[go: up one dir, main page]

JP2804961B2 - Equivalent current dipole tracking device in the head - Google Patents

Equivalent current dipole tracking device in the head

Info

Publication number
JP2804961B2
JP2804961B2 JP63086463A JP8646388A JP2804961B2 JP 2804961 B2 JP2804961 B2 JP 2804961B2 JP 63086463 A JP63086463 A JP 63086463A JP 8646388 A JP8646388 A JP 8646388A JP 2804961 B2 JP2804961 B2 JP 2804961B2
Authority
JP
Japan
Prior art keywords
dipole
head
potential
current dipole
equivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63086463A
Other languages
Japanese (ja)
Other versions
JPH01256931A (en
Inventor
利光 武者
斌 賀
Original Assignee
利光 武者
日本電気三栄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 利光 武者, 日本電気三栄株式会社 filed Critical 利光 武者
Priority to JP63086463A priority Critical patent/JP2804961B2/en
Publication of JPH01256931A publication Critical patent/JPH01256931A/en
Application granted granted Critical
Publication of JP2804961B2 publication Critical patent/JP2804961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は脳波測定等に用いて好適な頭部内等価電流双
極子追跡装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an equivalent head current dipole tracking apparatus suitable for use in brain wave measurement and the like.

〔発明の概要〕[Summary of the Invention]

本発明は脳波測定等に用いて好適な頭部内等価電流双
極子追跡装置に関し、頭部空洞部を避けて、複数の電位
を計測する電位測定手段と、媒質が不均一な頭部内の任
意の位置に電流双極子を仮定し、該電流双極子によって
作られる複数の電極に夫々対応する電位を演算する演算
手段と、電位測定手段の実測値と、演算手段の計算値と
の間の二乗誤差を演算する二乗誤差演算手段と、二乗誤
差演算手段から得た二乗誤差値を最小にする電流双極子
の位置とベクトル成分を求めて等価電流双極子とする等
価電流双極子設定手段とを有することを特徴とする頭部
内等価電流双極子追跡装置とすることで頭蓋内の空洞部
の影響を受けることなく神経活動に基づく電位を測定し
得る様にしたものである。
The present invention relates to a head equivalent current dipole tracking device suitable for use in brain wave measurement and the like, avoiding the head cavity, a potential measuring means for measuring a plurality of potentials, and a medium in the head where the medium is uneven. Assuming a current dipole at an arbitrary position, calculating means for calculating a potential corresponding to each of a plurality of electrodes formed by the current dipole, an actually measured value of the potential measuring means, and a value calculated by the calculating means. A square error calculating means for calculating a square error, and an equivalent current dipole setting means for obtaining a position and a vector component of the current dipole that minimizes the square error value obtained from the square error calculating means and for setting the equivalent current dipole. The intra-cranial equivalent current dipole tracking device is characterized in that the potential based on neural activity can be measured without being affected by the intracranial cavity.

〔従来の技術〕[Conventional technology]

従来から生体の神経活動により、体表面上に現われる
電位を測定する装置としては脳波計,筋電計,誘発電位
加算装置等が使用されている。近時、生体の神経活動に
伴って体表面上に発生する電位を計測し、生体内の活動
部位を推定する等価双極子法が提案されている。この方
法は例えば、脳の各活動部位の細胞が刺激されると起電
力を発生して、頭皮上に電位分布を生ずる。この様な電
位分布から各部位を電気的な双極子で対応させ、この双
極子の位置とベクトル成分を上述の電位分布から演算し
て活動している脳細胞の位置を推定することにより脳の
活動状態を追跡する様にしたものである。この様な双極
子を推定する等価双極子法に於ては、双極子が発生する
電位分布を繰返し演算する関係から、従来では電位分布
計算を行うために、例えば、頭を完全な球と仮定すると
共に、頭蓋が一様な無限導体の中にあるものと仮定し演
算が行なわれた。更に、頭部内に均質な脳があるものと
した均質導体球又は同心或は異心の球殻を仮定して電位
分布を演算する方法等が提案されている。
2. Description of the Related Art Conventionally, an electroencephalograph, an electromyograph, an evoked potential adding device, and the like have been used as devices for measuring a potential appearing on a body surface due to a nerve activity of a living body. 2. Description of the Related Art Recently, an equivalent dipole method has been proposed in which a potential generated on a body surface due to a nerve activity of a living body is measured, and an active site in the living body is estimated. In this method, for example, when cells in each active site of the brain are stimulated, an electromotive force is generated to generate a potential distribution on the scalp. From such a potential distribution, each part is made to correspond with an electric dipole, and the position of the dipole and the vector component are calculated from the above-mentioned potential distribution to estimate the position of the active brain cell, thereby obtaining a brain. The activity status is tracked. In the equivalent dipole method for estimating such a dipole, since the potential distribution generated by the dipole is repeatedly calculated, conventionally, for example, the head is assumed to be a perfect sphere in order to calculate the potential distribution. The calculations were performed assuming that the skull was in a uniform infinite conductor. Further, there has been proposed a method of calculating a potential distribution assuming a homogeneous conductive sphere or a concentric or eccentric spherical shell having a homogeneous brain in the head.

又、この様な電位測定を行うための例えば脳波計の電
極配置として第6図に示す様な国際電極配置法(10−20
法)が知られている。第6図A〜Eは頭部の上面よりみ
た電極配置手順を示すもので、先ず、 (イ)鼻根(nasion)即ち、鼻前額縫合線上の正中部と
後頭極(inion)即ち、後頭骨の分界項の線と正中矢状
面の交点を結ぶ頭蓋表面に沿った正中線を第6図Aに示
す様に10%,20%,20%,20%,20%,10%に分割し、鼻根
方向からFPz,Fz,Cz,Pz,Ozとする。
In order to perform such an electric potential measurement, for example, an international electrode arrangement method (10-20) as shown in FIG.
Law) is known. FIGS. 6A to 6E show the electrode arrangement procedure viewed from the upper surface of the head. First, (a) the root of the nose (nasion), ie, the median portion on the suture line of the forehead and the occipital pole (inion), ie, the back Divide the median line along the skull surface connecting the intersection of the line of the demarcation term of the skull and the median sagittal plane into 10%, 20%, 20%, 20%, 20% and 10% as shown in Fig. 6A. And FPz, Fz, Cz, Pz, and Oz from the root of the nose.

(ロ)Cz点を通り左右の耳介前点(耳珠の前方で頬骨根
部にある陥凹部)を結ぶ頭部表面に沿った横断線を第6
図Bの様に10%,20%,20%,20%,20%,10%に分割し、
左耳からT3,C3,Cz,C4,T4とする。
(B) A crossing line along the surface of the head passing through the Cz point and connecting the left and right pre-auricular points (a recess in the root of the cheekbone in front of the tragus) is taken as the sixth line.
Divide into 10%, 20%, 20%, 20%, 20%, 10% as shown in Fig.
Let T 3 , C 3 , Cz, C 4 , T 4 from the left ear.

(ハ)T3を通りFPzとOzを結ぶ冠状線の全長を第6図C
の様に10%,20%,20%,20%,20%,10%に分割し、鼻根
側のFPzから、左半球に於いてFP1,F7,T3,T5,O1とする。
(C) a sixth the total length of the coronal line connecting the street FPz and Oz to T 3 Figure C
10% as the 20%, 20%, 20%, 20%, divided into 10%, the procerus side from FPz, FP 1, F 7, T 3 at the left hemisphere, T 5, O 1 And

(ニ)C3を通り、FP1とO1とを結ぶ内側の冠状線の全長
を第6図Dの様に右半球に於いて4等分して前方から
F3,C3,P3とする。
(D) through C 3, from the front 4 equal portions at the right hemisphere as the full length of the inner coronal line connecting the FP 1 and O 1 6 Figure D
Let F 3 , C 3 , P 3 .

(ホ)左半球でも(ハ)、(ニ)と同様の手順を行うこ
とでFP2,F8,T4,T6,O2及び、F4,C4,P4とする(第6図C,D
参照)この様な各点に電極を配置にして脳波測定が行な
われていた。
(E) The same procedure as (c) and (d) is performed in the left hemisphere to obtain FP 2 , F 8 , T 4 , T 6 , O 2 and F 4 , C 4 , P 4 (No. 6) Fig.C, D
(See Reference) Electrodes were measured at such points by placing electrodes at each point.

第7図はこれらの電極と脳の位置との関係を模式的に
示している。
FIG. 7 schematically shows the relationship between these electrodes and the position of the brain.

第7図で頭部(1)内に脳(4)があり、鼻根(5)
と後頭極(6)との関係並に脳(4)の位置に対する各
電極の関係が半球について示してある。
In FIG. 7, there is a brain (4) in the head (1) and a root of the nose (5)
The relation between each electrode and the position of the brain (4) is shown for the hemisphere, as well as the relation between the head and the occipital pole (6).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

叙上の従来構成による等価双極子法によると、生体、
例えば頭部は擬似的な球状体或は球殻状と仮定し、無限
一様媒質、即ち、脳と同じ導電率を持つ導体が頭の外に
も一様に存在すると仮定するか、又は頭部を球状体或は
球殻状と仮定し、球体内に一様な媒質、即ち脳があると
仮定して電位分布を演算するために問題が発生する。こ
の問題は頭部内を均一の媒質としているために、指定さ
れた等価双極子の位置及びベクトル成分の精度が十分で
はなくなることである。この原因を第8図によって説明
する。第8図は生体(1)として頭部(1)を考え、こ
の頭部(1)内に眼窩や外耳道等の空洞部(2)を考慮
している。今指定された等価双極子として、等価双極子
の真値(3a)のベクトル成分方向が第8図に示す様に空
洞部(2)に向っている場合に、この等価双極子の計算
値(3b)は空洞部(2)の影響を受けて真の位置より空
洞部(2)から遠ざかると共にそのベクトル成分は真値
より小さくなる。一方、等価双極子の真値(3a′)のベ
クトル成分方向が空洞部(2)に平行している場合はこ
の等価双極子(3b′)は空洞部(2)の影響を受けて真
の位置より空洞部(2)に近づくと共にそのベクトル成
分は真値(3a′)より大きくなる。しかし、従来の等価
双極子法ではこれらの点が考慮されないために等価双極
子の位置やベクトル成分の精度が劣化する問題があっ
た。
According to the above-described conventional equivalent dipole method,
For example, it is assumed that the head is a pseudo spherical body or a spherical shell, and that an infinitely uniform medium, that is, a conductor having the same conductivity as the brain exists uniformly outside the head, or Assuming that the portion is a spherical body or a spherical shell, and a uniform medium, that is, a brain, is present in the spherical body, a problem arises in calculating the potential distribution. The problem is that since the inside of the head is a uniform medium, the position of the designated equivalent dipole and the accuracy of the vector component are not sufficient. This cause will be described with reference to FIG. FIG. 8 considers a head (1) as a living body (1), and considers a cavity (2) such as an eye socket or an external auditory canal in the head (1). If the vector component direction of the true value (3a) of the equivalent dipole points to the cavity (2) as shown in FIG. 8 as the designated equivalent dipole, the calculated value of this equivalent dipole ( 3b) is affected by the cavity (2) and moves away from the cavity (2) from its true position, and its vector component becomes smaller than its true value. On the other hand, when the vector component direction of the true value (3a ') of the equivalent dipole is parallel to the cavity (2), this equivalent dipole (3b') is affected by the cavity (2) and becomes true. As the position approaches the cavity (2) from the position, its vector component becomes larger than the true value (3a '). However, since the conventional equivalent dipole method does not consider these points, there is a problem that the position of the equivalent dipole and the accuracy of the vector component are deteriorated.

この様な問題は脳内の活動部位を電気的な双極子で近
似して指定する以外の脳波測定に於いても、当然生ず
る。
Such a problem naturally occurs in the electroencephalogram measurement other than specifying an active site in the brain by approximating it with an electric dipole.

本発明は叙上の問題点を解決するために成されたもの
で、その目的とするところは、生体内の電気的情報の流
れを経皮的に追跡する際、或は脳波測定を行う際に、推
定する等価双極子の位置及びベクトル成分或は脳波を高
精度に高めるための頭部内等価電流双極子追跡装置を提
供するにある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to track the flow of electrical information in a living body percutaneously or to perform electroencephalogram measurement. Another object of the present invention is to provide an in-head equivalent current dipole tracking device for highly accurately estimating the position and vector component of an equivalent dipole to be estimated or an electroencephalogram.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、その例が第2図に示されている様に頭部空
洞部を避けて、複数の電位を計測する電位測定手段と、
媒質が不均一な上記頭部内の任意の位置に電流双極子を
仮定し、該電流双極子によって作られる複数の電極に夫
々対応する電位を演算する演算手段と、電位測定手段の
実測値と、演算手段の計算値との間の二乗誤差を演算す
る二乗誤差演算手段と、二乗誤差演算手段から得た二乗
誤差値を最小にする電流双極子の位置とベクトル成分を
求めて等価電流双極子とする等価電流双極子設定手段と
を有することを特徴とする頭部内等価電流双極子追跡装
置としたものである。
The present invention provides a potential measuring means for measuring a plurality of potentials, avoiding the head cavity as shown in FIG.
Assuming a current dipole at an arbitrary position in the head where the medium is non-uniform, a calculation means for calculating potentials respectively corresponding to a plurality of electrodes formed by the current dipole, and an actual measurement value of the potential measurement means , A square error calculating means for calculating a square error between the calculated value of the calculating means, and a position and a vector component of a current dipole which minimizes a square error value obtained from the square error calculating means, and an equivalent current dipole. And a head-equivalent current dipole tracking device characterized by having an equivalent current dipole setting means.

〔作用〕[Action]

本発明の頭部内等価電流双極子追跡装置は鼻根(5)
と後頭極(6)を結んだ平面を空洞部(2)を横切らな
い範囲に回転させ、例えば国際電極配置法に基づいて複
数電極(7)を配置したので空洞部(2)の影響を受け
ない脳波測定或は活動部位の双極子近似推定を行うこと
が出来る。
The in-head equivalent current dipole tracking device according to the present invention has a nose root (5).
The plane connecting the occipital pole (6) and the occipital pole (6) is rotated so as not to cross the cavity (2). For example, a plurality of electrodes (7) are arranged based on the International Electrode Placement Method. EEG measurements or dipole approximation of active sites can be performed.

〔実施例〕〔Example〕

以下、本発明の頭部内等価電流双極子追跡装置によっ
て生体内の等価電流双極子を推定する場合を説明する。
Hereinafter, a case where the equivalent current dipole in the living body is estimated by the in-head equivalent current dipole tracking device of the present invention will be described.

第2図は頭部(1)内の脳細胞活動状態を追跡する場
合の系統図を示すものである。以下第2図について詳記
する。
FIG. 2 shows a system diagram in the case of tracking the activity state of brain cells in the head (1). Hereinafter, FIG. 2 will be described in detail.

先ず頭部(1)の形状寸法を正確につかむために、X
線−CTを用いてCT断層像(16)を15枚前後とり、次にこ
のCT断層像(16)の二次元寸法を1枚づつデジタイザー
(18)のピックアップ(17)を用いて入力ポート(34)
を介しコンピュータ(29)に読み込んで、その信号から
三次元の頭部形状を求める様にする。また、三次元の頭
部形状に対応させた各電極位置をキーボード等の電極位
置信号入力装置(19)からx,y,zの三次元座標として入
力する。
First, in order to accurately grasp the shape and size of the head (1), X
A line-CT is used to take about 15 CT tomographic images (16), and then the two-dimensional dimensions of the CT tomographic images (16) are input one by one using a pickup (17) of a digitizer (18). 34)
And read it into a computer (29) via the computer to obtain a three-dimensional head shape from the signal. Each electrode position corresponding to the three-dimensional head shape is input as x, y, and z three-dimensional coordinates from an electrode position signal input device (19) such as a keyboard.

次に、頭部(1)に国際電極配置法とは異なる第1図
に説明する方法で電極を配置する。第1図に於いて、鼻
根(nasion)(5)と後頭極(inion)(6)を結ぶ破
線で示す様な頭部(1)を切断する様な水平面(12)の
うち正中矢状面(11)(鼻根(5)から後頭極(6)を
通る縦の面)と直交する水平面(12)を第1図ではこの
水平面の二等分線(14)を中心に時計方向に回転させ、
鼻根(5)を上方に後頭極(6)を下方に角度θ=10〜
20゜程度として、回転水平面(13)が空洞部(2)を横
切らない様にした後にこの回転水平面(13)を基に例え
ば国際電極配置法による分割方法で各電極群(7)を装
着する様にして脳内神経活動の電位を電位測定手段(2
3)で測定する。
Next, electrodes are arranged on the head (1) by a method different from the international electrode arrangement method and described in FIG. In FIG. 1, the mid-sagittal of the horizontal plane (12) that cuts off the head (1) as shown by the broken line connecting the nose (5) and the occipital pole (inion) (6) In FIG. 1, a horizontal plane (12) orthogonal to the plane (11) (the vertical plane passing from the root of the nose (5) to the occipital pole (6)) is clockwise centered on the bisector (14) of this horizontal plane. Rotate
Angle of the nose (5) upward and occipital pole (6) downward θ = 10-
After setting the rotating horizontal plane (13) so as not to cross the cavity (2) at about 20 °, each of the electrode groups (7) is mounted based on the rotating horizontal plane (13) by, for example, a division method using an international electrode arrangement method. The potential of nerve activity in the brain is measured in the same way
Measure in 3).

電極(7)からの測定電位は増幅器(26)及びマルチ
プレクサ(27)を介してアナログ−デジタル変換器(A/
D)(28)に供給され、デジタル化された測定電位は入
力ポート(34)を介してコンピュータ(29)に供給され
る。コンピュータ(29)内には制御部(29a)と演算部
(29b)を有し、アドレスバス(31a)及びデータバス
(31b)はROM(32),RAM(33),入力ポート(34),出
力ポート(15)に接続されている。上記ROM(32)及びR
AM(33)は信号処理に必要なプログラムを記憶すると共
にデジタイザー(18),電極位置信号入力装置(19),
電位測定手段(25)からのデータを記憶する記憶手段で
ある。コンピュータ(29)の演算部(29a)には演算手
段と等価電流双極子設定手段並に近似度合演算手段とを
有する。入力ポート(34)には等価双極子を求めるプロ
グラム等が格納された外部記憶装置(20)が接続され、
出力ポート(15)にはコンピュータ(29)の演算結果を
表示するCRT等の表示手段(22)と表示手段(22)に表
示されたデータや波形を記録するプリンタ(21)が接続
されている。
The measured potential from the electrode (7) is passed through an amplifier (26) and a multiplexer (27) to an analog-to-digital converter (A / D).
D) The measured potential supplied to (28) and digitized is supplied to the computer (29) via the input port (34). The computer (29) has a control unit (29a) and a calculation unit (29b), and the address bus (31a) and the data bus (31b) are ROM (32), RAM (33), input port (34), Connected to output port (15). ROM (32) above and R
AM (33) stores programs necessary for signal processing, and digitizer (18), electrode position signal input device (19),
Storage means for storing data from the potential measuring means (25). The computing section (29a) of the computer (29) has computing means, equivalent current dipole setting means and approximation degree computing means. The input port (34) is connected to an external storage device (20) storing a program for obtaining an equivalent dipole, and the like.
The output port (15) is connected to a display means (22) such as a CRT for displaying the calculation result of the computer (29) and a printer (21) for recording data and waveforms displayed on the display means (22). .

上述の構成に於ける、本例の動作を第3図のフロチャ
ートにより説明する。
The operation of this example in the above configuration will be described with reference to the flowchart of FIG.

第3図に於いて、図示しないが電源を“オン”して本
例の生体内等価電流双極子追跡装置(23)を第1ステッ
プST1に示す様に初期状態に設定する。次の第2ステッ
プST2では後述する各種演算用のプログラム及び信号処
理用のプログラム等を外部記憶装置(20)から読み出し
てコンピュータ(29)内のRAM(33)に格納する。この
様なプログラムはコンピュータ(29)内の不揮発性メモ
リであるROM(32)内に予め記憶して置けば第2ステッ
プST2は不要となる。
In Figure 3, it is set to an initial state as shown in vivo equivalent electric dipole tracking device of the present in the "on" the but power not shown example (23) in a first step ST 1. It reads the next second step ST 2 the program for program and signal processing for various operations to be described later or the like from the external storage device (20) stored in the RAM (33) in a computer (29). Such program a computer (29) a second step ST 2 if you put previously stored in a ROM (32) in a non-volatile memory in is not required.

次の第3ステップST3では頭部(1)の形状寸法を入
力する。頭蓋形状寸法計測の1例としてX線CTを用いて
1人の人間についてスライス間隔15mmで15枚程度のCT断
層像(16)を作る。このCT断層像(16)は各個人毎に頭
蓋の周長,幅,前後方向の長さ等の数種のパラメータを
測定し、数種類用意した標準モデルに当はめる方法をと
る様にすれば一人一人の頭蓋を計測するためにCT断層像
をとる手間が省けて計測がより簡単になる。勿論一人一
人の頭蓋を計測してもよい。この様にスライスした15枚
のCT断層像(16)の二次元画像上を各断層像(16)につ
いてピックアップ(17)で取り出してデジタイザー(1
8)を使って入力ポート(34)からコンピュータ(29)
に入力し、RAM(33)に記憶する。この場合にスライス
を三次元的に積み重ねて行くときに、「ずれ」が生じな
い様にスライス断面と垂直な3本の直線の交点を各スラ
イスに指定して置くを可とする。
In the next third step ST 3 to enter the geometry of the head (1). As an example of cranial shape dimension measurement, about 15 CT tomographic images (16) are created for one person at a slice interval of 15 mm using X-ray CT. This CT tomogram (16) measures several parameters such as the skull circumference, width, length in the anterior-posterior direction for each individual, and applies a method to fit several standard models. This eliminates the need to take a CT tomogram to measure one skull, making the measurement easier. Of course, each skull may be measured. The two-dimensional images of the 15 CT tomographic images (16) sliced in this manner are picked up by the pickup (17) for each tomographic image (16) and digitized by the digitizer (1).
8) Using input port (34) to computer (29)
And store it in the RAM (33). In this case, when the slices are stacked three-dimensionally, the intersection of three straight lines perpendicular to the slice cross-section can be designated and placed in each slice so that “displacement” does not occur.

この様に入力された頭部形状寸法に基づいて、第4ス
テップST4ではコンピュータ(29)は補間計算をして頭
蓋の三次元データに変換する。
Based on the input head geometry Thus, the fourth step ST 4 the computer (29) is converted into a three-dimensional data of the skull by the interpolation calculation.

次の第5ステップST5では頭部(1)に載置した21個
前後の電極(7)位置を第4ステップST4で得た三次元
の頭部形状に対応させるために第2図に示すキーボード
等の電極位置信号入力装置(19)からx,y,z軸の三次元
座標として入力し、コンピュータ(29)内のRAM(33)
に格納する。
In FIG. 2 to correspond to the next fifth step ST 5 in the head (1) 21 around the electrodes placed on the (7) a three-dimensional head shape that the position obtained in the fourth step ST 4 Input from the electrode position signal input device (19) such as a keyboard shown as three-dimensional coordinates of x, y, z axes, and the RAM (33) in the computer (29)
To be stored.

第6ステップST6では第2図に示す様に頭部(2)に2
1個前後の電極群(7)を上述の基準で載置し、脳内神
経活動に基づく電位測定が行なわれる。この様に測定さ
れた神経活動の電位は電気刺激,光刺激,音刺激等の種
々の刺激に対する誘発電位、或は刺激を加えない状態で
の神経活動の電位であってもよく、測定値は増幅器(2
6)→マルチプレクサ(27)→A/D(28)を介して入力ポ
ート(34)からコンピュータ(29)にデジタルデータと
して供給され、RAM(33)上に格納される。
Sixth step ST At 6 the head as shown in FIG. 2 (2) 2
About one electrode group (7) is placed on the basis of the above-mentioned standard, and the potential measurement based on the nerve activity in the brain is performed. The potential of the nerve activity measured in this way may be an evoked potential for various stimuli such as electrical stimulation, light stimulation, and sound stimulation, or a potential of the nerve activity in a state where no stimulation is applied. Amplifier (2
6) → Multiplexer (27) → Digital data is supplied from input port (34) to computer (29) via A / D (28) and stored in RAM (33).

第7ステップST7では神経活動の電位のうちから1サ
ンプルクロックの電位を取り出しコンピュータ(29)に
指定する。
To specify the computer (29) retrieves the potential of one sample clock from among the potential of the seventh step ST 7 the neural activity.

次の第8ステップST8では電流双極子を頭蓋内の所定
位置に置いたと仮定したときの指定した電極(7)位置
の伝達行列をコンピュータ(29)の演算手段(29b)が
演算し、電流双極子が発生する各電極位置の電位を計算
する。一般的に神経活動電位の発生源を電流双極子と仮
定したときその電流双極子により頭皮上に発生する電位
Vcは(1)式で表される。
The next current dipoles in the eighth step ST 8 specified electrode (7) when it is assumed that at a predetermined position of the intracranial computing means the position of the transfer matrix computer (29) (29 b) is calculated, the current Calculate the potential at each electrode position where a dipole occurs. Generally, the potential generated on the scalp by the current dipole when the source of the nerve action potential is assumed to be a current dipole
Vc is expressed by equation (1).

Vc=A(r)・p ・・・(1) ただし、p:電流双極子のベクトル成分、 r:電流双極子の位置、 A(r):電極の数をMとするとM行3列の伝
達行列(双極子の位置rの関数) である。
Vc = A (r) · p (1) where p: vector component of the current dipole, r: position of the current dipole, A (r): the number of electrodes is M, and M rows and 3 columns Is the transfer matrix (a function of the dipole position r).

ここで頭蓋内の脳を無限一様の媒質と考えた場合に仮
定した電流双極子から発生する電位をφ∞とし、この電
位から第4図に示す様に頭部(1)の頭蓋骨内に眼窩,
鼻腔,外耳道等の空洞部(2)及び脳(4)を考えた不
均質媒体の電位に変換することを考える。
Here, the potential generated from the current dipole assumed when the brain in the skull is considered to be an infinitely uniform medium is defined as φ 、, and this potential is applied to the skull of the head (1) as shown in FIG. Orbit,
Consider conversion to a potential of a heterogeneous medium in consideration of a cavity (2) such as a nasal cavity or an ear canal and a brain (4).

第4図に於いて、 Ψ0:脳,空洞以外の組織における電位 Ψ1:脳内における電位 Ψ2:空洞内における電位 Ψout:頭蓋外における電位 Ω0:脳,空洞以外の組織の領域 Ω1:脳の領域 Ω2:空洞の領域 Ωout:頭蓋外の領域 σ0:脳,空洞以外の組織の導電率 σ1:脳の導電率 σ2:空洞の導電率 σout:頭蓋外の導電率 s0,s1,s2:各領域との境界 とすると、電流双極子を領域Ω内に置き、この領域が
無限一様媒質であると仮定したときのこの電流双極子か
ら発生する電位をφ∞とすると、φ∞は式(1)で与え
られる ここでσは無限一様媒質である脳の導電率 rmは電極取付位置 領域をΩとし領域内に電流湧き出し口がある場合その領
域内ではポアソンの方程式で電位を記述できる。即ち領
域Ω内で ここでσは導電率 1は電流湧き出しの強さ φは電位 このポアソンの式は境界要素法では解きにくいので、次
の式を定義する。
In Fig. 4, Ψ 0 : potential in the tissues other than the brain and cavities Ψ 1 : potential in the brain Ψ 2 : potential in the cavities Ψ out: potential outside the skull Ω 0 : area of the tissues other than the brain and cavities Ω 1 : Brain region Ω 2 : Cavity region Ωout: Extracranial region σ 0 : Conductivity of tissues other than brain and cavity σ 1 : Brain conductivity σ 2 : Cavity conductivity σout: Extracranial conductivity s 0 , s 1 , s 2 : Assuming that each region is a boundary, the current dipole is placed in the region Ω 1 and the potential generated from this current dipole when this region is assumed to be an infinite uniform medium Is φ∞, φ∞ is given by equation (1) Here, σ 1 is the conductivity of the brain, which is an infinitely uniform medium, and the rm is the electrode mounting position area, and if there is a current outlet in the area, the potential can be described by Poisson's equation in that area. That is, within the region Ω Here, σ is the conductivity 1 is the strength of the current source φ is the potential Since the Poisson's equation is difficult to solve by the boundary element method, the following equation is defined.

この式(4)を用いればポアソンの方程式は次のラプ
ラスの式となり、境界要素法で解けることになる。
If this equation (4) is used, the Poisson equation becomes the following Laplace equation, which can be solved by the boundary element method.

式(5)の境界条件として、四つの領域の境界S0,S1,
S2上では電位及び電流密度が等しいので次の式が成立す
る。
As the boundary conditions of the equation (5), the boundaries S 0 , S 1 ,
Since S potential and current density are equal on the two following equation holds.

ここでnは外向きの法線を表わす。 Here, n represents an outward normal.

以上式(5)と(6)を境界要素法を用いて解くこと
により、不均質媒質における電位が求まる。
By solving the equations (5) and (6) using the boundary element method, the potential in the heterogeneous medium is obtained.

次の第9ステップST9では第6ステップST6で測定した
神経活動の測定電位(Vmとする)から直接電流双極子を
求めるのは困難なので次に述べる方法で電流双極子を求
める。
Determine the direct current dipole from the measured potential of the next neural activity measured in the ninth step ST sixth step ST 6 in 9 (a Vm) obtains the current dipole in described next process so difficult.

上述の測定電位Vmと(1)式で求めた不均質媒質での
電位Vcとの二乗誤差をSとするとSは(7)式で表され
る。
Assuming that a square error between the above-described measured potential Vm and the potential Vc in the heterogeneous medium obtained by the equation (1) is S, S is expressed by the equation (7).

S=(Vm−Vc)・(Vm−Vc) ‥‥(7) ここでtは転置行列である。S = (Vm−Vc) t · (Vm−Vc) ‥‥ (7) where t is a transposed matrix.

この二乗誤差Sを最小とするような電流双極子の位置
rとベクトル成分pを求める。電流双極子の位置rを任
意に固定したとき(7)式を最小にするベクトルpは
(1)式とから次の様に求まる。
The position r and vector component p of the current dipole that minimizes the square error S are obtained. When the position r of the current dipole is fixed arbitrarily, the vector p that minimizes the expression (7) is obtained from the expression (1) as follows.

p=(AtA)-1・At・Vm ‥‥(8) ベクトル成分pをこの様に選んだとき、二乗誤差Sは
電流双極子の位置rだけの関数として S0=Vmt・(EM−A(AtA)-1At)Vm ‥‥(9) ここでEMはM次の単位行列として求まる。
p = (A t A) −1 · A t · V m ‥‥ (8) When the vector component p is selected in this manner, the square error S is expressed as a function of only the position r of the current dipole, and S 0 = V m t · (E M -A (a t a ) -1 a t) Vm ‥‥ (9) where E M is obtained as M following matrix.

次の第10ステップST10では二乗誤差S0を最小にする電
流双極子の位置rを求め、二乗誤差が基準値以下である
か否かの判断がコンピュータ(29)で成される。
Obtain the position r of the current dipole tenth step ST 10 the square error S 0 of the next to minimize square error determination is made as to whether less than the reference value is performed in the computer (29).

この二乗誤差が基準以上である場合はシンプレックス
法によって電流双極子の位置を第11ステップST11に示す
様に移動させて、第8ステップST8に戻して二乗誤差の
値が収束する迄この動作を繰り返す。尚上述のシンプレ
ックス法は非線形最適化手法の一つであり、反復計算を
行なうことによって近似解を求めるものである。この反
復計算を行なうとき、例えば頭蓋内に正四面体を設定
し、正四面体の四つの頂点位置に等価双極子を仮定し、
その等価双極子が発生する頭皮上の電極位置での電位
と、実測電位との二乗誤差を各等価双極子ごとに計算
し、そのうちで一番大きな二乗誤差の値をもつ頂点を、
二乗誤差が小さくなる方向へ移動させる。このときどこ
へ移動させるかのアルゴリズムは(10)式にのっとって
行われる。
If this square error is beyond the move as indicating the position of the current dipole to a 11 step ST 11 by the simplex method, this operation until the value of the square error is returned to the eighth step ST 8 converges repeat. The simplex method described above is one of the nonlinear optimization methods, and an approximate solution is obtained by performing an iterative calculation. When performing this iterative calculation, for example, a regular tetrahedron is set in the skull, and an equivalent dipole is assumed at four vertex positions of the regular tetrahedron,
The square error between the potential at the electrode position on the scalp where the equivalent dipole occurs and the measured potential is calculated for each equivalent dipole, and the vertex having the largest square error value is calculated.
Move in the direction in which the square error decreases. At this time, the algorithm of where to move is performed according to equation (10).

ここでXは四面体の頂点位置 Xhは二乗誤差が最大となる頂点位置 XmはXhを除いた全頂点での重心 α,β,γは定数 Xr,Xe,Xcは上記式での計算後の値 この三つの式を計算しながら、四面体の各頂点を、二
乗誤差が小さくなる方へ移動させ、停止条を満足したと
ころで停止する。この停止したときの位置が、最終的に
求まった位置と決定する。
Where X is the vertex position of the tetrahedron Xh is the vertex position at which the square error is the maximum Xm is the center of gravity α, β, and γ at all vertices excluding Xh The constants Xr, Xe, and Xc are the values after calculation using the above equation Value While calculating these three equations, each vertex of the tetrahedron is moved to the direction where the square error is reduced, and stops when the stop condition is satisfied. The position at the time of the stop is determined as the position finally obtained.

この様に二乗誤差の値が収束して“YES"の状態になり
基準値以下になったら、第13ステップST12の様にその位
置の電流双極子を等価双極子として、位置をRAM(33)
等のメモリに記憶させる。
If this value of the squared error as is converged "YES" state becomes equal to or less than a reference value, a current dipole at that location as the thirteenth step ST 12 as an equivalent dipole located a RAM (33 )
And the like.

次に、第12ステップST12で決定した位置の等価双極子
の第8式に示すベクトル成分pを第13ステップST13に示
す様にコンピュータ(29)の演算部(29)で演算する。
Next, operation in the eighth arithmetic unit of the computer (29) as indicating the vector components p to the 13 step ST 13 shown in equation of the equivalent dipole of the position determined by the twelfth step ST 12 (29).

次の第14ステップST14では実測された電位に対して電
流双極子から求めた電位がどの程度近似しているかの程
度を表す双極子度dを計算する。この双極子度dは(1
1)式で求められる。
Calculating a dipole degree d which represents the degree to which the potential obtained from the current dipole for the next 14 step ST 14 the actually measured potential is the degree to which the approximation. This dipole degree d is (1
1) It is calculated by the formula

ここでMは電極の数である。 Here, M is the number of electrodes.

次にこの双極子度dの値を予め決めておき、限界値以
上か否かを第15ステップST15で判断する。例えば双極子
度dの限界値を90%以上とし、90%以上のものは有効と
し、90%以下では第7ステップST7に戻し次の時点のサ
ンプリング値を指定する。双極子度dが90%以上であれ
ば第16ステップST16に示す様に、表示手段のCRT(22)
上に電流双極子の位置とベルトル成分を三次元で表した
頭部(1)の図形内に表示する。
Then determined in advance the value of the dipole of d, it is determined whether or limit value in the 15 step ST 15. For example the limit value of the dipole degree d is 90% or more, of 90% or more is effective, is 90% or less to specify a sampling value of the next time returns to the seventh step ST 7. As dipole degree d is shown in 16 step ST 16, if 90% or more, the display unit CRT (22)
Above, the position of the current dipole and the Bertle component are displayed in a three-dimensional figure of the head (1).

この様にして計算で求めた等価双極子と眞の双極子位
置(実験的に定める)との隔りΔRを縦軸にとり横軸に
空洞部(2)からの距離Zをとり水平面(12)と回転水
平面(13)とのなす角度をθ=20゜としてこの回転水平
面(13)を基準に電極群(7)を配設した場合の測定結
果を第5図の特性曲線(35)で示す。同様に国際電極配
置法に基づく電極配置法での測定結果を第5図の特性曲
線(36)で示してある。
The distance ΔR between the equivalent dipole calculated in this way and the true dipole position (determined experimentally) is plotted on the vertical axis, the distance Z from the cavity (2) is plotted on the horizontal axis, and the horizontal plane (12) The characteristic curve (35) in FIG. 5 shows the measurement results when the electrode group (7) is arranged with the angle between the rotating horizontal plane (13) and the horizontal plane (13) as θ = 20 °. . Similarly, a measurement result by the electrode arrangement method based on the international electrode arrangement method is shown by a characteristic curve (36) in FIG.

この特性曲線図から解る様に空洞部(2)を考慮して
いない従来の国際電極配置法に比べて眞の双極子位置
(ΔR=0の位置)と計算で求めた等価双極子位置との
デビエーションが極めて小さくなり、等価双極子位置の
ベクトル成分が精度よく求まり、極めて有効的な頭部内
等価電流双極子追跡装置であることが解る。
As can be seen from this characteristic curve, the true dipole position (position of ΔR = 0) and the calculated equivalent dipole position are compared with the conventional international electrode arrangement method in which the cavity (2) is not considered. It can be seen that the deviation is extremely small, the vector component of the equivalent dipole position is obtained with high accuracy, and that the device is an extremely effective head equivalent current dipole tracking device.

尚、上記実施例では神経活動部位を等価双極子として
推定する場合を述べたが、通常の脳波測定に於いても頭
蓋骨の不均質性を加味して電極配置を行うので空洞部の
影響による脳波測定誤差が少くなり、より正確な脳波診
断を行うことが出来る。
In the above embodiment, the case where the neural activity site is estimated as an equivalent dipole has been described.However, in the normal electroencephalogram measurement, the electrode arrangement is performed in consideration of the heterogeneity of the skull. Measurement errors are reduced, and more accurate brain wave diagnosis can be performed.

又、上例では国際電極配置法について、適用したが、
国際電極配置法の簡便法であるHell stron法、東大小児
科法、岡山大小児科法等にも適用可能であり本発明の要
旨を逸脱しない範囲で種々の変形が可能である。
In the above example, the international electrode placement method was applied.
The method is also applicable to the Hellstron method, which is a simple method of the international electrode placement method, the University of Tokyo pediatrics method, the Okayama University pediatrics method, and various modifications are possible without departing from the gist of the present invention.

〔発明の効果〕〔The invention's effect〕

本発明は叙上の様に構成させたので空洞部の影響を受
けずに脳内情報を正確に取り出すことの出来る特徴を有
する。
Since the present invention is configured as described above, it has a feature that information in the brain can be accurately extracted without being affected by the cavity.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の電極配置法を説明するための模式図、
第2図は本発明の生体内等価電流双極子表示装置の1例
を示す系統図、第3図は第2図のフロチャート例、第4
図は不均質媒質を説明する頭部模式図、第5図は眞の双
極子位置に対する計算で求めた等価双極位置に対する本
発明電極配置法と従来の電極配置法とを比較するための
特性曲線図、第6図は国際電極配置法の手順を示す電極
配置図、第7図は国際電極配置法の脳と電極の関係を示
す模式図、第8図は不均質媒体の影響を説明するための
頭部模式図である。 (1)は頭部、(2)は空洞部、(5)は鼻根、(6)
は後頭極、(7)は電極、(12)は水平面、(13)は回
転水平面、(18)はデジタイザ、(19)は電極位置信号
入力装置、(22)は表示手段、(23)は生体内等価電流
双極子追跡装置、(25)は電位測定手段、(29)はコン
ピュータである。
FIG. 1 is a schematic diagram for explaining the electrode arrangement method of the present invention,
FIG. 2 is a system diagram showing an example of an in vivo equivalent current dipole display device of the present invention, FIG. 3 is an example of a flowchart of FIG.
The figure is a schematic diagram of the head explaining the heterogeneous medium, and FIG. 5 is a characteristic curve for comparing the electrode arrangement method of the present invention and the conventional electrode arrangement method with respect to the equivalent dipole position obtained by calculation for the true dipole position. Fig. 6, Fig. 6 is an electrode layout diagram showing the procedure of the international electrode placement method, Fig. 7 is a schematic diagram showing the relationship between the brain and the electrodes in the international electrode placement method, and Fig. 8 is for explaining the effect of heterogeneous media. FIG. (1) head, (2) cavity, (5) root of nose, (6)
Is the occipital pole, (7) is an electrode, (12) is a horizontal plane, (13) is a rotating horizontal plane, (18) is a digitizer, (19) is an electrode position signal input device, (22) is display means, and (23) is An in vivo equivalent current dipole tracking device, (25) is a potential measuring means, and (29) is a computer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】頭部空洞部を避けて、複数の電位を計測す
る電位測定手段と、 媒質が不均一な上記頭部内の任意の位置に電流双極子を
仮定し、該電流双極子によって作られる上記複数の電極
に夫々対応する電位を演算する演算手段と、 上記電位測定手段の実測値と、上記演算手段の計測値と
の間の二乗誤差を演算する二乗誤差演算手段と、 上記二乗誤差演算手段から得た二乗誤差値を最小にする
電流双極子の位置とベクトル成分を求めて等価電流双極
子とする等価電流双極子設定手段とを有することを特徴
とする頭部内等価電流双極子追跡装置。
1. A potential measuring means for measuring a plurality of potentials avoiding a head cavity, and a current dipole is assumed at an arbitrary position in the head where a medium is non-uniform. Calculating means for calculating potentials respectively corresponding to the plurality of electrodes to be formed; square error calculating means for calculating a square error between an actually measured value of the potential measuring means and a measured value of the calculating means; Equivalent current dipole in the head characterized by comprising equivalent current dipole setting means for obtaining the position and vector component of the current dipole that minimizes the squared error value obtained from the error calculation means and for setting the equivalent current dipole. Child tracking device.
JP63086463A 1988-04-08 1988-04-08 Equivalent current dipole tracking device in the head Expired - Lifetime JP2804961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63086463A JP2804961B2 (en) 1988-04-08 1988-04-08 Equivalent current dipole tracking device in the head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63086463A JP2804961B2 (en) 1988-04-08 1988-04-08 Equivalent current dipole tracking device in the head

Publications (2)

Publication Number Publication Date
JPH01256931A JPH01256931A (en) 1989-10-13
JP2804961B2 true JP2804961B2 (en) 1998-09-30

Family

ID=13887647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63086463A Expired - Lifetime JP2804961B2 (en) 1988-04-08 1988-04-08 Equivalent current dipole tracking device in the head

Country Status (1)

Country Link
JP (1) JP2804961B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2294839T3 (en) * 1998-05-08 2008-04-01 The University Of Sydney MEASURE OF THE ELECTROPHYSIOLOGICAL VISUAL FIELD.
CN118494967A (en) 2019-07-29 2024-08-16 里珍纳龙药品有限公司 Medical device packages and related methods
USD906102S1 (en) 2019-07-29 2020-12-29 Regeneron Pharmaceuticals, Inc. Packaging

Also Published As

Publication number Publication date
JPH01256931A (en) 1989-10-13

Similar Documents

Publication Publication Date Title
US11013444B2 (en) Method and device for determining and presenting surface charge and dipole densities on cardiac walls
US5119816A (en) EEG spatial placement and enhancement method
EP0555394B1 (en) Method and apparatus for imaging electrical activity in a biological system
KR102280367B1 (en) Method, device and program for providing position information based on 10-20 system
JP3364507B2 (en) Method and system for estimating and displaying current source distribution in a living body
EP2499585B1 (en) Methods and systems for channel selection
Lemieux et al. Calculation of electrical potentials on the surface of a realistic head model by finite differences
Fischer et al. Application of high-order boundary elements to the electrocardiographic inverse problem
Bayford et al. Solving the forward problem in electrical impedance tomography for thehuman head using IDEAS (integrated design engineering analysis software), a finite element modelling tool
JP2804961B2 (en) Equivalent current dipole tracking device in the head
JP2626712B2 (en) In vivo equivalent current dipole display
JPH0399630A (en) Equivalent dipole measuring device
CN112957027A (en) Electrical impedance tomography method for intracranial hemorrhage image reconstruction
JPH0342897B2 (en)
JP2611960B2 (en) Dipole estimation method
EP4397269A1 (en) Positioning system, positioning method, interventional surgery system, electronic device and storage medium
JPH10201728A (en) Intracerebral dipole tracking system by fixing assumed dipole position of background brain potential
JP3191858B2 (en) Tracking device of dipole in brain by recording EEG under brain
JPH0231736A (en) In vivo equivalent current dipole tracking apparatus
CN114431851A (en) Modeling method, device and electronic device for neural electrophysiological positive problem
Walker Epicardial potential distributions calculated from body surface measurements using multiple torso models
CN115619965A (en) Voxelization of 3D structural medical images of the human brain
JPH10276996A (en) Estimating device for organism action current source
JPH0313892B2 (en)