JP2823486B2 - NF (3) processing method - Google Patents
NF (3) processing methodInfo
- Publication number
- JP2823486B2 JP2823486B2 JP5186241A JP18624193A JP2823486B2 JP 2823486 B2 JP2823486 B2 JP 2823486B2 JP 5186241 A JP5186241 A JP 5186241A JP 18624193 A JP18624193 A JP 18624193A JP 2823486 B2 JP2823486 B2 JP 2823486B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- amount
- treatment
- exhaust gas
- comparative example
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003672 processing method Methods 0.000 title claims 2
- 238000000034 method Methods 0.000 claims description 24
- 239000007789 gas Substances 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 239000003814 drug Substances 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 239000011856 silicon-based particle Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012025 fluorinating agent Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
Description
【0001】[0001]
【産業上の利用分野】NF3 はロケット燃料のほか、近
年LSIのドライエッチング剤あるいはフッ素化剤とし
て注目されており、特にドライエッチング剤としてはC
F4 などのパーフロロカーボン系のエッチング剤にくら
べエッチングの際に生じるLSI基板の汚染が極めて少
ないことなどの利点を有している。一方、NF3 は大気
中で極めて安定であり、水にもわずかしか溶解せずTL
V10ppmの毒性ガスであり、これを使用する場合に
はその残ガス等の排気の際にその処理が常に必要とな
る。本発明はかかるNF3 を含むガスの処理方法に関す
るものである。BACKGROUND OF THE INVENTION In addition to rocket fuels, NF 3 has recently attracted attention as a dry etching agent or fluorinating agent for LSIs.
Contamination of perfluorocarbon-based LSI substrate occurring during etching compared with the etching agent, such as F 4 has advantages such that very little. On the other hand, NF 3 is extremely stable in the atmosphere, is slightly soluble in water, and has a TL
It is a toxic gas of V10 ppm, and when it is used, its treatment is always required when exhausting residual gas and the like. The present invention relates to a method for treating such a gas containing NF 3 .
【0002】[0002]
【従来の技術および解決すべき問題点】我々はNF3 の
処理方法として、Siを始めとする各種金属、およびこ
れらの非酸化物系化合物とNF3 を200℃〜800℃
で反応させ、得られるフッ化物ガスを補集する方法を提
案した。(特公昭63−48570号)これらの反応薬
剤のうち特に金属Siは反応性がよい安価である
反応生成物(SiF4 )は常温で十分な蒸気圧を有し、
そのため系から容易に排出できるSiF4 はアルカリ
で完全に処理できるという特長があり、NF3 処理に最
も適しているといえる。2. Description of the Related Art As a method for treating NF 3 , we have used various metals such as Si, their non-oxide compounds and NF 3 at 200 ° C. to 800 ° C.
And proposed a method for collecting the obtained fluoride gas. (Japanese Patent Publication No. Sho 63-48570) Among these reactants, metal Si is particularly reactive and inexpensive, and the reaction product (SiF 4 ) has a sufficient vapor pressure at room temperature.
Therefore, SiF 4, which can be easily discharged from the system, has a feature that it can be completely treated with an alkali, and it can be said that SiF 4 is most suitable for NF 3 treatment.
【0003】しかしながらこの処理方法はNF3 に酸素
が共存する場合、酸素によりSi表面が酸化されNF3
処理速度が低下するため、必要な処理速度を得ようとす
れば反応温度を高くしなければならず処理に余分の熱エ
ネルギーを要する、反応器に要求される材質も高級品質
なものになるという問題があった。However, in this treatment method, when oxygen coexists in NF 3 , the surface of Si is oxidized by oxygen and NF 3
Since the processing speed decreases, the reaction temperature must be raised to obtain the required processing speed, which requires extra heat energy for the processing, and the material required for the reactor is also of high quality. There was a problem.
【0004】本発明はこの様な点に着目してなされたも
ので酸素が共存していてもNF3 処理速度の低下がない
NF3 の処理方法を提供することを目的とする。The present invention has been made in view of such a point, and an object of the present invention is to provide a method for treating NF 3 which does not decrease the NF 3 treatment speed even when oxygen coexists.
【0005】[0005]
【問題点を解決するための手段】上述の問題について検
討を重ねた結果、本発明者らはSiの長所を生かしつつ
酸素の共存したNF3 ガスを処理することのできる薬剤
としてSi表面に少量の金属Cuを触媒として添着した
ものが有効であることをを見いだして本発明に至った。[Means for Solving the Problems] As a result of studying the above-mentioned problems, the present inventors have found that a small amount of a chemical on the Si surface can be used as an agent capable of treating NF 3 gas containing oxygen while utilizing the advantages of Si. The present invention was found to be effective when the metal Cu was impregnated as a catalyst.
【0006】金属Cuはそれ自身だけでも加熱下でNF
3 を分解し得るが、Cu単味をNF 3 の処理剤として用
いるには問題がある。例えばCu単味ではNF3 と反応
しとたときに固体フッ化物(CuF2 )を生成しこれが
Cuの表面を覆うのでNF3の拡散が妨げられ反応の効
率が下がる。またCuF2 の粉末が反応器を閉塞する恐
れがあるなどである。一方SiはNF3 を処理した後の
反応生成物がガス状のSiF4 となり、Cu単味にみら
れるような問題はないもののNF3 に酸素が共存する場
合には前項で述べた問題点を含んでいる。この様にいず
れもそれ自身、単味では完璧なNF3 処理ができなかっ
たSiとCuであるが本発明者らはこれらをうまく組み
合わせることにより新たな機能を創出することに成功し
た。[0006] Metallic Cu itself is NF under heating.
ThreeCan be decomposed, but only plain NF ThreeUsed as a treatment agent for
There is a problem. For example, NF for plain CuThreeAnd react
When the solid fluoride (CuFTwoWhich generates this
NF because it covers the surface of CuThreeDiffusion is hindered,
The rate goes down. CuFTwoPowder may block the reactor
And so on. On the other hand, Si is NFThreeAfter processing
Reaction product is gaseous SiFFourIt becomes like plain Cu
NFThreeWhere oxygen coexists
In this case, the problem described in the previous section is included. Like this
This is a perfect NF by itselfThreeUnable to process
The present inventors have successfully combined Si and Cu.
We succeeded in creating new functions by combining
Was.
【0007】Cuを表面に添着したSiのNF3 分解反
応のメカニズムの詳細は分からないが、少なくともCu
は触媒として作用しているということは次の二点から言
える。即ち、該薬剤でNF3 を分解した時、添着してい
るCuの化学当量の何百倍、何千倍ものNF3 が処理さ
れるということ、またその時の分解生成物がSiF4で
あり反応する主剤はSiであるという点である。またこ
のCuの触媒効果は実質的にSiの全量が消費されてし
まうまで持続するという非常に効率の高いものである。
O2 共存NF3 排ガスに対する該薬剤の処理能力の大小
は、例えば後述の (a)〜 (d)の様なCuの添着方法には
あまり依存せず、ともかくSi表面に金属Cuが接触し
ている状態にあればばその効果が発現する。Although the details of the mechanism of the NF 3 decomposition reaction of Si with Cu attached to the surface are unknown, at least Cu
Can be said to act as a catalyst from the following two points. That is, when NF 3 is decomposed by the chemical, NF 3 is treated by hundreds or thousands of times of the chemical equivalent of Cu attached thereto, and the decomposition product at that time is SiF 4 and reacts. The main agent is Si. Further, the catalytic effect of Cu is very high in that it lasts until substantially the entire amount of Si is consumed.
The magnitude of the treatment capacity of the agent with respect to the O 2 coexisting NF 3 exhaust gas does not depend much on the method of attaching Cu, for example, as described in (a) to (d) below. If it is in the state, the effect will be exhibited.
【0008】O2 共存NF3 排ガスに対する該薬剤の処
理能力はSi単位量当りに添着しているCu量に左右さ
れるので次に示す最適添着量の範囲内に調整すべきであ
る。即ち、Si表面に添着すべきCuの量は重量割合で
少なくとも0.01wt%でありこれ以下では酸素共存
NF3 排ガスの処理に充分な効果が期待できない。一方
本質的にはCu量の上限は無いとも言えるが本明細書に
示した方法でCuを添着した場合には2.0wt%を越
えるとCuがSi表面を覆うようになりNF3とSiの
接触が妨げられ処理効果が低下する。酸素共存NF3 排
ガスを処理するにあたって処理速度が最大となるCuの
添着量は0.05〜0.4wt%であり、むやみに多く
のCuを付けてもそれに見合う効果は期待できず不経済
であるのでCuの添着量としては実用上は2.0%を上
限とすべきである。重量比で表したCuの添着量はNF
3 と反応してSiが消費されてくるに従って(Cuは消
費されないので)その値が次第に大きくなるが、ここで
言うCuの添着量とは初期状態の薬剤についてのもので
あることはいうまでもない。[0008] Since the treatment capacity of the chemical for the NF 3 exhaust gas coexisting with O 2 depends on the amount of Cu impregnated per unit amount of Si, it should be adjusted within the following range of the optimum amount of impregnation. That is, the amount of Cu to be attached to the Si surface is at least 0.01% by weight in terms of weight ratio, and if it is less than this, a sufficient effect on the treatment of NF 3 exhaust gas containing oxygen cannot be expected. On the other hand, it can be said that there is essentially no upper limit of the amount of Cu, but when Cu is attached by the method shown in this specification, if over 2.0 wt%, Cu covers the Si surface, and NF 3 and Si Contact is hindered and the treatment effect is reduced. In treating NF 3 exhaust gas with oxygen, the amount of Cu that maximizes the treatment rate is 0.05 to 0.4 wt%, and even if a large amount of Cu is added unnecessarily, the effect corresponding to it cannot be expected and it is uneconomical. Therefore, the upper limit of the amount of Cu to be applied should be 2.0% in practical use. The amount of Cu impregnated by weight ratio is NF
The value gradually increases as Si reacts with 3 and consumes Si (since Cu is not consumed). Needless to say, the amount of Cu impregnated here refers to the drug in the initial state. Absent.
【0009】Si表面にCuを付着せしめるには一般に
知られている各種の方法が適用可能である。例えば、
(a) 無電解法によりSi表面にCuをメッキする方法、
(b) 金属CuとSiとを混合しN2 等の不活性雰囲気中
で熱処理しSi表面にCuとの合金をつくる方法、(c)
塩化第一銅とSiを混合しN2 雰囲気400〜500℃
で焼成しSi表面に還元生成したCuとの合金をつくる
方法、(d) Si表面にCuを溶射する方法等があるがい
ずれの方法でも効果がある。Various commonly known methods can be applied to deposit Cu on the Si surface. For example,
(a) a method of plating Cu on a Si surface by an electroless method,
(b) a method in which metal Cu and Si are mixed and heat-treated in an inert atmosphere such as N 2 to form an alloy with Cu on the Si surface; (c)
Mixing the cuprous and Si chloride N 2 atmosphere 400 to 500 ° C.
And (d) a method of spraying Cu on the Si surface. However, any method is effective.
【0010】また本発明の実施態様としては、反応器の
内部空間を有効に利用すべきという観点から主剤である
Siの表面に必要十分なだけのCuを触媒として付着せ
しめる方法を望ましいものとするが、SiとCuを単に
同時に反応器に充填するという方法においてもSi粒と
Cu粒の接触部に(b) の様に活性な触媒領域を形成する
のでO2 共存NF3 排ガスの処理に有効であることには
変わりはない。[0010] Further, as an embodiment of the present invention, from the viewpoint that the internal space of the reactor should be used effectively, it is desirable to use a method in which only necessary and sufficient Cu is attached as a catalyst to the surface of Si as a main agent. However, even in the method in which Si and Cu are simply simultaneously charged into the reactor, an active catalyst region as shown in (b) is formed at the contact portion between the Si particles and the Cu particles, which is effective for treating NF 3 exhaust gas coexisting with O 2. Is still the same.
【0011】[0011]
【実施例】以下に実施例を挙げて本発明をさらに詳細に
説明するが、係る実施例に限定されるものではない。The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.
【0012】比較例1 1/2インチのNiパイプを反応器としこれを環状炉内
に水平に固定した。反応薬剤はSi粒をふるい分けして
粒径を3mm〜5mmに揃えたものを用いた。反応器の
100mm程の長さのゾーンに該反応薬剤約11gを充
填しヒーターで加熱した。模擬排ガスとして(NF3 =
2%、N2 =98%)および(NF3 =2%、O2 =2
%、N2 =96%)に調合した混合ガスをそれぞれ1リ
ットル/minで流し、処理を開始して10分後の出口
ガスのNF3 濃度を分析した。(ガス濃度は体積割合。
以下同じ) この結果を表1に示す。なお出口ガスのNF3 以外の成
分には分解したNF3に相当する濃度のSiF4 が検出
された。Comparative Example 1 A 1/2 inch Ni pipe was used as a reactor and was horizontally fixed in an annular furnace. The reaction agent used was one having Si particles sieved to adjust the particle diameter to 3 mm to 5 mm. A zone having a length of about 100 mm of the reactor was filled with about 11 g of the reactant and heated by a heater. As a simulated exhaust gas (NF 3 =
2%, N 2 = 98%) and (NF 3 = 2%, O 2 = 2
%, N 2 = 96%) was flowed at 1 liter / min, and the NF 3 concentration of the outlet gas was analyzed 10 minutes after the treatment was started. (The gas concentration is a volume ratio.
Table 1 shows the results. Note that SiF 4 having a concentration corresponding to the decomposed NF 3 was detected in components other than NF 3 in the outlet gas.
【0013】O2 =0%であればNF3 はSiで容易に
分解されるが、NF3 にO2 が共存するとTLV値の1
0ppm以下まで処理するのは非常に困難になり本比較
例では温度800℃でも達成されなかった。もし処理後
のガスのNF3 を10ppm以下にしようとするなら反
応時間を確保するために反応器が大型になってしまい設
置スペース、製作コスト、ランニングコストとも不経済
になる。If O 2 = 0%, NF 3 is easily decomposed by Si, but if O 2 coexists in NF 3 , the TLV value becomes 1
It is very difficult to treat to 0 ppm or less, and this comparative example was not achieved even at a temperature of 800 ° C. If the NF 3 of the treated gas is reduced to 10 ppm or less, the reactor becomes large in order to secure the reaction time, and the installation space, manufacturing cost, and running cost become uneconomical.
【0014】実施例1 反応薬剤として種々の条件でCuを添着したSiを用い
た以外は比較例1と同様の方法で行った実験の結果を表
1に示す。Cuの添着法は、前述したところに従い次の
(a)〜(d) によった。Example 1 Table 1 shows the results of experiments conducted in the same manner as in Comparative Example 1 except that Si to which Cu was added under various conditions was used as a reactant. According to the method described above, the Cu
(a) to (d).
【0015】添着法(a) :CuSO4 ・5H2 Oとロッ
セル塩の浴をNaOHでPH=12.3に調整し、Si
粒を浸漬した後HCHOを加えて還元しCuをメッキし
た。Si粒を取り出し水洗し乾燥して用いた。Impregnation method (a): The bath of CuSO 4 .5H 2 O and Rossell salt was adjusted to pH = 12.3 with NaOH,
After immersion of the grains, the grains were reduced by adding HCHO and plated with Cu. Si particles were taken out, washed with water, dried and used.
【0016】添着法(b) :Si粒とCu粉末を同量混合
し、N2 雰囲気で900℃,1Hr熱処理しSi表面に
Cu合金層を形成した。余剰のCu粉末をふるい分けし
て除いたものを用いた。Impregnation method (b): Si particles and Cu powder were mixed in the same amount and heat-treated at 900 ° C. for 1 hour in an N 2 atmosphere to form a Cu alloy layer on the Si surface. A material obtained by removing excess Cu powder by sieving was used.
【0017】添着法(c) :Si粒とCuClを同量混合
しN2 雰囲気で450℃,1Hr熱処理しSi表面に還
元Cuの層を形成した。余剰のCuCl粉末をふるい分
けして除いたものを用いた。Impregnation method (c): The same amount of Si particles and CuCl were mixed and heat-treated at 450 ° C. for 1 hour in an N 2 atmosphere to form a reduced Cu layer on the Si surface. Excess CuCl powder was used after sieving.
【0018】添着法(d) :Si粒にCuをプラズマ溶射
したものを用いた。Adhesion method (d): Si particles obtained by plasma-spraying Cu were used.
【0019】[0019]
【表1】 [Table 1]
【0020】比較例2 Si単味の粒を薬剤とし比較例1と同じ装置にて供給ガ
ス組成:(NF3 =2%、N2 =98%)、供給ガス流
量:1リットル/min、温度:700℃の条件で薬剤
の約8割が消費されるまで出口ガスのNF3 を継続して
分析した。この結果を図1に示す。COMPARATIVE EXAMPLE 2 The composition of the supplied gas was as follows: (NF 3 = 2%, N 2 = 98%), the supply gas flow rate: 1 liter / min, temperature : NF 3 in the outlet gas was continuously analyzed at 700 ° C. until about 80% of the drug was consumed. The result is shown in FIG.
【0021】O2 =0%の本比較例ではNF3 がSi単
味で容易に分解されて初めのうちは出口ガス中NF3 は
検出されなかった(3ppm>)。Siが消費されてゆ
くにしたがって水平に配置した反応器の薬剤充填部の上
部に空間を生じこの空間をショートパスしたNF3 が出
口ガス中に検出されるようになりその濃度が次第に高く
なった。しかしながら供給されたNF3 (入口濃度=2
0000ppm)は、処理開始後8時間でSiが仕込量
の8割が消費された時点においてさえも依然その大部分
が分解されており、小量のSiでNF3 が効率よく分解
処理されることを示している。In this comparative example in which O 2 = 0%, NF 3 was easily decomposed simply with Si, and NF 3 was not detected in the outlet gas initially (3 ppm>). As the Si was consumed, a space was created above the drug filling section of the horizontally arranged reactor, and NF 3 short-passing this space was detected in the outlet gas, and its concentration gradually increased. . However, the supplied NF 3 (inlet concentration = 2
0000 ppm) means that even when 80% of the charged amount of Si is consumed 8 hours after the start of the treatment, most of the Si is still decomposed, and NF 3 is efficiently decomposed by a small amount of Si. Is shown.
【0022】比較例3 Si単味の粒を薬剤とし比較例1と同じ装置にて供給ガ
ス組成:(NF3 =2%、O2 =2%、N2 =96
%)、供給ガス流量:1リットル/min、温度:70
0℃の条件で薬剤の約8割が消費されるまで出口ガスの
NF3 を継続して分析した。この結果を図1に示す。COMPARATIVE EXAMPLE 3 The composition of the supplied gas was determined using Si-only particles as a drug and using the same apparatus as in Comparative Example 1: (NF 3 = 2%, O 2 = 2%, N 2 = 96)
%), Supply gas flow rate: 1 liter / min, temperature: 70
The outlet gas NF 3 was continuously analyzed at 0 ° C. until about 80% of the drug was consumed. The result is shown in FIG.
【0023】NF3 にO2 が共存した本比較例では出口
ガス中のNF3 濃度は最初から200ppm以上もあり
Si単味ではO2 の共存するNF3 を完全に分解処理す
るのは困難であることを示している。[0023] In this comparative example the NF 3 O 2 coexist NF 3 concentration in the outlet gas at the beginning of 200ppm or even there Si Plain is difficult to completely decomposing NF 3 for coexistence of O 2 It indicates that there is.
【0024】実施例2 Cu添着法(a) (メッキ法)で調整した実施例1で用い
た薬剤を比較例1と同じ装置にて供給ガス組成:(NF
3 =2%、O2 =2%、N2 =96%)、供給ガス流
量:1リットル/min、温度:700℃の条件で薬剤
の約8割が消費されるまで出口ガスのNF3 を継続して
分析した。この結果を図1に示す。Example 2 The chemicals used in Example 1 prepared by the Cu impregnation method (a) (plating method) were supplied to the same apparatus as in Comparative Example 1 in the supply gas composition: (NF
3 = 2%, O 2 = 2%, N 2 = 96%), supply gas flow rate: 1 liter / min, temperature: 700 ° C. The outlet gas NF 3 was consumed until about 80% of the drug was consumed. Analyzed continuously. The result is shown in FIG.
【0025】本実施例から、本発明におけるCu添着S
iの効果はO2 =2%共存の場合でも、O2 =0%でS
i単味の場合(比較例2)と同程度に効率よくNF3 を
分解処理できることがわかる。しかもこのCu触媒効果
はSiの少なくとも8割以上(おそらく全量)が消費さ
れるまで継続する。From the present embodiment, it can be seen that Cu impregnated S
i The effect of even if the O 2 = 2% coexistence, O 2 = S 0%
It can be seen that NF 3 can be decomposed as efficiently as in the case of i-only (Comparative Example 2). Moreover, this Cu catalytic effect continues until at least 80% or more (perhaps the entire amount) of Si is consumed.
【0026】[0026]
【発明の効果】本発明により酸素が共存するNF3 の排
ガスを低温で処理速度を低下させることなく除去処理す
ることを可能にした。According to the present invention, it has become possible to remove the NF 3 exhaust gas containing oxygen at a low temperature without lowering the processing speed.
【図1】実施例2、比較例2、3のNF3 排ガスの処理
結果を示す。FIG. 1 shows the treatment results of NF 3 exhaust gas of Example 2 and Comparative Examples 2 and 3 .
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−762(JP,A) 特開 平5−192538(JP,A) 特開 平2−273511(JP,A) 特開 昭63−12322(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01D 53/34,53/54,53/68────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-762 (JP, A) JP-A-5-192538 (JP, A) JP-A-2-273511 (JP, A) JP-A 63-762 12322 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) B01D 53/34, 53/54, 53/68
Claims (1)
理剤とを接触させて当該排ガスからNF3 を除去する排
ガスの処理方法において、処理剤として、表面に重量比
で0.01〜2.0wt%のCuを添着させたSiを用
いることを特徴とするNF3 の処理方法。1. A method for treating exhaust gas, which comprises contacting an exhaust gas containing NF 3 as a harmful component with a treating agent to remove NF 3 from the exhaust gas, wherein the treating agent has a weight ratio of 0.01 to 2. processing method of NF 3, which comprises using a 0 wt% of Si was impregnated with Cu.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5186241A JP2823486B2 (en) | 1993-07-28 | 1993-07-28 | NF (3) processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5186241A JP2823486B2 (en) | 1993-07-28 | 1993-07-28 | NF (3) processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0739721A JPH0739721A (en) | 1995-02-10 |
JP2823486B2 true JP2823486B2 (en) | 1998-11-11 |
Family
ID=16184825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5186241A Expired - Fee Related JP2823486B2 (en) | 1993-07-28 | 1993-07-28 | NF (3) processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2823486B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6146606A (en) * | 1999-02-09 | 2000-11-14 | Showa Denko Kabushiki Kaisha | Reactive agent and process for decomposing nitrogen fluoride |
JP2008086913A (en) * | 2006-10-02 | 2008-04-17 | Central Glass Co Ltd | Method for removing fluorine in fluorine-containing gas |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0101769D0 (en) | 2001-01-24 | 2001-03-07 | Ineos Fluor Ltd | Decomposition of fluorine compounds |
JP2021164904A (en) * | 2020-04-07 | 2021-10-14 | セントラル硝子株式会社 | N2O treatment method and N2O abatement device |
-
1993
- 1993-07-28 JP JP5186241A patent/JP2823486B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6146606A (en) * | 1999-02-09 | 2000-11-14 | Showa Denko Kabushiki Kaisha | Reactive agent and process for decomposing nitrogen fluoride |
JP2008086913A (en) * | 2006-10-02 | 2008-04-17 | Central Glass Co Ltd | Method for removing fluorine in fluorine-containing gas |
Also Published As
Publication number | Publication date |
---|---|
JPH0739721A (en) | 1995-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
MX2010008139A (en) | Process for the recovery of precious metals from used and/or defective catalytic carriers. | |
JP3347478B2 (en) | Exhaust gas purification method | |
JP2001511700A (en) | Method for removing chlorate ions from solution | |
JP2823486B2 (en) | NF (3) processing method | |
US4353741A (en) | Silver coated particles and a process for preparing them | |
CN1127472C (en) | Vinyl acetate process utilizing a palladium-gold-copper catalyst | |
JP3248923B2 (en) | Activation regeneration method of chromium-based fluorination catalyst and method of producing halogenated hydrocarbon | |
JP4296337B2 (en) | Method for producing organohalogen compound decomposing agent | |
CN1130254C (en) | Fluorating catalyst | |
JP3047371B2 (en) | Method for removing NF3 using a fluidized bed of small particles | |
JPH0716583B2 (en) | Method for dry treatment of exhaust gas containing chlorine fluoride | |
JP3376789B2 (en) | Method for treating organic halogen compounds with a catalyst | |
JP4037475B2 (en) | Method for treating exhaust gas containing halogen compounds | |
JPH0232951B2 (en) | HAIEKISHORIMOJUURU | |
EP1086744B1 (en) | Iron containing catalyst | |
JPH02160047A (en) | Catalyst for oxidation decomposition of ammonia | |
JP4187845B2 (en) | Method for treating ammonia-containing water | |
JP3509939B2 (en) | Exhaust gas treatment agent | |
JPH08117555A (en) | Method and apparatus for treating mercury vapor | |
JP3410003B2 (en) | Decomposition method of organic halogen compounds | |
JPH0523814B2 (en) | ||
JPH0720537B2 (en) | Chemical vapor deposition exhaust gas treatment method | |
JP2021164904A (en) | N2O treatment method and N2O abatement device | |
JP3457143B2 (en) | Method of treating water containing imidazolidinone compound | |
JPH0626649B2 (en) | Method of removing mercury in gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080904 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080904 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090904 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090904 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090904 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100904 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100904 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110904 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110904 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110904 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120904 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120904 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |