of the three-way catalyst at the time of the ratio and to the activation temperature of the catalyst for the lean air-fuel ratio at the time of the lean air-fuel ratio. Item 2. A heating control device for an electrothermal catalytic converter according to Item 1.
手段により設定された空燃比と触媒コンバータにおける
排気の通過流速とに応じた触媒コンバータの加熱目標温
度に可変設定する構成であることを特徴とする請求項1
記載の電熱式触媒コンバータの加熱制御装置。3. The catalytic converter according to claim 1, wherein said target temperature setting means is configured to determine an air-fuel ratio set by said air-fuel ratio setting means .
2. The structure according to claim 1, wherein the heating target temperature of the catalytic converter is variably set in accordance with the flow velocity of the exhaust gas.
A heating control device for an electrothermal catalytic converter according to the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26386392A JP2827752B2 (en) | 1992-10-01 | 1992-10-01 | Heating control device for electrothermal catalytic converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26386392A JP2827752B2 (en) | 1992-10-01 | 1992-10-01 | Heating control device for electrothermal catalytic converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06117232A JPH06117232A (en) | 1994-04-26 |
JP2827752B2 true JP2827752B2 (en) | 1998-11-25 |
Family
ID=17395292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26386392A Expired - Lifetime JP2827752B2 (en) | 1992-10-01 | 1992-10-01 | Heating control device for electrothermal catalytic converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2827752B2 (en) |
-
1992
- 1992-10-01 JP JP26386392A patent/JP2827752B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06117232A (en) | 1994-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11125111A (en) | In-exhaust pipe air introducing control device for internal combustion engine | |
JP3855877B2 (en) | Deterioration detection device for air-fuel ratio detection device | |
US20030136113A1 (en) | Method and apparatus for controlling an engine | |
JPH0518234A (en) | Secondary air control device for internal combustion engine | |
US6170260B1 (en) | Exhaust emission control apparatus for combustion engine | |
JP3988518B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH05240031A (en) | Secondary air control device of internal combustion engine | |
US6601383B2 (en) | Emission control apparatus for engine and method for reducing emissions of engine | |
JP2827752B2 (en) | Heating control device for electrothermal catalytic converter | |
WO2004097200A1 (en) | Internal combustin engine control device | |
JP3067646B2 (en) | Air-fuel ratio sensor heater control device | |
JPH10246139A (en) | Air-fuel ratio control device for internal combustion engine | |
US6675574B2 (en) | Control unit for internal combustion engine | |
JPH06101459A (en) | Rotational speed control device for internal combustion engine | |
JP3082523B2 (en) | Catalyst deterioration diagnosis device for internal combustion engine | |
JP2884798B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH1182111A (en) | Air-fuel ratio control device for internal combustion engine | |
JP2003065027A (en) | Control device for exhaust air temperature sensor for internal combustion engine | |
JPH06294342A (en) | Air-fuel ratio feedback controller of internal combustion engine | |
JPH0693838A (en) | Exhaust emission control device for internal combustion engine | |
JP3764193B2 (en) | Exhaust purification device | |
US7415818B2 (en) | Control device of internal combustion engine | |
JP2687654B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH0633749A (en) | Secondary air control device for internal combustion engine | |
JPH08240140A (en) | Air-fuel ratio control device for internal-combustion engine |