JP2793740B2 - Surveying instrument - Google Patents
Surveying instrumentInfo
- Publication number
- JP2793740B2 JP2793740B2 JP12908292A JP12908292A JP2793740B2 JP 2793740 B2 JP2793740 B2 JP 2793740B2 JP 12908292 A JP12908292 A JP 12908292A JP 12908292 A JP12908292 A JP 12908292A JP 2793740 B2 JP2793740 B2 JP 2793740B2
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- light
- tracking
- distance measuring
- objective lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 claims description 102
- 230000000149 penetrating effect Effects 0.000 claims description 7
- 238000005259 measurement Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000006059 cover glass Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Measurement Of Optical Distance (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、測距対象物を視準する
ための視準光学系と、測距対象物までの距離を測距する
ための測距光学系と、測距対象物を垂直方向、水平方向
に走査して測量機本体を測距対象物に自動追尾させる自
動追尾光学系とを備えた測量機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a collimating optical system for collimating a distance measuring object, a distance measuring optical system for measuring a distance to the distance measuring object, and a distance measuring object. And an automatic tracking optical system that scans in the vertical and horizontal directions to automatically track the body of the surveying instrument to the object to be measured.
【0002】[0002]
【従来の技術】従来から、測量機には、測距対象物とし
てのコーナーキューブを視準するための視準光学系と、
測距対象物までの距離を測距するための測距光学系と、
測距対象物を垂直方向、水平方向に走査して測量機本体
を測距対象物に自動追尾させる自動追尾光学系とを備え
たものが知られている。この従来の測量機では、その自
動追尾光学系が測距光学系、視準光学系とは独立して設
けられている。2. Description of the Related Art Conventionally, a surveying instrument has a collimating optical system for collimating a corner cube as an object to be measured.
A distance measuring optical system for measuring a distance to a distance measuring object,
2. Description of the Related Art There is known an apparatus including an automatic tracking optical system that scans a distance measuring object in a vertical direction and a horizontal direction to automatically track a surveying instrument body to the distance measuring object. In this conventional surveying instrument, the automatic tracking optical system is provided independently of the distance measuring optical system and the collimating optical system.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来の
測量機では、自動追尾光学系の光軸と視準光学系、測距
光学系の光軸とがずれており、無限遠基準で測距光学系
の測距中心と自動追尾光学系の追尾中心とを合致させて
いるため、遠距離の測距対象物の測距に関しては支障な
く自動追尾を行うことができても、近距離の測距対象物
の測距に関しては、視準光学系の光軸と自動追尾光学系
の光軸とのずれに基づき自動追尾光学系の追尾中心と測
距光学系の測距中心とにずれを生じ、測距対象物により
反射される測距に使用する光束が測距距離に応じて変動
し、測距精度が低下するという問題点がある。However, in the conventional surveying instrument, the optical axis of the automatic tracking optical system is deviated from the optical axis of the collimating optical system and the distance measuring optical system. Since the distance measurement center of the system is matched with the tracking center of the automatic tracking optical system, even if automatic tracking can be performed without difficulty for distance measurement of a long distance measurement target, short distance measurement is possible. Regarding the distance measurement of the object, a deviation occurs between the tracking center of the automatic tracking optical system and the distance measurement center of the distance measurement optical system based on the deviation between the optical axis of the collimating optical system and the optical axis of the automatic tracking optical system, There is a problem that a light beam used for distance measurement reflected by the object to be measured fluctuates according to the distance measurement distance, and the distance measurement accuracy is reduced.
【0004】本発明は、上記の事情に鑑みて為されたも
ので、その目的とするところは、測距対象物までの距離
の遠近にかかわらず、測距光学系の測距中心と自動追尾
光学系の追尾中心とを合致させることのできる測量機を
提供するところにある。The present invention has been made in view of the above circumstances, and an object thereof is to automatically track a distance measuring center of a distance measuring optical system regardless of the distance to a distance measuring object. It is an object of the present invention to provide a surveying instrument that can match the tracking center of an optical system.
【0005】[0005]
【課題を解決するための手段】本発明に係わる測量機
は、上記の課題を解決するため、測距対象物を視準する
ための視準光学系と、前記測距対象物までの距離を測距
するための測距光学系と、前記測距対象物を垂直方向、
水平方向に走査して測量機本体を該測距対象物に自動追
尾させる自動追尾光学系とを備え、前記視準光学系は貫
通部を有する対物レンズを有し、該視準光学系の光路に
は追尾投光系から出射される追尾光を前記貫通部を通し
て出射するにように反射させる第1反射部材が設けられ
ると共に、前記測距対象物により反射されて前記対物レ
ンズを介して入射する前記追尾光を前記自動追尾光学系
の追尾受光系に向けて反射させる第2反射部材が設けら
れ、前記測距光学系の投光系からの光束を前記対物レン
ズに向けて反射させるとともに測距対象物からの反射光
束を前記対物レンズを介して前記測距光学系の受光系に
向けて反射させるための第3反射部材を設けたことを特
徴としている。In order to solve the above-mentioned problems, a surveying instrument according to the present invention has a collimating optical system for collimating an object to be measured and a distance to the object to be measured. A distance measuring optical system for measuring a distance, and the object to be measured in a vertical direction,
An automatic tracking optical system that scans in the horizontal direction to automatically track the surveying instrument main body to the object to be measured, wherein the collimating optical system has an objective lens having a penetrating portion, and an optical path of the collimating optical system. Is provided with a first reflecting member that reflects tracking light emitted from the tracking light projecting system so as to be emitted through the through portion, and is reflected by the object to be measured and enters through the objective lens. A second reflecting member is provided for reflecting the tracking light toward a tracking light receiving system of the automatic tracking optical system, and reflects a light beam from the light projecting system of the distance measuring optical system toward the objective lens and measures a distance. A third reflecting member is provided for reflecting the reflected light beam from the object toward the light receiving system of the distance measuring optical system via the objective lens.
【0006】[0006]
【作用】本発明に係わる測量機によれば、測定者は視準
光学系を覗いて測距対象物を視準できる。自動追尾光学
系の追尾投光系から出射された追尾光は、視準光学系の
光路に設置の第1反射部材により反射されて視準光学系
の光軸と同軸とされ、その対物レンズの貫通部を介して
測距対象物に向かって投光される。測距対象物により反
射された追尾光はその対物レンズを介して集光され、視
準光学系の光路に設置の第2反射部材により反射されて
自動追尾光学系の追尾受光系に受光される。測距光学系
の測距光束は視準光学系の光路に設置の第3反射部材に
より反射されて対物レンズを介して測距対象物に投光さ
れ、その測距対象物により反射された測距光束は対物レ
ンズを介して第3反射部材に導かれ、この第3反射部材
により反射されて測距光学系に受光される。According to the surveying instrument according to the present invention, the measurer can collimate the object to be measured by looking into the collimating optical system. Tracking light emitted from the tracking light projecting system of the automatic tracking optical system is reflected by the first reflecting member provided in the optical path of the collimating optical system, and is made coaxial with the optical axis of the collimating optical system. The light is projected toward the object to be measured through the penetrating portion. The tracking light reflected by the object to be measured is condensed via the objective lens, reflected by the second reflecting member provided in the optical path of the collimating optical system, and received by the tracking light receiving system of the automatic tracking optical system. . The distance measuring light beam of the distance measuring optical system is reflected by the third reflecting member provided in the optical path of the collimating optical system, projected on the object to be measured via the objective lens, and reflected by the object to be measured. The distance luminous flux is guided to the third reflecting member via the objective lens, reflected by the third reflecting member, and received by the distance measuring optical system.
【0007】[0007]
【実施例】以下に、本発明に係わる測量機の実施例を図
面を参照しつつ説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a surveying instrument according to the present invention will be described below with reference to the drawings.
【0008】図1において、1は測量台、2は測点に設
置の測距対象物としてのコ−ナ−キュ−ブである。その
測量台1はここでは地上に設置される。この測量台1に
は測量機3が据え付けられている。この測量機3は固定
台4と水平回動部5とを有する。水平回動部5は、図2
に示すように固定台4に対して矢印A方向に回転され、
支持部6を有する。支持部6には垂直方向回動軸7が設
けられ、垂直方向回動軸7には測量機本体8が設けられ
ている。測量機本体8は、水平回動部5の回転により水
平方向に回動されると共に、垂直方向回動軸7の回転に
より図1に矢印Bで示すように垂直方向に回転される。In FIG. 1, reference numeral 1 denotes a survey stand, and 2 denotes a corner cube as a distance measuring object set at a measuring point. The survey stand 1 is installed on the ground here. The surveying instrument 1 is provided with a surveying instrument 3. The surveying instrument 3 has a fixed base 4 and a horizontal rotating unit 5. The horizontal rotation unit 5 is shown in FIG.
Is rotated in the direction of arrow A with respect to the fixed base 4 as shown in FIG.
It has a support portion 6. The support portion 6 is provided with a vertical rotation shaft 7, and the vertical rotation shaft 7 is provided with a surveying instrument main body 8. The surveying instrument body 8 is rotated in the horizontal direction by the rotation of the horizontal rotation unit 5 and is also rotated in the vertical direction by the rotation of the vertical rotation shaft 7 as shown by the arrow B in FIG.
【0009】その測距装置本体8には、図3に示すよう
に、視準光学系9、測距光学系10、自動追尾光学系1
1が設けられている。この視準光学系9はコーナキュー
ブ2を視準する役割を果たし、カバーガラス12、対物
レンズ13、第1反射部材としての光路合成プリズム1
4、光路分割プリズム15、合焦レンズ16、ポロプリ
ズム17、焦点鏡18、接眼レンズ19を有する。対物
レンズ13は貫通部20を有する。光路合成プリズム1
4は自動追尾光学系11の追尾投光系11Aの一部を構
成している。自動追尾光学系11は測距対象物を垂直方
向、水平方向に走査して測量機本体を測距対象物に自動
追尾させる役割を果たし、追尾投光系11Aはレーザー
ダイオード21、コリメーターレンズ22、水平方向偏
向素子23、垂直方向偏向素子24、反射プリズム2
5、25´を有する。レーザーダイオード21は追尾光
としての赤外レーザー光(波長900ナノメーター)を
出射し、コリメータレンズ24はその赤外レーザー光を
平行光束にする。水平方向偏向素子23、垂直方向偏向
素子24には音響光学素子が用いられ、図4に示すよう
に、水平方向偏向素子24は赤外レーザー光を水平方向
Hに偏向させ、垂直方向偏向素子25は水平方向Hに偏
向された赤外レーザー光を垂直方向Vに偏向させる。光
路合成プリズム14は追尾投光系11Aの光軸O1を対
物レンズ13の光軸である視準光学系9の光軸Oに合致
させる第1反射部材としての役割を果たし、反射面14
aを有する。その水平方向H、垂直方向Vに偏向された
赤外レーザー光は、反射プリズム25、25´、全反射
面14aにより反射されて、対物レンズ13に導かれ、
その貫通部20を通して測量機本体8の外部に出射さ
れ、コーナーキューブ2が走査される。そのコーナーキ
ューブ2の走査は、図5に示すように、水平方向Hに走
査を行い、次に垂直方向Vに偏向させながら水平方向H
に走査するという手順によって行われ、符号26はその
赤外レーザー光Pのコーナーキューブ2を含む面内での
ビームスポットを示している。As shown in FIG. 3, a collimating optical system 9, a distance measuring optical system 10, an automatic tracking optical system 1
1 is provided. The collimating optical system 9 plays a role of collimating the corner cube 2, and includes a cover glass 12, an objective lens 13, and an optical path combining prism 1 as a first reflecting member.
4. It has an optical path splitting prism 15, a focusing lens 16, a Porro prism 17, a focusing mirror 18, and an eyepiece 19. The objective lens 13 has a through portion 20. Optical path synthesis prism 1
Reference numeral 4 denotes a part of the tracking light projecting system 11A of the automatic tracking optical system 11. The automatic tracking optical system 11 serves to scan the object to be measured in the vertical and horizontal directions to automatically track the surveying instrument body to the object to be measured, and the tracking light projecting system 11A includes a laser diode 21 and a collimator lens 22. , Horizontal deflection element 23, vertical deflection element 24, reflection prism 2
5, 25 '. The laser diode 21 emits infrared laser light (wavelength 900 nanometers) as tracking light, and the collimator lens 24 converts the infrared laser light into a parallel light beam. An acousto-optic element is used for the horizontal deflection element 23 and the vertical deflection element 24. As shown in FIG. 4, the horizontal deflection element 24 deflects the infrared laser light in the horizontal direction H, and the vertical deflection element 25 Deflects the infrared laser light deflected in the horizontal direction H in the vertical direction V. The optical path combining prism 14 serves as a first reflecting member that matches the optical axis O1 of the tracking light projecting system 11A with the optical axis O of the collimating optical system 9, which is the optical axis of the objective lens 13, and serves as a reflecting surface 14
has a. The infrared laser light deflected in the horizontal direction H and the vertical direction V is reflected by the reflecting prisms 25 and 25 'and the total reflection surface 14a and guided to the objective lens 13,
The light is emitted to the outside of the surveying instrument main body 8 through the penetrating portion 20 and the corner cube 2 is scanned. The corner cube 2 is scanned in the horizontal direction H as shown in FIG.
Reference numeral 26 denotes a beam spot of the infrared laser light P in a plane including the corner cube 2.
【0010】コーナーキューブ2により反射された赤外
レーザー光Pは対物レンズ13の全領域により集光され
て光路分割プリズム15に導かれる。光路分割プリズム
15は反射面15a、反射面15bを有する。反射面15
aは自動追尾光学系11の追尾受光系11Bに向けて赤
外レーザー光Pを反射する。追尾受光系11Bはノイズ
光除去用フィルター27、受光素子28から大略構成さ
れ、追尾受光系11Bの光軸O2も視準光学系9の光軸
Oと合致されており、光路分割プリズム15は可視領域
の光を透過し、赤外レーザー光を追尾受光系11Bに向
けて反射する第2反射部材としての役割を果たす。The infrared laser light P reflected by the corner cube 2 is condensed by the entire area of the objective lens 13 and guided to the optical path splitting prism 15. The optical path splitting prism 15 has a reflecting surface 15a and a reflecting surface 15b. Reflective surface 15
“a” reflects the infrared laser light P toward the tracking light receiving system 11B of the automatic tracking optical system 11. The tracking light receiving system 11B is roughly composed of a noise light removing filter 27 and a light receiving element 28. The optical axis O2 of the tracking light receiving system 11B is also coincident with the optical axis O of the collimating optical system 9, and the optical path splitting prism 15 is visible. It functions as a second reflecting member that transmits light in the region and reflects the infrared laser light toward the tracking light receiving system 11B.
【0011】測距光学系10は投光系29と受光系30
とからなり、投光系28はレ−ザ−光源31を有し、受
光系29は受光素子32を有する。投光系29と受光系
30とは三角プリズム32を有する。レ−ザ−光源30
は測距光束としての赤外レ−ザ−光波を出射する。その
波長は800ナノメーターであり、赤外レーザー光Pの
波長とは異っている。その赤外レ−ザ−光波は三角プリ
ズム32の反射面32aによって反射されて光路分割プ
リズム15の反射面15bに導かれる。この反射面15bは
可視領域の光を透過し、波長800ナノメーターの光を
含む赤外領域の光を反射させる役割を果たす。その反射
面15bに導かれた赤外レーザー光波は反射面15aを透過
して、図6に示すように対物レンズ13の下半分の領域
34を通過して測量機本体8の外部に平面波として出射
される。その赤外レ−ザ−光波はコ−ナ−キュ−ブ2に
より反射され、カバ−ガラス12を介して対物レンズ1
3に戻り、その対物レンズ13の上半分の領域35によ
って集光され、光路分割プリズム15の反射面15aを
透過して反射面15bに導かれ、この反射面15bにより
三角プリズム32の反射面32bに導かれ、受光素子3
3に収束される。その受光素子33の受光出力は、図示
を略す公知の計測回路に入力され、コ−ナ−キュ−ブ2
までの距離が測距される。従って、光路分割プリズム1
5は測距光学系の光軸O3と視準光学系の光軸Oとを合
致させる第3反射部材としても機能する。The distance measuring optical system 10 includes a light projecting system 29 and a light receiving system 30.
The light projecting system 28 has a laser light source 31, and the light receiving system 29 has a light receiving element 32. The light projecting system 29 and the light receiving system 30 have a triangular prism 32. Laser light source 30
Emits an infrared laser light wave as a distance measuring light beam. Its wavelength is 800 nanometers, which is different from the wavelength of the infrared laser light P. The infrared laser light wave is reflected by the reflecting surface 32a of the triangular prism 32 and guided to the reflecting surface 15b of the optical path splitting prism 15. The reflection surface 15b transmits light in the visible region and reflects light in the infrared region including light with a wavelength of 800 nanometers. The infrared laser light wave guided to the reflecting surface 15b passes through the reflecting surface 15a, passes through the lower half area 34 of the objective lens 13 as shown in FIG. Is done. The infrared laser light wave is reflected by the corner cube 2 and passes through the cover glass 12 to the objective lens 1.
3, the light is condensed by the upper half area 35 of the objective lens 13, passes through the reflecting surface 15a of the optical path splitting prism 15, and is guided to the reflecting surface 15b. Led to the light receiving element 3
Converged to 3. The light-receiving output of the light-receiving element 33 is input to a known measuring circuit (not shown), and the corner cube 2
The distance to is measured. Therefore, the optical path splitting prism 1
Reference numeral 5 also functions as a third reflecting member that matches the optical axis O3 of the distance measuring optical system with the optical axis O of the collimating optical system.
【0012】なお、符号36は点滅される赤色ランプ、
37はコリメーターレンズを示し、コリメータレンズの
光軸は視準光学系9の光軸Oと平行にされ、平行赤外光
束が測量機本体からコーナーキューブ2に向けて出射さ
れ、コーナキューブ2の側からも測量機本体の視準方向
を確認できるようにしたものである。Reference numeral 36 denotes a flashing red lamp.
Reference numeral 37 denotes a collimator lens. The optical axis of the collimator lens is parallel to the optical axis O of the collimating optical system 9, and a parallel infrared light beam is emitted from the surveying instrument main body to the corner cube 2, The collimating direction of the surveying instrument body can be confirmed from the side.
【0013】なお、可視領域の光束は、対物レンズ2
0、光路分割プリズム15、合焦レンズ16、ポロプリ
ズム17を介して焦点鏡18に導かれ、測距対象物を含
めてその近傍の像が合焦レンズ16を調節することによ
り焦点鏡18に形成され、測定者はその焦点鏡18に結
像された可視像を接眼レンズ19を介して覗くことによ
り測距対象物を視準できる。The luminous flux in the visible region is reflected by the objective lens 2
0, an optical path splitting prism 15, a focusing lens 16, and a focusing mirror 16, which are guided to a focusing mirror 18 via a porro prism 17. The measured person can collimate the object to be measured by looking through the visible image formed on the focusing mirror 18 through the eyepiece 19.
【0014】図7、図8は本発明に係わる光路分割プリ
ズム15の変形例を示すもので、円柱プリズム38を用
いて光路を分割することとしたものである。FIGS. 7 and 8 show a modification of the optical path splitting prism 15 according to the present invention, in which the optical path is split by using a cylindrical prism 38. FIG.
【0015】この円柱プリズム38は三個の反射面38
a、38b、38cを有する。反射面38aはレーザー光源
31から出射された測距光波を対物レンズ13に向けて
反射し、反射面38bはコーナーキューブ2により反射
されて対物レンズ13に入射した測距光波を受光素子3
3に向けて反射し、反射面38cは対物レンズ13を介
して集光された追尾光を受光素子28に向けて反射する
もので、各反射面の頂点が光軸Oと合致するようにして
視準光学系9の光路に設置され、この変形例による場合
には、対物レンズ13の上側の領域35を介して集光さ
れた追尾光が受光素子28に導かれることになる。The cylindrical prism 38 has three reflecting surfaces 38.
a, 38b and 38c. The reflecting surface 38a reflects the distance measuring light wave emitted from the laser light source 31 toward the objective lens 13, and the reflecting surface 38b reflects the distance measuring light wave reflected by the corner cube 2 and incident on the objective lens 13.
3, the reflecting surface 38c reflects the tracking light condensed through the objective lens 13 toward the light receiving element 28, and the vertex of each reflecting surface coincides with the optical axis O. In the case of this modification, the tracking light collected through the upper area 35 of the objective lens 13 is guided to the light receiving element 28.
【0016】なお、本実施例では、対物レンズ13に貫
通部20を設けているが、この貫通部20に平行平面板
を配置するか、あるいは、対物レンズ13の中心領域の
前後面を平面研磨し、この領域を平行平面鏡に形成して
貫通部20としてもよい。In this embodiment, the objective lens 13 is provided with the penetrating portion 20. A parallel flat plate is disposed in the penetrating portion 20, or the front and rear surfaces of the central region of the objective lens 13 are flat-polished. However, this area may be formed as a parallel plane mirror to form the penetrating portion 20.
【0017】[0017]
【効果】本発明に係わる走査光学系は、以上説明したよ
うに構成したので、測距対象物までの距離の遠近にかか
わらず、測距光学系の測距中心と自動追尾光学系の追尾
中心とを合致させることができるという効果を奏する。The scanning optical system according to the present invention is constructed as described above. Therefore, regardless of the distance to the object to be measured, the distance measuring center of the distance measuring optical system and the tracking center of the automatic tracking optical system are used. Is achieved.
【図1】本発明に係わる測量機の設置状態を示す側面図
である。FIG. 1 is a side view showing an installation state of a surveying instrument according to the present invention.
【図2】本発明に係わる測量機の設置状態を示す平面図
である。FIG. 2 is a plan view showing an installation state of a surveying instrument according to the present invention.
【図3】本発明に係わる測量機の光学系を示す図であ
る。FIG. 3 is a diagram showing an optical system of the surveying instrument according to the present invention.
【図4】自動追尾光学系による偏向を模式的に説明する
ための図である。FIG. 4 is a diagram for schematically explaining deflection by an automatic tracking optical system.
【図5】自動追尾光学系による走査の一例を示す模式図
である。FIG. 5 is a schematic diagram showing an example of scanning by an automatic tracking optical system.
【図6】図3に示す対物レンズの平面図である。FIG. 6 is a plan view of the objective lens shown in FIG.
【図7】図3に示す光路分割プリズムの変形例を示すも
ので、円柱プリズムの正面図である。FIG. 7 is a front view of a cylindrical prism, showing a modification of the optical path splitting prism shown in FIG. 3;
【図8】図7に示す円柱プリズムの側面図である。8 is a side view of the cylindrical prism shown in FIG.
2 コーナーキューブ(測距対象物) 9 視準光学系 10 測距光学系 11 追尾光学系 13 対物レンズ 14 光路合成プリズム(第1反射部材) 15 光路分離プリズム(第2、第3反射部材) 20 貫通部 O、O1、O2、O3 光軸 2 Corner Cube (Range Measurement Object) 9 Collimation Optical System 10 Distance Measurement Optical System 11 Tracking Optical System 13 Objective Lens 14 Optical Path Synthetic Prism (First Reflection Member) 15 Optical Path Separation Prism (Second and Third Reflection Members) 20 Penetration O, O1, O2, O3 Optical axis
───────────────────────────────────────────────────── フロントページの続き (72)発明者 石鍋 郁夫 東京都板橋区蓮沼町75番1号株式会社ト プコン内 (72)発明者 武蔵 良二 東京都板橋区蓮沼町75番1号株式会社ト プコン内 (72)発明者 稲葉 浩 東京都板橋区蓮沼町75番1号株式会社ト プコン内 (72)発明者 斉藤 政宏 東京都板橋区蓮沼町75番1号株式会社ト プコン内 (56)参考文献 特開 昭58−30614(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01C 15/00 G01C 3/06 G01S 7/48──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Ikuo Ishinabe 75-1, Hasunuma-cho, Itabashi-ku, Tokyo Topcon Corporation (72) Inventor Ryuji Musashi 75-1, Hasunuma-cho, Itabashi-ku, Tokyo Topcon Corporation (72) Inventor Hiroshi Inaba 75-1, Hasunuma-cho, Itabashi-ku, Tokyo, Japan Inside Topcon Corporation (72) Inventor Masahiro Saito 75-1, Hasunuma-cho, Itabashi-ku, Tokyo Inside Topcon Corporation (56) References JP-A-58-30614 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01C 15/00 G01C 3/06 G01S 7/48
Claims (1)
と、前記測距対象物までの距離を測距するための測距光
学系と、前記測距対象物を垂直方向、水平方向に走査し
て測量機本体を該測距対象物に自動追尾させる自動追尾
光学系とを備え、前記視準光学系は貫通部を有する対物
レンズを有し、該視準光学系の光路には追尾投光系から
出射される追尾光を前記貫通部を通して出射するによう
に反射させる第1反射部材が設けられると共に、前記測
距対象物により反射されて前記対物レンズを介して入射
する前記追尾光を前記自動追尾光学系の追尾受光系に向
けて反射させる第2反射部材が設けられ、前記測距光学
系の投光系からの光束を前記対物レンズに向けて反射さ
せるとともに測距対象物からの反射光を前記対物レンズ
を介して前記測距光学系の受光系に向けて反射させるた
めの第3反射部材を設けたことを特徴とする測量機。1. A collimating optical system for collimating a distance measuring object, a distance measuring optical system for measuring a distance to the distance measuring object, and An automatic tracking optical system that scans in the horizontal direction to automatically track the surveying instrument main body to the object to be measured, wherein the collimating optical system has an objective lens having a penetrating portion, and an optical path of the collimating optical system. Is provided with a first reflecting member that reflects tracking light emitted from the tracking light projecting system so as to be emitted through the through portion, and is reflected by the object to be measured and enters through the objective lens. A second reflecting member is provided for reflecting the tracking light toward a tracking light receiving system of the automatic tracking optical system, and reflects a light beam from the light projecting system of the distance measuring optical system toward the objective lens and measures a distance. The reflected light from the object is transmitted to the distance measuring light through the objective lens. A surveying instrument provided with a third reflecting member for reflecting light toward a scientific light receiving system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12908292A JP2793740B2 (en) | 1992-05-21 | 1992-05-21 | Surveying instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12908292A JP2793740B2 (en) | 1992-05-21 | 1992-05-21 | Surveying instrument |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05322569A JPH05322569A (en) | 1993-12-07 |
JP2793740B2 true JP2793740B2 (en) | 1998-09-03 |
Family
ID=15000640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12908292A Expired - Lifetime JP2793740B2 (en) | 1992-05-21 | 1992-05-21 | Surveying instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2793740B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19733491B4 (en) * | 1997-08-01 | 2009-04-16 | Trimble Jena Gmbh | Goal finding method for geodetic devices |
JP3784154B2 (en) * | 1997-11-14 | 2006-06-07 | 株式会社トプコン | Surveyor communication system |
JP3805504B2 (en) | 1997-11-14 | 2006-08-02 | 株式会社トプコン | Surveyor communication system |
JP4088906B2 (en) * | 1998-12-16 | 2008-05-21 | 株式会社トプコン | Photo detector of surveying instrument |
JP2003050128A (en) * | 2001-08-07 | 2003-02-21 | Sokkia Co Ltd | Distance measuring angle finder |
JP2004170355A (en) | 2002-11-22 | 2004-06-17 | Topcon Corp | Reflector automatic tracking device |
JP4127503B2 (en) | 2002-11-22 | 2008-07-30 | 株式会社トプコン | Reflector automatic tracking device |
JP4255682B2 (en) | 2002-11-22 | 2009-04-15 | 株式会社トプコン | Reflector automatic tracking device |
JP4519530B2 (en) | 2004-06-09 | 2010-08-04 | 株式会社トプコン | Surveying instrument |
JP5124319B2 (en) * | 2008-03-21 | 2013-01-23 | 株式会社トプコン | Surveying instrument, surveying system, measuring object detection method, and measuring object detection program |
EP2226610A1 (en) | 2009-03-06 | 2010-09-08 | Leica Geosystems AG | Geodesic measuring system and method for identifying a target unit with a geodesic measuring device |
JP6777987B2 (en) * | 2015-12-10 | 2020-10-28 | 株式会社トプコン | measuring device |
JP6673716B2 (en) * | 2016-02-22 | 2020-03-25 | 株式会社キーエンス | Safety scanner |
-
1992
- 1992-05-21 JP JP12908292A patent/JP2793740B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05322569A (en) | 1993-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100378434C (en) | distance measuring device | |
JP2793740B2 (en) | Surveying instrument | |
JP4127503B2 (en) | Reflector automatic tracking device | |
EP1030163A2 (en) | reflective prism device | |
JP2000180168A (en) | Light receiving device of surveying instrument | |
JP2001021354A (en) | Optical position detector | |
JPH095426A (en) | Coaxial lightwave rangefinder | |
US6333783B1 (en) | Distance measuring system | |
JP4023572B2 (en) | Automatic surveying machine | |
JP2000275042A (en) | Automatic surveying machine | |
US3515480A (en) | Opto-electronic radiant energy beam range finder | |
JP3351374B2 (en) | Laser distance measuring device | |
US5867263A (en) | Laser survey instrument having a reflection light blocking means | |
JP3120885B2 (en) | Mirror surface measuring device | |
JP3748112B2 (en) | Surveying instrument | |
US20040090612A1 (en) | Surveying instrument having an auto-collimating function and a distance measuring function | |
JP3250627B2 (en) | Distance measuring device | |
JP2000275043A (en) | Tracking device of automatic surveying instrument | |
JP3843028B2 (en) | Light wave distance meter | |
JP3387961B2 (en) | Automatic tracking surveying instrument | |
JPH08261734A (en) | Shape measuring apparatus | |
JP2002340554A (en) | Distance-measuring optical system for surveying instrument | |
JP2019023650A (en) | Lightwave distance measuring device | |
WO2025022967A1 (en) | Surveying device | |
JPH04166786A (en) | Optical device for emitting and receiving light |