JP2826159B2 - Recovery and purification method of rhodium - Google Patents
Recovery and purification method of rhodiumInfo
- Publication number
- JP2826159B2 JP2826159B2 JP8357190A JP8357190A JP2826159B2 JP 2826159 B2 JP2826159 B2 JP 2826159B2 JP 8357190 A JP8357190 A JP 8357190A JP 8357190 A JP8357190 A JP 8357190A JP 2826159 B2 JP2826159 B2 JP 2826159B2
- Authority
- JP
- Japan
- Prior art keywords
- rhodium
- hydrochloric acid
- porous resin
- added
- acid solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、ロジウムを含有する塩酸溶液からロジウム
を回収精製する方法で、特にロジウム含有濃度の低い卑
金属を多量に含有する塩酸溶液よりロジウムを回収精製
する方法に関するものである。The present invention relates to a method for recovering and purifying rhodium from a hydrochloric acid solution containing rhodium, and more particularly, to a method for recovering rhodium from a hydrochloric acid solution containing a large amount of a base metal having a low rhodium content. The present invention relates to a method for recovery and purification.
(従来技術とその問題点) 従来、卑金属を含有するロジウム塩酸溶液よりロジウ
ムを回収精製する方法は、亜硝酸ナトリウムを加えて卑
金属の水酸化物を生成させ、濾過分離したのち、濾過液
に塩化アンモニウムを加えて亜硝酸ロジウム酸塩として
沈澱させて濾過分離回収する方法が一般的である。(Prior art and its problems) Conventionally, a method of recovering and purifying rhodium from a rhodium hydrochloride solution containing a base metal is to form a hydroxide of the base metal by adding sodium nitrite, and to separate by filtration. In general, a method of adding ammonium to precipitate as rhodium nitrite, followed by filtration, separation and recovery.
しかし、この方法ではロジウムを完全に分離回収する
ことができず、ロジウムを分離したのちの液中には100P
PM程度のロジウムが残ってしまい、これを回収するのに
極めて多くの労力を要するものである。However, this method cannot completely separate and recover rhodium, and 100P is contained in the liquid after rhodium is separated.
Rhodium of the order of PM remains, and much effort is required to recover it.
特にロジウム含有濃度が数g/lと低く、卑金属が数10g
/l含む塩酸溶液からのロジウムを回収精製するには、一
端卑金属とともにロジウムを還元し分離したのち、卑金
属を酸処理して溶解分離しロジウム濃度を高め、再度ロ
ジウムの塩酸溶液として上記の亜硝酸ナトリウムを加え
て卑金属を分離してゆくという方法を繰り返す必要があ
り困難なものであった。Especially the rhodium content is as low as several g / l, and the base metal is several tens g
To recover and purify rhodium from a hydrochloric acid solution containing / l, the rhodium is first reduced and separated together with the base metal, then the base metal is treated with an acid to dissolve and separate it, and the rhodium concentration is increased. It was necessary to repeat the method of adding sodium to separate the base metal, which was difficult.
(発明の目的) 本発明は、上記従来法の欠点を解決するために成され
たもので、ジアルキルスルフィドを含浸させた多孔質樹
脂にロジウムを吸着させ、吸着した多孔質樹脂を希塩酸
で洗浄し、次いで多孔質樹脂を焼成し、還元し塩素化す
ることで低濃度のロジウムを簡便な方法で、回収率が10
0%近くロジウムの純度の高いものが得られる方法を提
供することを目的とする。(Object of the Invention) The present invention has been made to solve the above-mentioned drawbacks of the conventional method. Rhodium is adsorbed on a porous resin impregnated with dialkyl sulfide, and the adsorbed porous resin is washed with dilute hydrochloric acid. Then, the porous resin is calcined, reduced and chlorinated to obtain a low-concentration rhodium in a simple method with a recovery rate of 10%.
An object of the present invention is to provide a method capable of obtaining a rhodium having a high purity of nearly 0%.
(問題点を解決するための手段) 本発明は、卑金属を含むロジウム塩酸溶液より、ロジ
ウムを回収精製する方法において、該ロジウム塩酸溶液
に塩酸を加えて塩酸濃度を1規定〜6規定としたのち2
価の塩化スズと塩化銅を添加し、ジアルキルスルフィド
を含浸させた多孔質樹脂と接触させてロジウムを吸着
し、ロジウムを吸着した多孔質樹脂を0.5規定〜3規定
の希塩酸で洗浄したのち、該多孔質樹脂を焼成し、還元
したのち、塩素化することを特徴とするロジウムの回収
精製方法で、前記2価の塩化スズ及び塩化銅の添加量が
ロジウムに対するモル比で10〜50倍であるロジウムの回
収精製方法であり、前記ジアルキルスルフィドの多孔質
樹脂に含浸させるが30wt%以上であるロジウムの回収精
製方法で、前記塩素化する方法が塩化ナトリウムを加え
塩素ガスを吹き込み800℃〜950℃で1時間以上行うもの
であるロジウムの回収精製方法である。(Means for Solving the Problems) The present invention provides a method for recovering and purifying rhodium from a rhodium hydrochloric acid solution containing a base metal, wherein hydrochloric acid is added to the rhodium hydrochloric acid solution to adjust the hydrochloric acid concentration to 1N to 6N. 2
After adding tin chloride and copper chloride, the rhodium is adsorbed by contacting with a porous resin impregnated with dialkyl sulfide, and the porous resin having adsorbed rhodium is washed with 0.5N to 3N diluted hydrochloric acid. A method for recovering and purifying rhodium, in which the porous resin is calcined, reduced and then chlorinated, wherein the amount of the divalent tin chloride and copper chloride added is 10 to 50 times the molar ratio to rhodium. A method for recovering and purifying rhodium, in which the dialkyl sulfide is impregnated into a porous resin, but is a method for recovering and purifying rhodium in an amount of 30 wt% or more. This is a method for recovering and purifying rhodium, which is performed for 1 hour or more.
卑金属を含むロジウム塩酸溶液の酸濃度は、1〜6規
定として調整して、塩化スズ(2価)をロジウムに対す
るモル比で10〜50倍となるように加え、塩化銅もロジウ
ムに対するモル比で10〜50倍となるように加えて攪拌す
る。The acid concentration of the rhodium hydrochloric acid solution containing the base metal is adjusted to 1 to 6N, tin chloride (divalent) is added so that the molar ratio with respect to rhodium becomes 10 to 50 times, and copper chloride is also added with the molar ratio with respect to rhodium. Add to 10 to 50 times and stir.
2価の塩化スズ及び塩化銅を加える理由はロジウムの
ジアルキルスルフィドを含浸させた多孔質樹脂と接触さ
せてロジウムを吸着させる際の吸着率を向上させるため
と吸着速度を向上させるためであるが、2価の塩化スズ
及び塩化銅の作用はロジウムクロロ錯体中の塩化物イオ
ンが塩化スズイオンによって置換され吸着されやすい化
学種になったためと思われる。The reason for adding divalent tin chloride and copper chloride is to improve the rate of adsorption when rhodium is adsorbed by contact with a porous resin impregnated with dialkyl sulfide of rhodium, and to improve the adsorption rate. The action of divalent tin chloride and copper chloride is considered to be due to the fact that chloride ions in the rhodium chloro complex were replaced by tin chloride ions and became chemical species which were easily adsorbed.
2価の塩化スズの添加量はロジウム塩酸溶液中のロジ
ウムに対するモル比で10〜50倍でよく、好ましくは15〜
20倍で、塩化銅の添加量はロジウム塩酸溶液中のロジウ
ムに対するモル比で10〜50倍でよく、好ましくは15〜20
倍である。The amount of divalent tin chloride added may be 10 to 50 times, preferably 15 to 50 times, the molar ratio to rhodium in the rhodium hydrochloric acid solution.
20 times, the addition amount of copper chloride may be 10 to 50 times the molar ratio to rhodium in the rhodium hydrochloric acid solution, preferably 15 to 20 times
It is twice.
それぞれ添加する該モル比が10倍以下ではロジウムの
吸着率が92%以下で効果が不十分であり、50倍以上では
添加効果が同じとなるため経済性に欠けるからである。If the molar ratio to be added is 10 times or less, the effect is insufficient if the rhodium adsorption rate is 92% or less, and if the molar ratio is 50 times or more, the effect of addition becomes the same, so that the economy is lacking.
次いでジアルキルスルフィドを含浸させた多孔質樹脂
として、ジアルキルスルフィドとしてはジ−n−ヘキシ
ルスルファイド等を用い、多孔質樹脂としてはダイヤイ
オンHP-20(三菱樹脂製)等を用いればよい。Next, as the porous resin impregnated with dialkyl sulfide, di-n-hexyl sulfide or the like may be used as the dialkyl sulfide, and Diaion HP-20 (manufactured by Mitsubishi Plastics) may be used as the porous resin.
また、ジアルキルスルフィドの含浸させる方法として
は、多孔質樹脂とジアルキルスルフィドとを混合して攪
拌を1時間程度行い、多孔質樹脂が漏れない程度の網等
で濾過して室温で乾燥すればよいもので、ジアルキルス
ルフィドを該多孔質樹脂に30wt%以上含浸させるのはロ
ジウム塩酸溶液からロジウムを吸着させる際の接触効率
を十分とすることと、吸着率を向上させることで後工程
での操作が容易となり、また多孔質樹脂を焼成してロジ
ウムを回収するので経済性を考慮してのことであり、含
浸させる最大量は飽和含浸率で前記の多孔質樹脂であれ
ば約54wt%である。Further, as a method of impregnating the dialkyl sulfide, a method in which the porous resin and the dialkyl sulfide are mixed and agitated for about 1 hour, filtered through a net or the like to the extent that the porous resin does not leak, and dried at room temperature may be used. In order to impregnate the porous resin with the dialkyl sulfide in an amount of 30 wt% or more, it is necessary to improve the contact efficiency when adsorbing rhodium from the rhodium hydrochloride solution and to improve the adsorbability to facilitate the operation in the subsequent step. In addition, since the rhodium is recovered by firing the porous resin, economic considerations are taken into consideration, and the maximum amount of impregnation is about 54 wt% for the above-mentioned porous resin at the saturated impregnation rate.
2価の塩化スズと塩化銅を添加したロジウム塩酸溶液
とジアルキルスルフィドを含浸させた多孔質樹脂との接
触のさせかたは、該多孔質樹脂をロジウム塩酸溶液と混
合して攪拌をしてロジウムを吸着させることもできる
が、好ましくは多孔質樹脂を充填したカラムにロジウム
塩酸溶液を通液させることがよく、通液速度はSV0.1〜
1.0であればよい。The contact between the rhodium hydrochloride solution containing divalent tin chloride and copper chloride and the porous resin impregnated with dialkyl sulfide is performed by mixing the porous resin with the rhodium hydrochloride solution and stirring to adsorb rhodium. However, it is preferable to pass a rhodium hydrochloride solution through a column filled with a porous resin, and the flow rate is preferably from 0.1 to SV.
1.0 is fine.
また、前記方法によりジアルキルスルフィドを含浸さ
せた多孔質樹脂の量については、ジアルキルスルフィド
の含浸重量がロジウムを吸着させる量に関係するため、
ロジウム塩酸溶液中の総ロジウム量に対して10倍以上に
なるようにすればよい。The amount of the porous resin impregnated with the dialkyl sulfide by the above method is related to the amount of the dialkyl sulfide impregnated with the amount of the rhodium adsorbed.
What is necessary is just to make it 10 times or more with respect to the total amount of rhodium in the rhodium hydrochloric acid solution.
以上の方法により、ロジウムを多孔質樹脂に吸着させ
た際に一部のスズ及び銅も抽出されるため、希塩酸で該
ロジウムを吸着した多孔質樹脂を洗浄することで、スズ
及び銅を溶離させることができる。According to the above-described method, when tin and copper are partially absorbed when rhodium is adsorbed on the porous resin, tin and copper are eluted by washing the porous resin that has adsorbed the rhodium with dilute hydrochloric acid. be able to.
スズ及び銅を溶離させるための希塩酸濃度は0.5規定
以上であればよく、3規定以上では洗浄効率が落ちるの
で好ましくない。The concentration of dilute hydrochloric acid for eluting tin and copper only needs to be 0.5 N or more, and if it is 3 N or more, the washing efficiency is undesirably reduced.
次いで、スズ及び銅を溶離させた多孔質樹脂を焼成す
る。Next, the porous resin from which tin and copper have been eluted is fired.
その焼成方法は、電気炉で800℃で1時間以上行うこ
とで部分的に酸化した金属ロジウムが得られる。The baking method is performed at 800 ° C. for 1 hour or more in an electric furnace to obtain partially oxidized metal rhodium.
該部分的に酸化している金属ロジウムを水素ガスで還
元して完全に金属化したのち、石英ボート等の反応容器
内で塩化ナトリウムを金属ロジウム量に対して6倍の割
合を加えて混合し、塩素ガスを吹き込み800〜950°Cで
加熱し約1時間続けて塩素化することで、金属ロジウム
は水溶性の塩化ロジウム酸ナトリウム(Na3〔RhCl6〕・
2H2O)となり、卑金属が微量含有していても、上記の塩
素化操作で塩化物となり蒸発して分離させることがで
き、得られた塩化ロジウム酸ナトリウム中には卑金属が
ほとんど含有しない純度の高いものが得られるものであ
る。After reducing the partially oxidized metal rhodium with hydrogen gas to completely metallize, sodium chloride is added and mixed in a reaction vessel such as a quartz boat at a ratio of 6 times the amount of metal rhodium. By injecting chlorine gas and heating at 800 to 950 ° C and continuing chlorination for about 1 hour, metal rhodium can be converted to water-soluble sodium rhodate chloride (Na 3 [RhCl 6 ].
2H 2 O), and even if it contains a trace amount of base metal, it can be converted to chloride by the above-mentioned chlorination operation and evaporated and separated.The obtained sodium chloride rhodate has a purity of almost no base metal. It is something that can be expensive.
以下、本発明に係わる実施例を記載するが、該実施例
は本発明を限定するものではない。Hereinafter, examples according to the present invention will be described, but the examples do not limit the present invention.
(実施例1) ロジウム0.5g/l、鉄10g/l、ニッケル10g/l、亜鉛5g/
l、錫5g/l、クロム1g/l、アルミニウム1g/l、コバルト1
g/l、マグネシウム1g/lを含む塩酸溶液200mlに塩酸を加
えて3Nとし、次いで、2価の塩化すずを該塩酸溶液中40
g/l、塩化銅を25g/lとなるように加え攪拌してロジウム
塩酸溶液とした。(Example 1) Rhodium 0.5 g / l, iron 10 g / l, nickel 10 g / l, zinc 5 g / l
l, tin 5g / l, chromium 1g / l, aluminum 1g / l, cobalt 1
hydrochloric acid was added to 200 ml of a hydrochloric acid solution containing 1 g / l of magnesium and 1 g / l of magnesium to make 3N, and then divalent tin chloride was added to 40 ml of the hydrochloric acid solution.
g / l and copper chloride were added to a concentration of 25 g / l, followed by stirring to obtain a rhodium hydrochloric acid solution.
該ロジウム塩酸溶液を前以て多孔質樹脂(ダイヤイオ
ンHP-20:三菱樹脂製)100mlにジ−n−ヘキシルスルフ
ィド50mlを加えて1時間攪拌し含浸させガラスフィルタ
で濾過し乾燥しておいたジ−n−ヘキシルスルフィドを
50ml含んだ多孔質樹脂200mlをガラス製のカラム(直径1
5mm)に充填し、1規定塩酸溶液を200ml通液して塩酸酸
性としておき、これにロジウム塩酸溶液をSV=0.5で通
液してロジウムを吸着させた。The rhodium hydrochloride solution was previously added to 100 ml of a porous resin (Diaion HP-20: manufactured by Mitsubishi Plastics), 50 ml of di-n-hexyl sulfide was added, stirred for 1 hour, impregnated, filtered through a glass filter and dried. Di-n-hexyl sulfide
A glass column (diameter 1) containing 200 ml of porous resin containing 50 ml
5 mm), and 1 ml of 1N hydrochloric acid solution was passed through to make the solution acidic, and rhodium hydrochloric acid solution was passed at SV = 0.5 to adsorb rhodium.
該通液した塩酸溶液中のロジウムをICPにより分析し
たところ1mg/lであった。Rhodium in the passed hydrochloric acid solution was analyzed by ICP and found to be 1 mg / l.
また、ロジウムを吸着させた多孔質樹脂に0.5N塩酸20
0mlをSV=0.5で通液し、スズ及び銅を溶離するために洗
浄した。Also, 0.5N hydrochloric acid 20 is added to the porous resin on which rhodium is adsorbed.
0 ml was passed at SV = 0.5 and washed to elute tin and copper.
洗浄した多孔質樹脂をカラムより取り出し電気炉で80
0℃、1時間加熱して焼やしたのち、水素ガスを吹きつ
けてロジウムを金属に還元した。Remove the washed porous resin from the column and use an electric furnace
After heating at 0 ° C. for 1 hour for baking, rhodium was reduced to metal by blowing hydrogen gas.
該金属ロジウムに塩化ナトリウム0.4gを加えて混合
し、石英ボートに移し入れ電気炉中で900℃に加熱し塩
素ガスを5l/分で吹き込みながら1時間保持して塩素化
した。0.4 g of sodium chloride was added to the metal rhodium, mixed, transferred to a quartz boat, heated to 900 ° C. in an electric furnace, and held for 1 hour while blowing chlorine gas at 5 l / min to chlorinate.
次いで、塩素ガスは吹き込みながら温度をさげて約30
0℃になったところで塩素ガスの吹き込みを止め、室温
まで放冷した。Next, while blowing in chlorine gas, lower the temperature to about 30
When the temperature reached 0 ° C., the blowing of chlorine gas was stopped, and the mixture was allowed to cool to room temperature.
その後、石英ボートを取り出し塩素化したロジウムを
水で溶解して塩化ロジウム酸ナトリウム水溶液を得た。Thereafter, the quartz boat was taken out and the chlorinated rhodium was dissolved in water to obtain an aqueous solution of sodium rhodate.
この塩化ロジウム酸ナトリウム水溶液中の卑金属を発
光分光分析により卑金属の確認をしたところ検出できな
かった。The base metal in the aqueous sodium rhodate solution was not detected when the base metal was confirmed by emission spectroscopy.
なお、ロジウムの回収率は99%であった。 The recovery of rhodium was 99%.
(比較例) 実施例1の塩化すずを加えた量がロジウム塩酸溶液中
で2g/l、5g/l、塩化銅を加えた量がロジウム塩酸溶液中
で1g/l、2.5g/lの2種類とした以外は実施例1と同様に
操作してロジウムを吸着させたところ、ロジウムは56
%、90%しか吸着させることができなかった。(Comparative Example) The amount of tin chloride added in Example 1 was 2 g / l and 5 g / l in rhodium hydrochloric acid solution, and the amount of copper chloride added was 1 g / l and 2.5 g / l in rhodium hydrochloric acid solution. Rhodium was adsorbed by operating in the same manner as in Example 1 except that rhodium was used.
%, Only 90% could be adsorbed.
(実施例2) 実施例1の塩化すずを加えた量がロジウム塩酸溶液中
で25.7g/lとし、塩化銅を加えた量がロジウム塩酸溶液
中で10g/lとした以外は実施例1と同様に操作してロジ
ウムを吸着させたところ、ロジウムは100%吸着させる
ことができた。(Example 2) Example 2 was the same as Example 1 except that the amount of tin chloride added was 25.7 g / l in the rhodium hydrochloric acid solution and the amount of copper chloride added was 10 g / l in the rhodium hydrochloric acid solution. When the same operation was performed to adsorb rhodium, rhodium was adsorbed 100%.
また、塩化すずを加えた量はロジウム塩酸溶液中で2
5.7g/l、塩化銅を加えた量はロジウム塩酸溶液中で10g/
lとし、塩酸濃度を1.5、3、6、規定の3種類としてSV
=0.5でロジウム塩酸溶液を通液したところ100%吸着さ
せることができた。The amount of tin chloride added is 2
5.7 g / l, the amount of copper chloride added is 10 g / r in rhodium hydrochloric acid solution
l and the concentration of hydrochloric acid is 1.5, 3, 6, and 3
When a rhodium hydrochloride solution was passed at 0.5, 100% adsorption was achieved.
(実施例3) ロジウム塩酸溶液の通液速度をSV=0.1、0.2、0.3、
とした以外実施例1と同様に操作してロジウムの吸着率
を確認したところ、通液後の塩酸溶液中のロジウム濃度
はすべて1mg/l以下であった。(Example 3) The flow rate of a rhodium hydrochloric acid solution was set to SV = 0.1, 0.2, 0.3,
The rhodium adsorption rate was confirmed in the same manner as in Example 1 except that the rhodium concentration in the hydrochloric acid solution after the passage was all 1 mg / l or less.
(実施例4) ロジウムを吸着させた多孔質樹脂よりスズ及び銅を溶
離するため、希塩酸の濃度を0.5、0.8、1.5、2.0、3.0
規定としてそれぞれ200mlで60分間混合攪拌させて溶離
させたところ、銅は約99%溶離させることができ、スズ
は80%前後溶離したが、ロジウムはすべて溶離すること
はなかった。Example 4 In order to elute tin and copper from the porous resin on which rhodium was adsorbed, the concentration of dilute hydrochloric acid was adjusted to 0.5, 0.8, 1.5, 2.0, 3.0.
As a rule, elution was carried out by mixing and stirring at 200 ml for 60 minutes. As a result, copper could be eluted at about 99%, tin eluted at about 80%, but rhodium did not elute at all.
(実施例5) 実施例3で得たロジウムを吸着した多孔質樹脂を800
℃で焼やし、金属化したロジウムを発光分光分析にて不
純物の定性を行ったところ、スズが極めて多く、銅、マ
グネシウム、カルシウム等が微量検出された。Example 5 The porous resin adsorbed with rhodium obtained in Example 3 was replaced with 800
When qualities of impurities were determined by emission spectroscopy of metallized rhodium baked at ℃ and the amount of tin was extremely large, copper, magnesium, calcium and the like were detected in trace amounts.
この金属化ロジウム5gに塩化ナトリウム17gを加えて
混合し、石英ボートに移し入れ電気炉中で900℃に加熱
し塩素ガスを5l/分吹き込みながら1時間保持して塩素
化した。17 g of sodium chloride was added to 5 g of the metal rhodium, mixed, transferred to a quartz boat, heated to 900 ° C. in an electric furnace, and kept at the same temperature for 1 hour while blowing chlorine gas at a rate of 5 l / min for chlorination.
次いで、塩素ガスは吹き込みながら温度をさげて約30
0℃になったところで塩素ガスの吹き込みを止め、室温
まで放冷した。Next, while blowing in chlorine gas, lower the temperature to about 30
When the temperature reached 0 ° C., the blowing of chlorine gas was stopped, and the mixture was allowed to cool to room temperature.
その後、石英ボートを取り出し塩素化したロジウムを
水で溶解して塩化ロジウム酸ナトリウム水溶液を得た。Thereafter, the quartz boat was taken out and the chlorinated rhodium was dissolved in water to obtain an aqueous solution of sodium rhodate.
この塩化ロジウム酸ナトリウム水溶液中の卑金属を発
光分光分析により卑金属の確認をしたところ検出できな
かった。The base metal in the aqueous sodium rhodate solution was not detected when the base metal was confirmed by emission spectroscopy.
なお、上記実施例では多孔質樹脂をカラムに充填した
ところにロジウム塩酸溶液を通液する方法を示したが、
実施例1と同様にジアルキルスルフィドを含浸させた多
孔質樹脂6gをロジウム塩酸溶液200mlと混合して攪拌す
る方法によりロジウムを100%吸着させることもでき
る。In the above example, a method in which a rhodium hydrochloride solution was passed through a column filled with a porous resin was shown.
As in Example 1, 100% of rhodium can be adsorbed by mixing 6 g of a porous resin impregnated with dialkyl sulfide with 200 ml of a rhodium hydrochloride solution and stirring.
混合攪拌時間はスズ及び銅の添加量により若干異なる
が1〜3時間で目的を達成させることができるものであ
る。The mixing and stirring time varies slightly depending on the amounts of tin and copper added, but can be achieved in 1 to 3 hours.
(発明の効果) 以上の説明で明らかのように、本発明の方法によれ
ば、2価のハロゲン化スズ及び塩化銅をロジウムを含有
する塩酸溶液にロジウムに対しモル比で10倍以上となる
ように加え、ジアルキルスルフィドを含浸させた多孔質
樹脂を用い、該ロジウム塩酸溶液と接触させてロジウム
を吸着し、次いで、多孔質樹脂を希塩酸で洗浄しての
ち、焼成して金属ロジウムとし、該ロジウムを塩素化し
て、塩化ロジウム酸塩溶液として分離回収精製すること
ができ、従来法では得られない回収率99%以上とするこ
とができる画期的な方法である。(Effect of the Invention) As is clear from the above description, according to the method of the present invention, the molar ratio of divalent tin halide and copper chloride to rhodium in a hydrochloric acid solution containing rhodium is 10 times or more with respect to rhodium. In addition, using a porous resin impregnated with dialkyl sulfide, the rhodium is adsorbed by contact with the rhodium hydrochloric acid solution, and then the porous resin is washed with dilute hydrochloric acid, and then calcined to form metal rhodium. This is an epoch-making method that can chlorinate rhodium and separate and collect and purify it as a rhodium chlorate solution, and can achieve a recovery rate of 99% or more, which cannot be obtained by the conventional method.
Claims (4)
ウムを回収精製する方法において、該ロジウム塩酸溶液
に塩酸を加えて塩酸濃度を1規定〜6規定としたのち2
価の塩化スズと2価の塩化銅を添加し、ジアルキルスル
フィドを含浸させた多孔質樹脂と接触させてロジウムを
吸着し、ロジウムを吸着した多孔質樹脂を0.5規定〜3
規定の希塩酸で洗浄したのち、該多孔質樹脂を焼成し、
ロジウムを還元したのち、該ロジウムを塩素化すること
を特徴とするロジウムの回収精製方法。1. A method for recovering and purifying rhodium from a rhodium hydrochloric acid solution containing a base metal, wherein hydrochloric acid is added to the rhodium hydrochloric acid solution to adjust the hydrochloric acid concentration to 1N to 6N.
Is added to the porous resin impregnated with dialkyl sulfide to adsorb rhodium, and the rhodium-adsorbed porous resin is added in a range of 0.5N to 3N.
After washing with the prescribed dilute hydrochloric acid, the porous resin is fired,
A method for recovering and purifying rhodium, comprising reducing rhodium and then chlorinating the rhodium.
ロジウムに対するモル比で10〜50倍である請求項1に記
載のロジウムの回収精製方法。2. The method for recovering and purifying rhodium according to claim 1, wherein the amount of the divalent tin chloride and copper chloride added is 10 to 50 times in molar ratio to rhodium.
含浸させる量が30wt%以上である請求項1に記載のロジ
ウムの回収精製方法。3. The method according to claim 1, wherein the amount of the dialkyl sulfide impregnated in the porous resin is 30% by weight or more.
え塩素ガスを吹き込み800℃〜950℃で1時間以上行うも
のである請求項1に記載のロジウムの回収精製方法。4. The method for recovering and purifying rhodium according to claim 1, wherein said chlorinating method is carried out at 800 ° C. to 950 ° C. for 1 hour or more by blowing in chlorine gas by adding sodium chloride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8357190A JP2826159B2 (en) | 1990-03-30 | 1990-03-30 | Recovery and purification method of rhodium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8357190A JP2826159B2 (en) | 1990-03-30 | 1990-03-30 | Recovery and purification method of rhodium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03285030A JPH03285030A (en) | 1991-12-16 |
JP2826159B2 true JP2826159B2 (en) | 1998-11-18 |
Family
ID=13806199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8357190A Expired - Fee Related JP2826159B2 (en) | 1990-03-30 | 1990-03-30 | Recovery and purification method of rhodium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2826159B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0021715D0 (en) * | 2000-09-05 | 2000-10-18 | Ici Plc | Recovery of metals |
-
1990
- 1990-03-30 JP JP8357190A patent/JP2826159B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03285030A (en) | 1991-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4144311B2 (en) | Methods for separating and recovering platinum group elements | |
US4131645A (en) | Iodine recovery process | |
CN102676837A (en) | Method for recycling palladium from silver electrolyte by using dimethylglyoxime | |
WO2013108478A1 (en) | Gold recovery method, and gold production method using same | |
JPH06199501A (en) | Recovery of iodine from composition containing iodine and/oriodide | |
JP3275681B2 (en) | Production method of high purity scandium oxide | |
JP3021540B2 (en) | Purification method of alkali metal chloride aqueous solution | |
JPH06157008A (en) | Method for recovering iodine from waste liquor containing iodine and/or inorganic iodine compound | |
JP2826159B2 (en) | Recovery and purification method of rhodium | |
JP2826158B2 (en) | Recovery and purification method of rhodium | |
JPS59207842A (en) | Recovery of rhenium | |
US3650688A (en) | Industrial process for separation of nickel | |
US4396585A (en) | Silver removal with halogen impregnated non-carbon adsorbents | |
JP2004190058A (en) | Method of separating and refining iridium | |
EP0010367B1 (en) | Method of recovering metal values | |
JP4617476B2 (en) | Method for removing potassium ions | |
JPH07310129A (en) | Recovering method of platinum group element | |
JPS61111917A (en) | How to recover gallium | |
JP3390148B2 (en) | Purification treatment method for salt water for electrolysis | |
JPH0533071A (en) | Method for separating and refining rhodium from aqueous solution | |
JPH0218906B2 (en) | ||
JPS6049139B2 (en) | How to collect tin | |
JPH0454605B2 (en) | ||
JP2859897B2 (en) | A method for reducing the amount of anionic metal-ligand complex in solution | |
JPH03277730A (en) | Method for refining rhodium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |