JP2819027B2 - All-solid secondary battery - Google Patents
All-solid secondary batteryInfo
- Publication number
- JP2819027B2 JP2819027B2 JP63319234A JP31923488A JP2819027B2 JP 2819027 B2 JP2819027 B2 JP 2819027B2 JP 63319234 A JP63319234 A JP 63319234A JP 31923488 A JP31923488 A JP 31923488A JP 2819027 B2 JP2819027 B2 JP 2819027B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- battery
- positive electrode
- active material
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G79/00—Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
- C08G79/02—Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing phosphorus
- C08G79/025—Polyphosphazenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L85/00—Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
- C08L85/02—Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers containing phosphorus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は新規な全固体二次電池に関するものであり、
溶媒を含まず、高温から低温までの広い温度範囲で安全
に使用できる充放電特性に優れた全固体二次電池に関す
るものである。The present invention relates to a novel all-solid-state secondary battery,
The present invention relates to an all-solid secondary battery that does not contain a solvent and has excellent charge / discharge characteristics that can be used safely in a wide temperature range from high to low.
(従来の技術) 近年、高エネルギー密度、高電圧の電池としてリチウ
ム電池が盛んに使用されている。これは、正極に二酸化
マンガンや弗化黒鉛を用い、負極にリチウムを使用した
ものであり、3V以上の高い電圧が得られる。しかし、こ
れらは一次電池であり、充電はできない。(Prior Art) In recent years, lithium batteries have been actively used as high energy density, high voltage batteries. This uses manganese dioxide or fluorinated graphite for the positive electrode and lithium for the negative electrode, and a high voltage of 3 V or more can be obtained. However, these are primary batteries and cannot be charged.
一方、充電の可能なリチウム二次電池は、高エネルギ
ー密度、高電圧、多数回の放電が可能であるため、その
利点は多く、各方面で盛んに研究されているが、未だ十
分使用に耐える電池は得られていない。これら開発中の
二次電池は、正極活物質として、MoS2,TiS2等の遷移金
属カルコゲン化合物、MnO2,Cr3O8,V2O5等の酸化物等を
用い、負極活物質としては、リチウム、リチウム・アル
ミニウム合金等を使用し、そして電解液としては、プロ
ピレンカーボネート,1,2−ジメトキシエタンのような非
プロトン系有機溶媒に、LiClO4,LiBF4のような電解質を
溶解したもの等が提案されている。これらの二次電池の
開発が不十分な原因としては次の問題点を挙げることが
できる。On the other hand, rechargeable lithium secondary batteries have high energy density, high voltage, and can be discharged many times, so their advantages are many, and they are actively studied in various fields, but they can still withstand sufficient use No batteries have been obtained. These secondary batteries under development use transition metal chalcogen compounds such as MoS 2 and TiS 2 and oxides such as MnO 2 , Cr 3 O 8 and V 2 O 5 as the positive electrode active material, and are used as the negative electrode active material. Used lithium, lithium-aluminum alloy, etc., and dissolved an electrolyte such as LiClO 4 and LiBF 4 in an aprotic organic solvent such as propylene carbonate and 1,2-dimethoxyethane as an electrolytic solution. Things have been proposed. The following problems can be cited as causes for the insufficient development of these secondary batteries.
第1の問題点は、電解液に用いている有機溶媒に起因
するものである。即ち、現在多用されている非プロトン
系溶媒は、低沸点、可燃性のものが多く、液漏れ或いは
破損による周辺部材の汚損、引火、発火並びに誤使用、
過電流による爆裂の危険性を有している。更に充放電の
繰り返しにより、負極上に電析される金属リチウムがデ
ンドライド状となり、徐々に成長し、最後には正極に達
して短絡するという問題である。The first problem is caused by the organic solvent used for the electrolytic solution. In other words, aprotic solvents that are frequently used at present have a low boiling point and many flammable ones, and stains, ignites, ignites and misuses peripheral members due to liquid leakage or breakage,
There is a risk of explosion due to overcurrent. Further, there is a problem in that the metal lithium deposited on the negative electrode becomes dendritic by repetition of charge and discharge, grows gradually, and finally reaches the positive electrode and is short-circuited.
第2の問題点は、正極活物質に上記のようなカルコゲ
ン化合物、酸化物等の結晶質物質を使用することに基づ
く問題である。即ち、一般に結晶質物質は放電に伴うLi
イオンの結晶格子中への浸入により、結晶構造が崩れ、
本来の結晶としての特性が維持できない。そして、これ
は特にLiイオン量の浸入が多い放電深度の深い場合に顕
著であり、深い放電を繰り返すと数回で電池容量が大幅
に低下し、実用に耐えなくなるという問題である。The second problem is a problem based on the use of the above-described crystalline materials such as chalcogen compounds and oxides as the positive electrode active material. That is, generally, the crystalline substance is Li
The crystal structure collapses due to the penetration of ions into the crystal lattice,
The characteristics as the original crystal cannot be maintained. This is particularly remarkable when the depth of discharge is large, where the amount of infiltration of Li ions is large, and the problem is that if deep discharge is repeated, the battery capacity will be significantly reduced in several times and will not be practical.
これらのうち、第1の問題点を解決するために、セク
エリア〔エクステンデイド・アブストラクツ,163回 ミ
ーテイング、エレクトロケミカル・ソサエテイ(Sequli
r et al, Extended Abstratis, 163rd Meeting,E
lectrochemical Society),1983年,83,751アブストラ
クト(Abstract),第493号〕は、溶媒を含まない薄膜
ポリマー電解質による新規な電池を記載しているが、該
電解質のテストの結果は、約100℃の媒体温度で用いる
ことができる旨の記載しかなく、室温では成し得ていな
い。又ピー・エム・ブロンスキーらはジヤーナル・オブ
・アメリカン・ケミカル・ソサエティ第106巻,6854頁
1984年(P.M.Blonsky et al,J.Am.Chem.Soc.,106,685
4,1984)に電気化学電池用電解質として、ポリホスフア
ゼンが有用であると記述している。しかしながら、彼等
は30℃〜97℃の範囲で交流電導度のデータを示している
に過ぎず、直流での充放電は成し得ていない。Among them, to solve the first problem, Seceria [Extended Abstracts, 163 Meetings, Electrochemical Society (Sequli)
r et al, Extended Abstratis, 163rd Meeting, E
Electrochemical Society), 1983, 83,751 Abstract, No. 493] describes a novel battery using a thin-film polymer electrolyte containing no solvent, and the test results of the electrolyte show that the medium has a medium temperature of about 100 ° C. There is only a statement that it can be used at a temperature, but it cannot be achieved at room temperature. PM Bronski et al., Journal of the American Chemical Society, Vol. 106, p. 6854
1984 (PMBlonsky et al, J. Am. Chem. Soc., 106, 685
4, 1984) describes that polyphosphazenes are useful as electrolytes for electrochemical cells. However, they only show AC conductivity data in the range of 30 ° C. to 97 ° C., and charging / discharging with DC cannot be achieved.
又第2の問題点を解決するため、正極活物質としてV2
O5にP2O5を加え、溶融、急冷した非晶質物質を用いるこ
とが、特開昭61−116758号に提案されている。しかし、
ここで提案されている電池も上記の問題点を完全に解消
したものとは言えず、しかも第1の問題点は依然として
解決していない。In order to solve the second problem, V 2 is used as a positive electrode active material.
O 5 in the P 2 O 5 addition, the melt, the use of the quenched amorphous material is proposed in JP-A-61-116758. But,
The battery proposed here cannot be said to completely solve the above problem, and the first problem has not been solved yet.
(発明が解決しようとする課題) 本発明の目的は、デンドライドの生成と液漏れを本質
的に排除し、加えて難燃性と低蒸気圧の特徴から引火性
がなく、爆裂等に対する安全性に優れ、かつ耐過放電性
にも優れた、充放電サイクル寿命の長い全固体二次電池
を提供することにある。(Problems to be Solved by the Invention) An object of the present invention is to substantially eliminate dendride generation and liquid leakage, and in addition, it is not flammable due to its flame retardancy and low vapor pressure, and is safe against explosion. An object of the present invention is to provide an all-solid secondary battery having excellent charge-discharge cycle life and excellent over-discharge resistance.
(課題を解決するための手段) 本発明は一般式 (V2O5)x・(A)y・zH2O (ここでx+y=1,0<y≦0.5, z=0.1〜1.6,AはGeO2,SiO2,B2O3,MoO3,WO3,Nb2O5,Te
O2,Bi2O3,Cr3O8及びZrO2から選ばれる1種以上の酸化物
を示す。)で表わされる層状構造酸化物を正極活物質と
し、リチウム或いはリチウム合金を負極活物質とし、次
式(I),(II),(III)で示されるセグメントが任
意に配列したフルオロアルキルスルホン基を有するオリ
ゴアルキレンオキシポリホスフアゼン或いはこれらの混
合物を電解質とする全固体二次電池に係る。(Means for Solving the Problems) The present invention relates to the general formula (V 2 O 5 ) x · (A) y · zH 2 O (where x + y = 1,0 <y ≦ 0.5, z = 0.1 to 1.6, A Are GeO 2 , SiO 2 , B 2 O 3 , MoO 3 , WO 3 , Nb 2 O 5 , Te
One or more oxides selected from O 2 , Bi 2 O 3 , Cr 3 O 8 and ZrO 2 are shown. ) Is used as a positive electrode active material, lithium or a lithium alloy is used as a negative electrode active material, and a fluoroalkyl sulfone group in which segments represented by the following formulas (I), (II) and (III) are arbitrarily arranged: The present invention relates to an all-solid secondary battery using, as an electrolyte, an oligoalkyleneoxypolyphosphazene having the following formula:
(但し、Rは水素又はメチル基、R′はメチル,エチル
又はプロピル基を示し、h及びkはアルキレンオキシ単
位の平均の繰り返し数を意味し、それぞれ0≦h≦18,0
≦k≦20の範囲の実数値をとるものであり、又l,m,nは
整数で3≦l+m+n≦200000の範囲をとり、かつl+
n≠0である。) 本発明において用いられる正極活物質は一般式 (V2O5)x・(A)y・zH2O (ここでx+y=1,0<y≦0.5, z=0.1〜1.6,AはGeO2,SiO2,B2O3,MoO3,WO3,Nb2O5,Te
O2,Bi2O3,Cr3O8及びZrO2から選ばれる1種以上の酸化物
を示す。)で表わされる層状構造酸化物である。ここで
V2O5に配合される酸化物の配合比は0.5以下、望ましく
は0.001〜0.3であり、0.5を越えると放電容量が低下す
るので好ましくない。又、zは0.1末端では結晶化し、
1.6を越えると過剰の水分がLiと反応し、電池の特性を
劣化させるので好ましくない。尚、本発明における層状
構造酸化物とは、平坦な基板の上に後述する方法によつ
て膜を形成した場合、第1図に示すようなX線回折パタ
ーンを示すもので基板に平行な層状の構造となるものを
言う。 (Where R represents hydrogen or a methyl group, R ′ represents a methyl, ethyl or propyl group, h and k represent the average number of repeating alkyleneoxy units, and 0 ≦ h ≦ 18,0, respectively)
≤k≤20, and l, m, n are integers in the range of 3≤l + m + n≤200000, and l +
n ≠ 0. The positive electrode active material used in the present invention is represented by the general formula (V 2 O 5 ) x · (A) y · zH 2 O (where x + y = 1,0 <y ≦ 0.5, z = 0.1 to 1.6, and A is GeO). 2, SiO 2, B 2 O 3, MoO 3, WO 3, Nb 2 O 5, Te
One or more oxides selected from O 2 , Bi 2 O 3 , Cr 3 O 8 and ZrO 2 are shown. ) Is a layered oxide represented by the following formula: here
The compounding ratio of the oxide compounded in V 2 O 5 is 0.5 or less, desirably 0.001 to 0.3. Exceeding 0.5 is not preferable because the discharge capacity decreases. Also, z crystallizes at the 0.1 end,
Exceeding 1.6 is not preferable because excess moisture reacts with Li and deteriorates battery characteristics. The layered structure oxide in the present invention means an oxide having a X-ray diffraction pattern as shown in FIG. 1 when a film is formed on a flat substrate by a method to be described later. Say the structure of
このような層状構造酸化物は、常用の方法を適用して
調製することができる。即ち、V2O5と添加する他の酸化
物を所定量比で混合し、得られた混合物を溶融し、この
溶融物を冷却した鋼板や銅製のロールに接触させて急冷
させたものを水に溶解する。又、溶融物を直接水中に投
入して急冷、溶融させてもよい。又、添加する酸化物に
よつてはV2O5のみを上述のような方法で水に溶解した後
に、添加すべき酸化物を直接或いは水溶液として添加溶
解する方法も採用することができる。そして更には、V2
O5のアルコキシドVO(OR)3と添加する酸化物のアルコ
キシドを所定量比に混合後、加水分解して調製すること
もできる。又、バナジン酸アンモニウム水溶液等をイオ
ン交換樹脂で処理し、アンモニウムイオンを除去する方
法でも可能である。このようにして調製した酸化物の水
溶液を乾燥することによつて目的とする層状構造酸化物
を得ることができるが、この乾燥工程においてもスプレ
ードライ法による粉末、スピンコート法による薄膜等、
その目的に応じて様々な方法を採用できる。このため、
かかる層状構造酸化物を用いて正極とする場合、上述の
水溶液をニツケル、ステンレス等の電導性支持体上に直
接塗布、乾燥して得た膜を正極としたり、或いは、得ら
れた層状構造酸化物粉末に更に導電性を付与するためア
セチレンブラツク、ケツチエンブラツク、グラフアイト
のような導電性粉末を混合し、これに更にポリテトラフ
ルオロエチレン、ポリエチレン、ポリスチレンのような
結合剤粉末を所要に応じて加え、この混合物を混練、成
形して所定厚みのペレツト又はシートとして、ステンレ
ス、ニツケル等の金網等に着設し正極とすることもでき
る。Such a layered structure oxide can be prepared by applying a conventional method. That is, V 2 O 5 and other oxides to be added are mixed at a predetermined ratio, the resulting mixture is melted, and the melt is brought into contact with a cooled steel plate or copper roll and quenched to obtain water. Dissolve in Alternatively, the melt may be directly poured into water to be quenched and melted. Further, depending on the oxide to be added, a method in which only V 2 O 5 is dissolved in water by the above-described method, and then the oxide to be added can be added directly or as an aqueous solution and dissolved. And even V 2
It can also be prepared by mixing the alkoxide VO (OR) 3 of O 5 and the alkoxide of the oxide to be added in a predetermined ratio, and then hydrolyzing the mixture. Alternatively, a method of treating an ammonium vanadate aqueous solution or the like with an ion exchange resin to remove ammonium ions is also possible. The intended layered oxide can be obtained by drying the aqueous solution of the oxide prepared in this manner. In this drying step, powders by spray drying, thin films by spin coating, etc.
Various methods can be adopted according to the purpose. For this reason,
When a positive electrode is formed using such a layered structure oxide, the above-described aqueous solution is directly applied to a conductive support such as nickel or stainless steel, and dried to form a positive electrode. A conductive powder such as acetylene black, ketjen black, graphite is added to further impart conductivity to the material powder, and a binder powder such as polytetrafluoroethylene, polyethylene, or polystyrene is further added as necessary. In addition, the mixture can be kneaded and molded to form a pellet or sheet having a predetermined thickness, and attached to a wire net made of stainless steel, nickel, or the like to form a positive electrode.
又、この時、結合剤に替えて、或いは結合剤と共に本
発明で使用されるホスフアゼンポリマーを適当量混合
し、同じように成形したり、或いは、層状構造酸化物の
水溶液に、かかるホスフアゼンポリマーを適当量溶解し
てから乾燥、成膜したり、或いは乾燥して粉末状として
から導電性粉末等と混合、成形したりする方法は、リチ
ウムイオンの伝導を促進し、内部抵抗の小さい電池を形
成できるため有益な方法である。At this time, the phosphazene polymer used in the present invention may be mixed in an appropriate amount instead of the binder or together with the binder, and molded in the same manner, or the phosphazene polymer may be added to the aqueous solution of the layered structure oxide. A method of dissolving a suitable amount of polymer and then drying and forming a film, or drying and mixing into a powder and then mixing and molding with a conductive powder, etc. promotes lithium ion conduction and has a low internal resistance. This is a useful method because it can form
一方、本発明において用いられる負極活物質は、リチ
ウム或いはリチウム合金である。これらを負極とする場
合は、一般に行なわれているようにシート状とし、その
シートをニツケルやステンレス等の導電性網等に圧着し
て用いることができる。On the other hand, the negative electrode active material used in the present invention is lithium or a lithium alloy. When these are used as the negative electrode, they can be formed into a sheet as generally used, and the sheet can be used by being pressed against a conductive net such as nickel or stainless steel.
更に電解質としては、前記式(I),(II),(II
I)で示されるセグメントが任意に配列したフルオロア
ルキルスルホン基を有するオリゴアルキレンオキシポリ
ホスフアゼンを用いる。このポリマーは柔軟性、低温特
性に優れたホスホニトリルを主鎖とする無機高分子骨格
にイオン親和性の高いオリゴアルキレンオキシ側鎖を配
置したポリホスフアゼンを基本構造とし、この側鎖に高
いイオン解離度を有するフルオロアルキルスルホン酸基
を導入することでリチウムイオンのみの移動で高い電導
度を達成したものである。このものは高分子量のポリマ
ーであり、リチウムイオンの高い伝導性と共に、前述の
リチウム二次電池の問題を解決する上で好適なものであ
る。Further, as the electrolyte, the above-mentioned formulas (I), (II) and (II)
An oligoalkyleneoxy polyphosphazene having a fluoroalkyl sulfone group in which the segments shown in I) are arranged arbitrarily is used. This polymer has a basic structure of polyphosphazene, in which an oligoalkyleneoxy side chain with high ionic affinity is arranged on an inorganic polymer skeleton whose main chain is phosphonitrile, which has excellent flexibility and low-temperature characteristics, and has a high degree of ionic dissociation on this side chain. By introducing a fluoroalkylsulfonic acid group having the above formula, high conductivity is achieved by the movement of only lithium ions. This is a high molecular weight polymer, and is suitable for solving the above-mentioned problem of the lithium secondary battery together with high conductivity of lithium ions.
かかるホスフアゼンポリマーは、例えばオリゴアルキ
レンオキシトリフルオロブチルスルホン酸のリチウム塩
並びにオリゴエチレンオキシモノアルキルエーテルのア
ルコラートと、ジクロロホスホニトリルポリマーを溶媒
中で反応させ、脱塩、精製を行い、ゴム状物として得る
ことができる。Such a phosphazene polymer is, for example, a lithium salt of oligoalkyleneoxytrifluorobutylsulfonic acid and an alcoholate of oligoethyleneoxymonoalkyl ether, and a dichlorophosphonitrile polymer reacted in a solvent, desalting and purification, and a rubbery substance is obtained. Can be obtained as
このホスフアゼンポリマーを電解質として用いる場
合、ジメトキシエタン,テトラヒドロフラン等のエーテ
ル系溶媒に溶解し、塗布することで容易に成膜化可能で
あるため、負極或いは正極上に上記のポリマー溶液を塗
布し脱溶媒することで膜としたり、予め成膜してあつた
ものを正極と負極の間に重ねる方法が便利である。又、
電池構成上、必要に応じて微孔性セパレータ膜に上記の
ポリマー電解質を含浸して用いることもできる。When this phosphazene polymer is used as an electrolyte, it can be easily formed into a film by dissolving it in an ether-based solvent such as dimethoxyethane or tetrahydrofuran and applying the same. It is convenient to form a film by using a solvent, or to stack a film formed in advance and formed between the positive electrode and the negative electrode. or,
Due to the battery configuration, the above-mentioned polymer electrolyte can be impregnated into a microporous separator membrane as required.
上記の各部材を使用して本発明の全固体二次電池を作
成した一例を第2図に示す。この電池はシート型の電池
の一例を示したもので、適用形態はこの限りでなく、ボ
タン型、筒型等の電池にも適用できるのは言うまでもな
い。FIG. 2 shows an example in which the above-described members are used to prepare an all-solid secondary battery of the present invention. This battery is an example of a sheet type battery, and the application form is not limited to this, and it is needless to say that the battery can be applied to a button type, a cylindrical type, and the like.
(実 施 例) 以下、本発明を実施例により詳細に説明する。尚、電
池の作成は全てアルゴン雰囲気中で行つた。(Examples) Hereinafter, the present invention will be described in detail with reference to examples. Note that all the batteries were prepared in an argon atmosphere.
実施例1 (1)正極体の作製 V2O5に対して各種の酸化物を所定量混合した後、白金
製のノズル中で加熱、溶融した。この溶融物を高速で回
転する銅製ローター上に吹き出し、急冷してリボン状の
非晶質物を得た。このようにして得た非晶質物を水に溶
解し、5.5cm×9cm、厚さ20μmのステンレス箔の中央部
分36cm2に均一に塗布する。このものを80℃程度で乾燥
し膜形成を行つた後、180℃で5時間乾燥したものを正
極体とした。尚、上記一般式(V2O5)・(A)y・zH2O
中のzはいずれも0.3であつた。Example 1 (1) Production of Positive Electrode Body After a predetermined amount of various oxides was mixed with V 2 O 5 , the mixture was heated and melted in a platinum nozzle. The melt was blown onto a high-speed rotating copper rotor and quenched to obtain a ribbon-shaped amorphous material. The thus-obtained amorphous material is dissolved in water and uniformly applied to a central portion 36 cm 2 of a 5.5 cm × 9 cm, 20 μm thick stainless steel foil. This was dried at about 80 ° C. to form a film, and then dried at 180 ° C. for 5 hours to obtain a positive electrode body. The above general formula (V 2 O 5 ) · (A) y · zH 2 O
Z in each case was 0.3.
比較のため、結晶質V2O5粉末と導電剤のアセチレンブ
ラツク及び成形用のポリテトラフルオロエチレンを70:2
5:5に混合して作成したシートから4.5cm×8cmに切り出
したものを同様にステンレス箔の上に載置したものを比
較例1に用いた。For comparison, the crystalline V 2 O 5 powder and the conductive agent acetylene black and polytetrafluoroethylene for molding were 70: 2
A sheet cut to 4.5 cm × 8 cm from a sheet prepared by mixing at 5: 5 was similarly placed on a stainless steel foil and used in Comparative Example 1.
(2)負極体の作製 5.5cm×9cm、厚さ20μmのステンレス箔の中央部分に
リチウム箔40mgを圧接したものを負極体とした。(2) Preparation of Negative Electrode Body A 5.5 cm × 9 cm, 20 μm thick stainless steel foil having a central portion pressed with 40 mg of lithium foil was pressed into a negative electrode body.
(3)電解質の作製 〔NP{O(CH2CH2O)7CH2CH2CFHCF2SO3Li}0.29{0
(CH2CH2O)7CH3}1.71〕nで示される平均分子量約170
万のホスフアゼンポリマーのジメトキシエタン溶液を調
製した。(3) Preparation of electrolyte [NP {O (CH 2 CH 2 O) 7 CH 2 CH 2 CFHCF 2 SO 3 Li} 0.29 {0
(CH 2 CH 2 O) 7 CH 3 } 1.71 ] Average molecular weight of about 170
Ten thousand phosphazene polymers in dimethoxyethane were prepared.
比較例として、プロピレンカーボネートと1,2−ジメ
トキシエタンの等量混合液にLiClO4を1モル/lに溶解し
たものをポリプロピレン製不織布に含浸させたものを比
較例2に用いた。As a comparative example, a polypropylene nonwoven fabric impregnated with a mixture of propylene carbonate and 1,2-dimethoxyethane in which LiClO 4 was dissolved at 1 mol / l was used.
(4)電池の組み立て 第2図は本発明による電池の一具体例であるシート型
電池の断面概略図であり、外形寸法は5.5cm×9cmの名刺
サイズに合わせたものであり、厚さは約0.2mmのもので
ある。図中1は層状構造酸化物膜、2は金属リチウム、
3はホスフアゼンポリマー膜、4はステンレス箔、5は
シール状である。電池の組み立てにあたつては、上記の
正極体上にホスフアゼンポリマーの溶液を塗布し、ジメ
トキシエタンを除去して電解質膜の形成を行つた。続い
て負極体の周辺部の幅約5mmにシール材を塗布したもの
と貼り合わせ、真空シールを行い、電池を完成させた。(4) Assembly of Battery FIG. 2 is a schematic cross-sectional view of a sheet-type battery which is a specific example of the battery according to the present invention. The external dimensions are adapted to a business card size of 5.5 cm × 9 cm, and the thickness is It is about 0.2 mm. In the figure, 1 is a layered structure oxide film, 2 is lithium metal,
3 is a phosphazene polymer film, 4 is a stainless steel foil, and 5 is a seal. In assembling the battery, a solution of a phosphazene polymer was applied on the positive electrode body, and dimethoxyethane was removed to form an electrolyte membrane. Subsequently, the negative electrode was bonded to a peripheral part having a width of about 5 mm to which a sealing material was applied, and was vacuum-sealed to complete the battery.
(5)電池の充放電特性の測定 これらの電池につき、4Vと2Vの間で0.5mAの定電流充
放電を行い、このときの各サイクルにおける電池の容量
維持率(所懐の放電容量を100%とする)を測定した。
その結果を第1表に示す。但し、No.1は層状のV2O5を用
いているが、y=0のため比較例である。(5) Measurement of battery charge / discharge characteristics For these batteries, a constant current charge / discharge of 0.5 mA was performed between 4 V and 2 V, and the capacity retention rate of each battery at this time (discharge capacity of the battery was 100 %).
Table 1 shows the results. However, No. 1 is a comparative example because y = 0, although layered V 2 O 5 is used.
実施例2 正極の層状構造酸化物の配合比を変更し、ホスフアゼ
ンポリマーを平均分子量約150万の〔NP{O(CH2CH2O)
7CH2CH2CFHCF2SO3Li}0.41{0(CH2CH2O)7C
H3}1.59〕nで示されるものとし、負極をリチウム・ア
ルミニウム合金としたことを除いては実施例1と同様に
電池を組み立てた。ただし、層状構造酸化物の乾燥は20
0℃で5時間とした。これらの電池につき4Vと2Vとの間
で充放電(0.5mA定電流)を行い、この時の100サイクル
までの平均放電量を測定した。結果を第2表に示す。但
しNo.14は層状のV2O5を用いているが、y=0のため比
較例である。 Example 2 The mixing ratio of the layered oxide of the positive electrode was changed, and the phosphazene polymer was changed to an [NP {O (CH 2 CH 2 O) having an average molecular weight of about 1.5 million.
7 CH 2 CH 2 CFHCF 2 SO 3 Li} 0.41 {0 (CH 2 CH 2 O) 7 C
H 3 } 1.59 ] n, and a battery was assembled in the same manner as in Example 1 except that the negative electrode was made of a lithium-aluminum alloy. However, drying of the layered structure oxide is 20
5 hours at 0 ° C. These batteries were charged / discharged (constant current of 0.5 mA) between 4 V and 2 V, and the average discharge amount up to 100 cycles was measured. The results are shown in Table 2. However, No. 14 uses a layered V 2 O 5 but is a comparative example because y = 0.
実施例3 正極の層状構造酸化物を(V2O5)0.9・(MoO3)0.1・
0.3H2Oとし、ホフスアゼンポリマーを第3表に示したも
のとしたことを除いては実施例1と同様の電池を作製
し、各電池の容量維持率を測定した。結果を第3表に示
す。 Example 3 The layered structure oxide of the positive electrode was (V 2 O 5 ) 0.9 · (MoO 3 ) 0.1 ·
A battery was prepared in the same manner as in Example 1 except that the Hofsazene polymer was changed to 0.3H 2 O and that shown in Table 3 and the capacity retention ratio of each battery was measured. The results are shown in Table 3.
第1図は本発明において用いられる層状構造酸化物を平
坦な基板に膜状に形成した場合のX線回折図形を示した
一例である。第2図は本発明による電池の一具体例であ
るシート型電池の断面概略図である。1は層状構造酸化
物膜、2は金属リチウム、3はホスフアゼンポリマー
膜、4はステンレス箔、5はシール材を示す。FIG. 1 is an example showing an X-ray diffraction pattern when a layered oxide used in the present invention is formed in a film shape on a flat substrate. FIG. 2 is a schematic sectional view of a sheet-type battery which is a specific example of the battery according to the present invention. 1 is a layered structure oxide film, 2 is metallic lithium, 3 is a phosphazene polymer film, 4 is a stainless steel foil, and 5 is a sealing material.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−162724(JP,A) 国際公開88/5064(WO,A1) (58)調査した分野(Int.Cl.6,DB名) H01M 10/40 H01M 4/48 H01M 4/58──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-162724 (JP, A) WO 88/5064 (WO, A1) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 10/40 H01M 4/48 H01M 4/58
Claims (1)
O2,Bi2O3,Cr3O8及びZrO2から選ばれる1種以上の酸化物
を示す。)で表わされる層状構造酸化物を正極活物質と
し、リチウム或いはリチウム合金を負極活物質とし、次
式(I),(II),(III)で示されるセグメントが任
意に配列したフルオロアルキルスルホン基を有するオリ
ゴアルキレンオキシポリホスフアゼン或いはこれらの混
合物を電解質とする全固体二次電池。 (但し、Rは水素又はメチル基、R′はメチル,エチル
又はプロピル基を示し、h及びkはアルキレンオキシ単
位の平均の繰り返し数を意味し、それぞれ0≦h≦18,0
≦k≦20の範囲の実数値をとるものであり、又l,m,nは
整数で3≦l+m+n≦200000の範囲をとり、かつl+
n≠0である。)A general formula (V 2 O 5 ) x · (A) y · zH 2 O (where x + y = 1,0 <y ≦ 0.5, z = 0.1-1.6, A is GeO 2 , SiO 2 , B 2 O 3 , MoO 3 , WO 3 , Nb 2 O 5 , Te
One or more oxides selected from O 2 , Bi 2 O 3 , Cr 3 O 8 and ZrO 2 are shown. ) Is used as a positive electrode active material, lithium or a lithium alloy is used as a negative electrode active material, and a fluoroalkyl sulfone group in which segments represented by the following formulas (I), (II) and (III) are arbitrarily arranged: An all-solid-state secondary battery comprising, as an electrolyte, an oligoalkyleneoxy polyphosphazene or a mixture thereof. (Where R represents hydrogen or a methyl group, R ′ represents a methyl, ethyl or propyl group, h and k represent the average number of repeating alkyleneoxy units, and 0 ≦ h ≦ 18,0, respectively)
≤k≤20, and l, m, n are integers in the range of 3≤l + m + n≤200000, and l +
n ≠ 0. )
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63319234A JP2819027B2 (en) | 1988-12-16 | 1988-12-16 | All-solid secondary battery |
EP90900986A EP0414902B1 (en) | 1988-12-16 | 1989-12-14 | Totally solid secondary cell |
PCT/JP1989/001252 WO1990007198A1 (en) | 1988-12-16 | 1989-12-14 | Totally solid secondary cell |
DE68913736T DE68913736T2 (en) | 1988-12-16 | 1989-12-14 | BATTERY WITH COMPLETELY FIXED SECONDARY CELLS. |
US07/555,477 US5153080A (en) | 1988-12-16 | 1990-12-14 | All solidstate secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63319234A JP2819027B2 (en) | 1988-12-16 | 1988-12-16 | All-solid secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02165565A JPH02165565A (en) | 1990-06-26 |
JP2819027B2 true JP2819027B2 (en) | 1998-10-30 |
Family
ID=18107908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63319234A Expired - Fee Related JP2819027B2 (en) | 1988-12-16 | 1988-12-16 | All-solid secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2819027B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2584894B2 (en) * | 1990-10-30 | 1997-02-26 | 新神戸電機株式会社 | Lithium battery |
DE69938337T2 (en) * | 1998-11-30 | 2009-04-23 | Sony Corp. | SECONDARY NUCLEAR WITH NON-WATER ELECTROLYTES |
JP5582573B2 (en) * | 2010-11-09 | 2014-09-03 | 日本電気株式会社 | Secondary battery and electrolyte for secondary battery used therefor |
CN114300670B (en) * | 2021-12-28 | 2024-06-18 | 海南大学 | Vanadium-based glass anode material, and preparation method and application thereof |
-
1988
- 1988-12-16 JP JP63319234A patent/JP2819027B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02165565A (en) | 1990-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2648265B1 (en) | Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same | |
JP2000285929A (en) | Solid electrolyte battery | |
JP2759479B2 (en) | All-solid-state lithium secondary battery | |
CN109786869B (en) | Application of polymer containing hindered amine structure in secondary lithium battery | |
US5153080A (en) | All solidstate secondary battery | |
JP4505886B2 (en) | Solid electrolyte battery | |
JP2740960B2 (en) | Lithium secondary battery | |
CN114497724A (en) | Solid electrolyte and preparation method and application thereof | |
KR20140026841A (en) | Composite cathode active material, and cathode and lithium battery containing the material | |
CN113363490A (en) | Lithium secondary battery based on Li 2O-containing positive electrode and inactive material-free negative electrode and preparation method | |
JPH02223158A (en) | All-solid type battery | |
JP2819027B2 (en) | All-solid secondary battery | |
CN115207335B (en) | A low-temperature chargeable and dischargeable lithium-ion battery negative electrode material and lithium-ion battery | |
JP3734258B2 (en) | Ion conductive electrolyte and battery using the same | |
JP3053404B2 (en) | All-solid lithium secondary battery | |
JP3503657B2 (en) | Battery using ion-conductive polymer compound | |
JP3322321B2 (en) | Cylindrical non-aqueous electrolyte secondary battery | |
KR100433702B1 (en) | Method of manufacturing a sulfur electrode and electrolyte of atmospheric temperature lithium/sulfur battery having ultra high capacity | |
KR100457093B1 (en) | Fabrication of a polymer electrolyte for lithium/sulfur battery and room temperature lithium/sulfur battery containing the same with one flat voltage | |
JPH05325961A (en) | Lithium battery | |
Singh et al. | Polymer batteries | |
JP3722462B2 (en) | Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same | |
JP3555261B2 (en) | Battery electrolyte and battery | |
JP7523659B2 (en) | Composition for producing solid electrolyte, solid electrolyte and lithium secondary battery using the same | |
JPH02207460A (en) | Fully solid state lithium battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |