JP2813005B2 - WC based hard alloy - Google Patents
WC based hard alloyInfo
- Publication number
- JP2813005B2 JP2813005B2 JP1253378A JP25337889A JP2813005B2 JP 2813005 B2 JP2813005 B2 JP 2813005B2 JP 1253378 A JP1253378 A JP 1253378A JP 25337889 A JP25337889 A JP 25337889A JP 2813005 B2 JP2813005 B2 JP 2813005B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- carbide
- weight
- sintering
- hard alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 50
- 239000000956 alloy Substances 0.000 title claims description 50
- 239000002245 particle Substances 0.000 claims description 19
- 238000005245 sintering Methods 0.000 claims description 17
- 239000000843 powder Substances 0.000 claims description 11
- 230000003746 surface roughness Effects 0.000 claims description 11
- 229910003468 tantalcarbide Inorganic materials 0.000 claims description 7
- 239000002994 raw material Substances 0.000 claims description 6
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 4
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 claims description 4
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims description 4
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 4
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 claims description 3
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 claims description 3
- 239000003966 growth inhibitor Substances 0.000 claims description 3
- 229910003470 tongbaite Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 description 13
- 238000005260 corrosion Methods 0.000 description 13
- 230000007797 corrosion Effects 0.000 description 13
- 239000011230 binding agent Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 6
- 229910009043 WC-Co Inorganic materials 0.000 description 5
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910000531 Co alloy Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 本発明は、従来WC−Co系やWC−Ni系の超硬質合金が利
用されて来た耐摩耗性を必要とする分野で用いる合金に
関し、更に詳しくはCoやNi等の金属結合相を含まず微細
な硬質物粒子のみで構成され、優れた耐食性,耐酸化性
を有し、平滑で面粗度の良い鏡面を提供し得るWC基硬質
合金に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial application field> The present invention relates to an alloy used in a field requiring abrasion resistance, in which a WC-Co-based or WC-Ni-based super-hard alloy has been conventionally used. More specifically, a WC base that is composed of only fine hard particles without a metal binder phase such as Co or Ni, has excellent corrosion resistance and oxidation resistance, and can provide a mirror surface with smooth and good surface roughness. It relates to a hard alloy.
<従来の技術> 従来からWCを硬質相とし、CoやNi等の金属を結合相と
する超硬合金は、高硬度,高強度ゆえに切削工具,耐摩
耗工具材料として広く用いられて来た。<Conventional Technology> Conventionally, cemented carbides having WC as a hard phase and a metal such as Co or Ni as a binder phase have been widely used as cutting tools and wear-resistant tool materials because of their high hardness and high strength.
又近年では腐食環境下で用いられる機械部材への適用
も広がり、優れた耐食性,耐酸化性が求められ、この様
な分野に於いては、CoやNi等の金属結合相を含まない超
硬合金として、平均粒子径が1.0〜1.5μmのWC粉末を用
いたWC−TiC−TaC系バインダーレス合金が用いられる。In recent years, the application to machine parts used in a corrosive environment has also been widespread, and excellent corrosion resistance and oxidation resistance are required. In such a field, a cemented carbide that does not contain a metal binding phase such as Co or Ni is used. As the alloy, a WC-TiC-TaC binderless alloy using WC powder having an average particle diameter of 1.0 to 1.5 µm is used.
<発明が解決しようとする課題> 上記CoやNi等の金属結合相を含む超硬合金は、平滑な
鏡面を得る際に問題がある。即ち、平滑な鏡面を得るた
めには、研削加工後ダイヤモンドパヴダー等でラップ仕
上加工を行うが、この際WC硬質相とCoやNiの結合相との
硬度差により凹凸を生じ平滑な面が得難いのである。<Problems to be Solved by the Invention> The cemented carbide containing a metal binding phase such as Co or Ni has a problem in obtaining a smooth mirror surface. That is, in order to obtain a smooth mirror surface, lap finishing is performed using a diamond pavder or the like after grinding, but at this time unevenness occurs due to the difference in hardness between the WC hard phase and the Co or Ni bonding phase. Is difficult to obtain.
この問題を解決する為に、WC粒子を微細化しWC粒子の
平均自由行程(結合相相厚)を小さくする事によりラッ
プ時の凹凸を極力防止し、面粗度を向上させる方法が採
られいるが、更に平滑な鏡面が望まれている。なおこの
平滑な鏡面な高温域でも保持される事が望ましいが、結
合金属相であるCoやNiの酸化温度が低く、耐酸化性に劣
り使用に制限を受けるのである。In order to solve this problem, a method has been adopted in which WC particles are made finer and the mean free path (bond phase thickness) of the WC particles is reduced, thereby preventing irregularities during wrapping as much as possible and improving the surface roughness. However, a smoother mirror surface is desired. Although it is desirable to maintain the temperature even in this smooth, mirror-like high temperature range, the oxidation temperature of Co or Ni, which is the binding metal phase, is low, and the oxidation resistance is inferior and the use is restricted.
一方上記WC−TiC−TaC系バインダーレス合金は、結合
相が無いので、緻密な焼結体を得る為には焼結温度が17
00℃以上と非常に高温を必要とし、その為にWC粒子が粒
成長し易く、エネルギー的にも問題がある。更には曲げ
強度も結合相を含有していない為に80〜120kg/mm2程度
と、WC−Co系超硬合金に比べて低く、強度の向上が望ま
れている。On the other hand, since the WC-TiC-TaC binderless alloy has no binder phase, the sintering temperature must be 17 to obtain a dense sintered body.
A very high temperature of at least 00 ° C. is required, which causes WC particles to easily grow and has a problem in energy. Further, since the binder does not contain a binder phase, the bending strength is about 80 to 120 kg / mm 2 , which is lower than that of a WC-Co cemented carbide, and improvement in strength is desired.
本発明は、上記従来の超硬合金の欠点を解消し、耐食
性、耐酸化性に富み、平滑で面粗度の良い鏡面を得るこ
とが出来る硬質合金を提供することを目的とするもので
ある。An object of the present invention is to solve the above-mentioned drawbacks of the conventional cemented carbide, and to provide a hard alloy which is rich in corrosion resistance and oxidation resistance and can obtain a mirror surface having a smooth and good surface roughness. .
<課題を解決する為の手段> 本発明のWC基硬質合金は、焼結助剤としての炭化タン
タル0.1〜5重量%、炭化チタン0.1〜5重量%、窒化チ
タン0.1〜5重量%の中の少なくとも1種を含有し、残
部が炭化タングステン及び不可避不純物からなる原料粉
末を使用したWC基硬質合金であって、前記炭化タングス
テンの平均粒径が0.7μm以下であり、平滑で表面粗度
のよい鏡面を得ることができることを特徴とする。<Means for Solving the Problems> The WC-based hard alloy of the present invention contains 0.1 to 5% by weight of tantalum carbide, 0.1 to 5% by weight of titanium carbide, and 0.1 to 5% by weight of titanium nitride as a sintering aid. A WC-based hard alloy containing a raw material powder containing at least one kind and a balance of tungsten carbide and inevitable impurities, wherein the tungsten carbide has an average particle size of 0.7 μm or less, and has a smooth and good surface roughness. It is characterized in that a mirror surface can be obtained.
また、このWC基硬質合金の原料粉末には、粒成長抑制
剤としての炭化クロム0.1〜2重量%、炭化バナジウム
0.1〜2重量%の中の少なくとも1種を含有せしめるこ
ともできる。The raw material powder of the WC-based hard alloy contains 0.1 to 2% by weight of chromium carbide as a grain growth inhibitor and vanadium carbide.
At least one of 0.1 to 2% by weight may be contained.
なお上記WC基硬質合金中、炭化タンタル,炭化チタ
ン,窒化チタンは、共に焼結を促進する焼結助剤として
働くものであり、その量が0.1重量%未満では焼結促進
効果が見られず、逆に5重量%を越えると、炭化タンタ
ルの場合にはその融点が高い為に焼結が困難となり有孔
度が悪くなるし、炭化チタン,窒化チタンの場合では粗
大なβ相と呼ばれる相が析出し著しく強度が低下する。In the WC-based hard alloy, tantalum carbide, titanium carbide, and titanium nitride all act as sintering aids for promoting sintering. If the amount is less than 0.1% by weight, no sintering promoting effect is observed. Conversely, if it exceeds 5% by weight, the melting point is high in the case of tantalum carbide, so that sintering becomes difficult and the porosity deteriorates. In the case of titanium carbide and titanium nitride, a phase called a coarse β phase is used. Precipitates and the strength is significantly reduced.
又炭化クロム,炭化バナジウムは、単体又は複合添加
により焼結時の粒成長抑制剤として働くものであるが、
その量が0.1重量%未満では粒成長抑制効果はなく、一
方2重量%を越えると焼結時に粗大に析出し、合金自体
の靭性低下をもたらす。Chromium carbide and vanadium carbide act as grain growth inhibitors at the time of sintering when added alone or in combination.
If the amount is less than 0.1% by weight, there is no effect of suppressing the grain growth, while if it exceeds 2% by weight, it precipitates coarsely at the time of sintering, and lowers the toughness of the alloy itself.
次にWC粒子径を0.7μm以下とするのは、後述する実
施例でも明らかな如く、1600℃程度の温度でも十分に焼
結され高強度の合金を得んが為である。Next, the reason why the WC particle diameter is set to 0.7 μm or less is to obtain a high-strength alloy which is sufficiently sintered even at a temperature of about 1600 ° C., as is apparent from the examples described later.
<作用> 本発明合金は、使用するWC粒子の平均粒子径を0.7μ
mとなし、適当な炭化物,窒化物の添加物を選択する事
により、1600℃位の低温でも十分に緻密化する。この現
象は、焼結体の粒子が微細化する程粒子比表面積が大き
くなり、粒子表面に存在する表面エネルギーが大きくな
る。この表面エネルギーが焼結時の焼結駆動力となり、
低温での焼結が可能となる為である。<Action> The alloy of the present invention has an average particle diameter of WC particles of 0.7 μm.
By selecting appropriate carbide and nitride additives, the material can be sufficiently densified even at a low temperature of about 1600 ° C. In this phenomenon, as the particles of the sintered body become finer, the particle specific surface area increases, and the surface energy existing on the particle surface increases. This surface energy becomes the sintering driving force during sintering,
This is because sintering at a low temperature becomes possible.
従って、本発明合金にあっては、低い焼結温度で十分
な焼結が出来る為に、WC粒子を粒成長させず均一で微細
な焼結体を得ることが出来る。Therefore, in the alloy of the present invention, since sufficient sintering can be performed at a low sintering temperature, a uniform and fine sintered body can be obtained without causing WC particles to grow.
<実施例> 以下本発明の実施例を比較例と共に示す。<Examples> Examples of the present invention will be described below along with comparative examples.
実施例1 原料粉末として、平均粒子径0.6μmのWC粉末,同1.5
μmのWC粉末,同1〜1.5μmのTiC,TiN,TaC,Cr3C2,VC
粉末を用い、それらの原料粉末をそれぞれ第1表に示す
組成に配合し、アルコール中湿式ボールミル3日間混合
後減圧乾燥した。得られた混合粉末を1ton/cm2の圧力で
圧粉体にプレス成形し、該プレス成形体を10-2Torr.の
真空中で1600〜1750℃の温度で焼結し、本発明合金No.1
〜10,比較合金No.11〜18を得た。Example 1 As a raw material powder, WC powder having an average particle diameter of 0.6 μm,
μm WC powder, same 1-1.5 μm TiC, TiN, TaC, Cr 3 C 2 , VC
Powders were used, and the raw material powders were blended in the compositions shown in Table 1, mixed in an alcohol wet ball mill for 3 days, and dried under reduced pressure. The obtained mixed powder was pressed into a green compact at a pressure of 1 ton / cm 2 , and the pressed body was sintered at a temperature of 1600 to 1750 ° C. in a vacuum of 10 −2 Torr. .1
~ 10 and comparative alloy Nos. 11 ~ 18.
これらの合金の相対密度,硬度及び抗折力を第1表に
示す。Table 1 shows the relative density, hardness and bending strength of these alloys.
第1表に示される結果より、本発明合金No.1〜10は、
いずれも1600〜1650℃の温度で相対密度99.5%以上に緻
密化しており、十分焼結している事が判る。 From the results shown in Table 1, the alloys Nos. 1 to 10 of the present invention
In each case, the density was increased to a relative density of 99.5% or more at a temperature of 1600 to 1650 ° C., and it was found that they were sufficiently sintered.
一方比較合金は、1720〜1750℃の高温では相対密度が
99.5%以上に達しているが、1600〜1650℃の焼結では、
94〜96%と低く、焼結が不十分である事が判る。又本発
明合金は、いずれも硬度HRA94以上,抗折力150kg/mm2以
上となっているのに対し、比較合金では十分に緻密化し
た合金でもHRA93.0〜93.7,抗折力100〜120kg/mm2と劣っ
ている事が判る。On the other hand, the relative density of the comparative alloy is high at a high temperature of 1720 to 1750 ° C.
It has reached 99.5% or more, but in sintering at 1600 to 1650 ° C,
It is as low as 94 to 96%, indicating that sintering is insufficient. The invention alloys are all hardness H R A94 above, the deflecting strength 150 kg / mm whereas 2 is equal to or greater than, H R A93.0~93.7 be sufficiently densified alloy in comparative alloy, the transverse rupture it can be seen that the poor and force 100~120kg / mm 2.
実施例2 試料として、上記実施例1の本発明合金No.1,比較合
金No.11,一般的なWC−Co超微粒超硬合金を用い、2000番
のダイヤモンドホイールにて研削加工後、約1μmのダ
イヤモンドパウダーを用いてラップ鏡面仕上加工を行
い、それぞれ鏡面加工材を得た。Example 2 As a sample, the alloy No. 1 of the present invention, the comparative alloy No. 11 and a general WC-Co ultrafine cemented carbide of Example 1 were used. Using a 1 μm diamond powder, lap mirror finishing was performed to obtain mirror processed materials.
これらの3個の試料につき、それぞれ面粗さ(Rmax:
μm)を測定し、その後450℃大気中に保持し、3時間
後及び6時間後のそれぞれの面粗さを測定し、その結果
を第1図に示す。For each of these three samples, the surface roughness (Rmax:
μm) and then kept in the air at 450 ° C., and the surface roughness after 3 hours and after 6 hours was measured. The results are shown in FIG.
第1図に示す結果より、鏡面仕上後の面粗度は、本発
明合金No.1が最も優れ、次にWC−Co超微粒合金、比較合
金No.11の順である事が判る。又酸化テスト後の結果で
はWC−Co超微粒合金は時間の経過と共に著しく面粗度が
悪くなっており、これはCoの酸化開始温度が約300℃と
低温であり、Coが酸化した為だと考えられる。From the results shown in FIG. 1, it can be seen that the surface roughness after mirror finish is the best for the alloy No. 1 of the present invention, followed by the WC-Co ultrafine alloy and the comparative alloy No. 11. Also, as a result of the oxidation test, the surface roughness of the WC-Co ultrafine alloy was significantly deteriorated with time, because the oxidation start temperature of Co was as low as about 300 ° C, and Co was oxidized. it is conceivable that.
これに対し本発明合金No.1は、高温でも優れた面粗度
が維持されている事が判る。On the other hand, it can be seen that the alloy No. 1 of the present invention maintains excellent surface roughness even at a high temperature.
実施例3 試料として、上記実施例1の本発明合金No.1,比較合
金No.11,市販のJISK20相当合金(WC−6重量%Co)を用
い、200番のダイヤモンドホイールにて研削加工仕上
し、腐食試験片とした。腐食試験は、HCl,H2SO4,HNO3の
それぞれ10%溶液に、液温50℃の下で24時間浸漬した
後、腐食減量を測定し、単位時間当たりの腐食量を求
め、腐食速度(g/m2・day)とし、その結果を第2表に
示した。Example 3 As a sample, the alloy No. 1 of the present invention of Comparative Example 1, the comparative alloy No. 11, and a commercially available alloy equivalent to JISK20 (WC-6% by weight Co) were used, and the finish was finished by grinding with a No. 200 diamond wheel. And used as corrosion test specimens. In the corrosion test, after immersing in a 10% solution of HCl, H 2 SO 4 , and HNO 3 for 24 hours at a liquid temperature of 50 ° C., the corrosion loss was measured, the amount of corrosion per unit time was determined, and the corrosion rate was determined. (G / m 2 · day) and the results are shown in Table 2.
上記第2表の結果より、いずれの溶液に於いても腐食
速度は、WC−6重量%Co,比較合金No.11,本発明合金No.
1の順となり、金属結合相Coを含有するWC−6重量%Co
合金は、Co溶出により耐食性に劣り、金属結合相を有し
ない本発明合金No.1と比較合金No.11の方が数段優れて
いる事が判る。又本発明合金No.1は、微細な炭化物粒子
のみで構成されている為、粒界腐食現象が防止出来、比
較合金No.11よりも更に耐食性に富む事が判る。 From the results in Table 2 above, the corrosion rate was WC-6 wt% Co, Comparative Alloy No. 11, and Alloy No.
In the order of 1, WC-6% by weight Co containing metal binder phase Co
It can be seen that the alloy is inferior in corrosion resistance due to the elution of Co, and that the alloy No. 1 of the present invention and the comparative alloy No. 11 having no metal binding phase are several steps better. In addition, it can be seen that the alloy No. 1 of the present invention is composed of only fine carbide particles, so that the intergranular corrosion phenomenon can be prevented, and that the alloy No. 1 has more corrosion resistance than the comparative alloy No. 11.
なお上記本発明合金No.1,比較合金No.11及び市販のJI
SK20相当合金(WC−6重量%Co)の顕微鏡組織写真(倍
率1000倍)をそれぞれ第2図〜第4図に示す。これらの
写真よりWC−6重量%Co合金は、硬質相(WC相)と結合
相(Co相)の2相より構成されている事、比較合金No.1
1は結合相は含有していないが、炭化物(WC粒子)が粗
大化しており、高温での焼結により粒成長したものであ
る事が判る。The alloy No. 1 of the present invention, the comparative alloy No. 11 and the commercially available JI
FIGS. 2 to 4 show micrographs of the SK20 equivalent alloy (WC-6% by weight Co) at a magnification of 1000 times. According to these photographs, the WC-6 wt% Co alloy is composed of two phases, a hard phase (WC phase) and a binder phase (Co phase).
No. 1 does not contain a binder phase, but the carbides (WC particles) are coarse and it can be seen that the particles were grown by sintering at high temperature.
一方本発明合金No.1は、微細で均一な炭化物粒子のみ
で構成されている事が観察される。On the other hand, it is observed that the alloy No. 1 of the present invention is composed of only fine and uniform carbide particles.
<発明の効果> 以上述べて来た如く、本発明の硬質合金は、金属結合
相を含まず微細な粒子のみから構成されている為に、低
温で十分に緻密な焼結体が得られ、高硬度,高強度で耐
食性にも優れ、かつ平滑で面粗度の良い鏡面を現出出来
るものであり、従来の超硬合金に比し幅広い用途に活用
出来るものである。<Effect of the Invention> As described above, since the hard alloy of the present invention is composed of only fine particles without a metal binder phase, a sufficiently dense sintered body can be obtained at a low temperature, It is capable of producing a mirror surface with high hardness, high strength, excellent corrosion resistance, smoothness and good surface roughness, and can be used for a wider range of applications than conventional cemented carbide.
第1図は本発明実施例2に於ける酸化テストの結果を示
すグラフ、第2図〜第4図はそれぞれ本発明合金No.1,
比較合金No.11及びWC−6重量%Co合金の顕微鏡組織写
真で倍率は共に1000倍である。1 is a graph showing the results of an oxidation test in Example 2 of the present invention, and FIGS. 2 to 4 are alloys No. 1 and 2 of the present invention, respectively.
The micrographs of the comparative alloy No. 11 and the WC-6% by weight Co alloy show that the magnification is 1000 times.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭50−90513(JP,A) 特開 昭57−13142(JP,A) 特開 昭57−19353(JP,A) 特開 昭57−19354(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 35/56──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-50-90513 (JP, A) JP-A-57-13142 (JP, A) JP-A-57-19353 (JP, A) JP-A-57-19353 19354 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) C04B 35/56
Claims (2)
量%、炭化チタン0.1〜5重量%、窒化チタン0.1〜5重
量%の中の少なくとも1種を含有し、残部が炭化タング
ステン及び不可避不純物からなる原料粉末を使用したWC
基硬質合金であって、 前記炭化タングステンの平均粒径が0.7μm以下であ
り、平滑で表面粗度のよい鏡面を得ることができること
を特徴とするWC基硬質合金。1. A sintering aid containing at least one of 0.1 to 5% by weight of tantalum carbide, 0.1 to 5% by weight of titanium carbide, and 0.1 to 5% by weight of titanium nitride, with the balance being tungsten carbide and unavoidable. WC using raw material powder consisting of impurities
A WC-based hard alloy, wherein the tungsten carbide has an average particle size of 0.7 μm or less, and is capable of obtaining a smooth mirror surface with good surface roughness.
ム0.1〜2重量%、炭化バナジウム0.1〜2重量%の中の
少なくとも1種を含有せしめてなることを特徴とする請
求項1に記載のWC基硬質合金。2. The method according to claim 1, wherein the raw material powder contains at least one of 0.1 to 2% by weight of chromium carbide and 0.1 to 2% by weight of vanadium carbide as a grain growth inhibitor. WC based hard alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1253378A JP2813005B2 (en) | 1989-09-28 | 1989-09-28 | WC based hard alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1253378A JP2813005B2 (en) | 1989-09-28 | 1989-09-28 | WC based hard alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03115541A JPH03115541A (en) | 1991-05-16 |
JP2813005B2 true JP2813005B2 (en) | 1998-10-22 |
Family
ID=17250529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1253378A Expired - Lifetime JP2813005B2 (en) | 1989-09-28 | 1989-09-28 | WC based hard alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2813005B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009179519A (en) * | 2008-01-31 | 2009-08-13 | Nippon Tokushu Gokin Kk | Binderless alloy |
JP2012087045A (en) * | 2011-11-14 | 2012-05-10 | Nippon Tokushu Gokin Kk | Method for producing binderless alloy |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5421852A (en) * | 1991-09-02 | 1995-06-06 | Sumitomo Electric Industries, Ltd. | Hard alloy and its manufacturing method |
WO1994025412A1 (en) * | 1993-04-30 | 1994-11-10 | The Dow Chemical Company | Densified micrograin refractory metal or solid solution (mixed metal) carbide ceramics |
JP3606527B2 (en) * | 1993-11-10 | 2005-01-05 | 三菱マテリアル神戸ツールズ株式会社 | Shaft cutting tool |
JPWO2005037731A1 (en) * | 2003-10-22 | 2007-11-29 | 日本タングステン株式会社 | Hard material with high temperature resistance |
JP5134217B2 (en) * | 2006-07-07 | 2013-01-30 | 日本タングステン株式会社 | Sintered hard material and mold using the same |
JP4848394B2 (en) * | 2008-05-21 | 2011-12-28 | 秋田県 | W-Ti-C composite and method for producing the same |
CN103834824B (en) * | 2014-03-20 | 2016-06-01 | 中国科学院长春应用化学研究所 | A kind of soap-free emulsion polymeization phase carboloy and its preparation method |
CN111471942A (en) * | 2020-03-25 | 2020-07-31 | 成都美奢锐新材料有限公司 | Nanocrystalline composite material for 3C product and preparation method thereof |
-
1989
- 1989-09-28 JP JP1253378A patent/JP2813005B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009179519A (en) * | 2008-01-31 | 2009-08-13 | Nippon Tokushu Gokin Kk | Binderless alloy |
JP2012087045A (en) * | 2011-11-14 | 2012-05-10 | Nippon Tokushu Gokin Kk | Method for producing binderless alloy |
Also Published As
Publication number | Publication date |
---|---|
JPH03115541A (en) | 1991-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0223585B1 (en) | A hard sintered compact for a tool | |
JP6439975B2 (en) | Cermet manufacturing method | |
KR20040084760A (en) | Coated cutting tool insert | |
JP2813005B2 (en) | WC based hard alloy | |
JPS58211862A (en) | Composite silicon nitride cutting tool also executing coating | |
JP3310138B2 (en) | Sintered hard material | |
JP2000328169A (en) | Titanium-based carbonitride alloy | |
JPS63286550A (en) | Nitrogen-containing titanium carbide-base alloy having excellent resistance to thermal deformation | |
JPS6225631B2 (en) | ||
JP4069749B2 (en) | Cutting tool for roughing | |
JP2006111947A (en) | Ultra-fine particle of cermet | |
JP3318887B2 (en) | Fine-grained cemented carbide and method for producing the same | |
JPH04231467A (en) | Coated TiCN-based cermet | |
JP3496135B2 (en) | Hard alloy and method for producing the same | |
JP2001181775A (en) | Cermet sintered body | |
JP3199407B2 (en) | TiCN-based cermet | |
JPS63286549A (en) | Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation | |
JP4540791B2 (en) | Cermet for cutting tools | |
JP3232599B2 (en) | High hardness cemented carbide | |
JP2003300778A (en) | Tungsten carbide based sintered compact | |
JP2796011B2 (en) | Whisker reinforced cemented carbide | |
JP3045199B2 (en) | Manufacturing method of high hardness cemented carbide | |
JP7441420B2 (en) | Cutting tools that exhibit excellent fracture resistance and plastic deformation resistance | |
JP4280525B2 (en) | cermet | |
JPS6225632B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080807 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090807 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090807 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090807 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100807 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100807 Year of fee payment: 12 |