[go: up one dir, main page]

JP2827246B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2827246B2
JP2827246B2 JP1019145A JP1914589A JP2827246B2 JP 2827246 B2 JP2827246 B2 JP 2827246B2 JP 1019145 A JP1019145 A JP 1019145A JP 1914589 A JP1914589 A JP 1914589A JP 2827246 B2 JP2827246 B2 JP 2827246B2
Authority
JP
Japan
Prior art keywords
forming
electrode
oxide film
silicon substrate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1019145A
Other languages
Japanese (ja)
Other versions
JPH02199862A (en
Inventor
和美 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1019145A priority Critical patent/JP2827246B2/en
Publication of JPH02199862A publication Critical patent/JPH02199862A/en
Application granted granted Critical
Publication of JP2827246B2 publication Critical patent/JP2827246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、容量素子を含む半導体装置の製造方法に関
するものである。
Description: BACKGROUND OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device including a capacitor.

〔従来の技術〕[Conventional technology]

従来、半導体集積回路に容量素子を組み込む場合に
は、半導体基板内部にPN接合を形成して接合容量を用い
る方法や、半導体基板の表面に絶縁膜を形成し、この絶
縁膜上に多結晶シリコン又は金属の電極を形成したMOS
容量を用いる方法が知られている。
Conventionally, when a capacitive element is incorporated in a semiconductor integrated circuit, a method of forming a PN junction inside a semiconductor substrate and using a junction capacitor, or forming an insulating film on the surface of the semiconductor substrate and forming a polycrystalline silicon on the insulating film Or MOS with metal electrodes
A method using a capacity is known.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上述の方法で容量素子を作成するに
は、製造プロセスの制約を受けたり、容量値が小さい等
の問題がある。接合容量においては、PN接合を形成する
半導体層の不純物濃度、すなわち、回路形成に用いる半
導体基板(シリコン基板)や、周辺素子を作成するため
の製造プロセスによって、PN接合の不純物濃度や形状が
制約される。また、MOS容量においては、単位面積あた
りの容量が小さいので、大容量の素子を半導体装置に組
み込む場合には、容量の占める面積が大きくなり、集積
化を妨げることになる。従って、従来の技術では半導体
集積回路に、集積化を妨げずに大容量の容量素子を組み
込むことが困難であった。
However, producing a capacitive element by the above-described method involves problems such as limitations in the manufacturing process and a small capacitance value. In the junction capacitance, the impurity concentration and the shape of the PN junction are restricted by the impurity concentration of the semiconductor layer forming the PN junction, that is, the semiconductor substrate (silicon substrate) used for forming the circuit and the manufacturing process for forming the peripheral elements. Is done. In addition, since the capacity per unit area of the MOS capacitor is small, when a large-capacity element is incorporated in a semiconductor device, the area occupied by the capacity increases, which hinders integration. Therefore, it is difficult to incorporate a large-capacity capacitive element into a semiconductor integrated circuit without hindering integration in the conventional technology.

本発明の目的は集積化を妨げることなく大容量の容量
素子が組み込まれた半導体装置とその製造方法を提供す
ることにある。
An object of the present invention is to provide a semiconductor device in which a large-capacity element is incorporated without hindering integration, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するため、本発明の半導体装置の製造
方法においては、半導体素子を形成すべきシリコン基板
の一面に選択酸化膜を形成する工程と、前記シリコン基
板の他の一面に、前記選択酸化膜に接してすり鉢状の掘
り込み部を形成する工程と、前記掘り込み部の側面及び
前記選択酸化膜に接して多結晶シリコンを形成する工程
と、前記多結晶シリコンを一方の電極とした容量素子を
形成する工程とを含むものである。
In order to achieve the above object, in a method of manufacturing a semiconductor device according to the present invention, a step of forming a selective oxide film on one surface of a silicon substrate on which a semiconductor element is to be formed; Forming a mortar-shaped dug portion in contact with a film, forming polycrystalline silicon in contact with a side surface of the dug portion and the selective oxide film, and forming a capacitor using the polycrystalline silicon as one electrode. And forming a device.

〔作用〕[Action]

半導体集積回路の製造においては、通常、各々の素子
はシリコン基板の一方の面に作成されるが、比較的大き
な面積を必要とする容量素子を半導体基板の裏面(半導
体素子が作成される面の反対側の面)に形成することに
よって、集積度を妨げることなく大容量の素子を組み込
んだ半導体装置が得られる。
In the manufacture of a semiconductor integrated circuit, each element is usually formed on one surface of a silicon substrate. On the other side, a semiconductor device incorporating a large-capacity element can be obtained without hindering the degree of integration.

〔実施例〕〔Example〕

以下に本発明の一実施例について図面を参照しながら
詳細に説明する。第1図は本発明の一実施例を工程順に
示す断面図である。本実施例においては、P型のシリコ
ン基板を用いて容量素子と、半導体素子としてNチャネ
ルMOSトランジスタを作成する場合について示す。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the present invention in the order of steps. In this embodiment, a case will be described in which a capacitor and an N-channel MOS transistor are formed as semiconductor elements using a P-type silicon substrate.

まず第1図(a)において、P型のシリコン基板1上
に、選択酸化法を用いて選択酸化膜11を形成する。選択
酸化法としては、LOCOS(Local Oxidation of Sillico
n)酸化法等が一般的である。
First, in FIG. 1A, a selective oxide film 11 is formed on a P-type silicon substrate 1 by using a selective oxidation method. As the selective oxidation method, LOCOS (Local Oxidation of Sillico
n) Oxidation method is common.

次に第1図(b)に示すように、半導体素子領域にゲ
ート酸化膜12を形成した後、ゲート電極用多結晶シリコ
ン13を成長させる。一方、シリコン基板1の裏面には、
フォトリソグラフィ技術によりフォトレジスト21を形成
し、これをマスクに用いて例えばスパッタ・エッチング
法により、側面がすり鉢状になるように掘り込み部22を
形成する。
Next, as shown in FIG. 1 (b), after forming a gate oxide film 12 in the semiconductor element region, polycrystalline silicon 13 for a gate electrode is grown. On the other hand, on the back surface of the silicon substrate 1,
A photoresist 21 is formed by a photolithography technique, and using the mask as a mask, a dug portion 22 is formed by, for example, a sputter etching method so that the side surface has a mortar shape.

次に、第1図(c)に示すように、掘り込み部22の内
部にボロンを導入してP+拡散領域23を形成した後、酸化
膜24を例えば100nm形成する。
Next, as shown in FIG. 1C, after introducing P <+> diffusion region 23 by introducing boron into the dug portion 22, an oxide film 24 is formed, for example, to 100 nm.

続いて、第1図(d)に示すように、電極用多結晶シ
リコン31を形成し、導電性を持たせるためにリン拡散を
行う。
Subsequently, as shown in FIG. 1 (d), polycrystalline silicon 31 for electrodes is formed, and phosphorus diffusion is performed to impart conductivity.

引き続き、第1図(e)に示すように、平坦化技術を
応用して、電極形成用フォトレジスト32を掘り込み部22
が完全に埋まるようにシリコン基板1の裏面に塗布した
後、エッチバックを行って電極33を形成する。
Subsequently, as shown in FIG. 1 (e), a photoresist 32 for forming an electrode is dug into
Is applied to the back surface of the silicon substrate 1 so as to be completely buried, and then the electrode 33 is formed by performing etch-back.

引き続き、第1図(f)に示すように、半導体素子領
域には、ゲート電極42及びソース領域43及びドレイン領
域44を形成した後、電極33を酸化することによって誘電
体34を形成する。
Subsequently, as shown in FIG. 1 (f), a gate electrode 42, a source region 43, and a drain region 44 are formed in the semiconductor element region, and then the electrode 33 is oxidized to form a dielectric 34.

最後に、第1図(g)に示すように、層間絶縁膜51を
形成した後、半導体素子においては、電極取り出し用の
穴あけを行ってAl電極45を形成する。一方、容量素子
は、層間絶縁膜51及び選択酸化膜11に電極取り出し用の
穴あけを行って上部Al電極53を形成し、また、下部Al電
極52を形成する。
Finally, as shown in FIG. 1 (g), after forming an interlayer insulating film 51, in a semiconductor element, a hole for extracting an electrode is formed to form an Al electrode 45. On the other hand, in the capacitive element, an upper Al electrode 53 is formed by forming a hole for taking out an electrode in the interlayer insulating film 51 and the selective oxide film 11, and a lower Al electrode 52 is formed.

このような構造では、主に掘り込み部の側面が容量を
構成するので表面積が大きくなり、大容量が得られる。
しかも半導体装置の構成においては、シリコン基板表面
に占める素子面積が大きくならないので集積化の妨げに
ならない。
In such a structure, since the side surface of the dug portion mainly constitutes the capacity, the surface area is increased, and a large capacity is obtained.
Moreover, in the configuration of the semiconductor device, the element area occupying the surface of the silicon substrate does not increase, so that the integration is not hindered.

なお、実施例では誘電体として多結晶シリコンを熱酸
化した酸化膜を用いたが、高誘電体の物質を成長又は蒸
着して代用とすることもできる。また、掘り込み部の形
成にはプラズマエッチングを用いたが、例えばヒドラジ
ン水溶液を用いて異方性エッチングで形成することも可
能である。
In this embodiment, an oxide film obtained by thermally oxidizing polycrystalline silicon is used as a dielectric, but a high-dielectric material may be grown or vapor-deposited instead. In addition, although the plasma etching is used to form the dug portion, it may be formed by anisotropic etching using, for example, a hydrazine aqueous solution.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したように本発明によれば、容量素子
をシリコン基板の裏面から形成した掘り込み部の側面を
用いて作成するので、容易に大容量が得られ、しかも半
導体装置の構成において、シリコン基板表面に占める素
子面積が大きくならないので集積化の妨げにならない。
As described in detail above, according to the present invention, since the capacitive element is formed using the side surface of the dug portion formed from the back surface of the silicon substrate, a large capacity can be easily obtained, and further, in the configuration of the semiconductor device, Since the element area occupying the silicon substrate surface does not increase, it does not hinder integration.

また、二つの半導体素子が本発明による容量素子を挟
んで配置されているような場合においては、容量素子が
シリコン基板の表面から裏面に渡って絶縁物が島状に形
成されているので、少なくともその部分での電流パスが
生ぜず、完全ではないがある程度の絶縁分離が可能であ
る。例えばCMOSにおいて、PMOSとNMOSの間に本発明によ
る容量素子を形成されているような場合には、ラッチア
ップ現象の低減を図ることができる効果を有する。
Further, in the case where two semiconductor elements are arranged with the capacitive element according to the present invention interposed therebetween, at least the insulator is formed in an island shape from the front surface to the rear surface of the silicon substrate. There is no current path at that point, and some but not complete isolation is possible. For example, in a case where a capacitor according to the present invention is formed between a PMOS and an NMOS in a CMOS, there is an effect that a latch-up phenomenon can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(g)は本発明の一実施例の各工程の構
造を示す断面図である。 1…シリコン基板、11…選択酸化膜 13…ゲート電極用多結晶シリコン 21…フォトレジスト、23…P+拡散領域 24…酸化膜、31…電極用多結晶シリコン 32…電極形成用フォトレジスト、33…電極 34…誘電体、42…ゲート電極 43…ソース領域、44…ドレイン領域 45…Al電極、51…層間絶縁膜 52…下部Al電極、53…上部Al電極
1 (a) to 1 (g) are sectional views showing the structure of each step of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Silicon substrate, 11 ... Selective oxide film 13 ... Polycrystalline silicon for gate electrode 21 ... Photoresist, 23 ... P + diffusion region 24 ... Oxide film, 31 ... Polycrystalline silicon for electrode 32 ... Photoresist for electrode formation, 33 ... Electrode 34 ... Dielectric, 42 ... Gate electrode 43 ... Source region, 44 ... Drain region 45 ... Al electrode, 51 ... Interlayer insulating film 52 ... Lower Al electrode, 53 ... Upper Al electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体素子を形成すべきシリコン基板の一
面に選択酸化膜を形成する工程と、前記シリコン基板の
他の一面に、前記選択酸化膜に接して掘り込み部を形成
する工程と、前記掘り込み部の側面及び前記選択酸化膜
に接して多結晶シリコンを形成する工程と、前記多結晶
シリコンを一方の電極とした容量素子を形成する工程と
を含むことを特徴とする半導体装置の製造方法。
A step of forming a selective oxide film on one surface of a silicon substrate on which a semiconductor element is to be formed; and a step of forming a dug portion in contact with the selective oxide film on another surface of the silicon substrate. A step of forming polycrystalline silicon in contact with a side surface of the dug portion and the selective oxide film; and a step of forming a capacitive element using the polycrystalline silicon as one electrode. Production method.
JP1019145A 1989-01-27 1989-01-27 Method for manufacturing semiconductor device Expired - Fee Related JP2827246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1019145A JP2827246B2 (en) 1989-01-27 1989-01-27 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1019145A JP2827246B2 (en) 1989-01-27 1989-01-27 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH02199862A JPH02199862A (en) 1990-08-08
JP2827246B2 true JP2827246B2 (en) 1998-11-25

Family

ID=11991279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1019145A Expired - Fee Related JP2827246B2 (en) 1989-01-27 1989-01-27 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2827246B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2705237B2 (en) * 1989-09-12 1998-01-28 三菱電機株式会社 Semiconductor device having MIM capacitor
JP4537909B2 (en) * 2005-08-08 2010-09-08 株式会社東芝 Information recording device
US7473979B2 (en) * 2006-05-30 2009-01-06 International Business Machines Corporation Semiconductor integrated circuit devices having high-Q wafer back-side capacitors
DE102007009383A1 (en) 2007-02-20 2008-08-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Semiconductor arrangement and method for its production
JP7021021B2 (en) * 2018-07-25 2022-02-16 日産自動車株式会社 Semiconductor devices and their manufacturing methods

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132453U (en) * 1987-02-20 1988-08-30
JPS63280463A (en) * 1987-05-12 1988-11-17 Nippon Mining Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JPH02199862A (en) 1990-08-08

Similar Documents

Publication Publication Date Title
JPH098290A (en) Semiconductor device and manufacture thereof
JPH0644603B2 (en) Semiconductor device and its manufacturing method
JPH1070281A (en) Semiconductor device and manufacturing method thereof
JPH0557741B2 (en)
JP2827246B2 (en) Method for manufacturing semiconductor device
JPH0697185A (en) Semiconductor device
JPH06232351A (en) Bicmos semiconductor device and manufacture thereof
JP3242000B2 (en) Bipolar transistor having self-aligned base electrode and method of manufacturing the same
KR20000045456A (en) Method for manufacturing semiconductor device
JP3535542B2 (en) Semiconductor memory device and method of manufacturing the same
JPH065795B2 (en) Semiconductor device
JPH0481336B2 (en)
JPH0797626B2 (en) MIS type semiconductor memory device
JPH1022375A (en) Semiconductor device and manufacturing method thereof
JPH0252859B2 (en)
JPH0431193B2 (en)
JPH05166919A (en) Semiconductor device and manufacture thereof
JPH0328071B2 (en)
JPH04267554A (en) Bi-mos semiconductor device and manufacture thereof
JP2940954B2 (en) Method for manufacturing semiconductor device
JPS5931988B2 (en) Method for manufacturing complementary MOS gate circuit device
JPH09129884A (en) Soi thin film field-effect transistor and its manufacture
JPH06112412A (en) Semiconductor device and manufacture thereof
JPH0212030B2 (en)
JPH02237151A (en) Semiconductor memory device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees