JP2788671B2 - Manufacturing method of anhydrous aluminum chloride - Google Patents
Manufacturing method of anhydrous aluminum chlorideInfo
- Publication number
- JP2788671B2 JP2788671B2 JP20241290A JP20241290A JP2788671B2 JP 2788671 B2 JP2788671 B2 JP 2788671B2 JP 20241290 A JP20241290 A JP 20241290A JP 20241290 A JP20241290 A JP 20241290A JP 2788671 B2 JP2788671 B2 JP 2788671B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- aluminum chloride
- aluminum
- ppm
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 title description 142
- 238000004519 manufacturing process Methods 0.000 title description 7
- 239000007789 gas Substances 0.000 description 98
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 56
- 229910052782 aluminium Inorganic materials 0.000 description 44
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 29
- 238000006243 chemical reaction Methods 0.000 description 23
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 16
- 229910001882 dioxygen Inorganic materials 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 239000001301 oxygen Substances 0.000 description 14
- 229910052760 oxygen Inorganic materials 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 13
- 229910052799 carbon Inorganic materials 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 239000000654 additive Substances 0.000 description 12
- 230000000996 additive effect Effects 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 239000010419 fine particle Substances 0.000 description 11
- 229910003481 amorphous carbon Inorganic materials 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 238000004040 coloring Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000012535 impurity Substances 0.000 description 7
- 238000007086 side reaction Methods 0.000 description 7
- 238000007711 solidification Methods 0.000 description 7
- 230000008023 solidification Effects 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000003086 colorant Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- CAVCGVPGBKGDTG-UHFFFAOYSA-N alumanylidynemethyl(alumanylidynemethylalumanylidenemethylidene)alumane Chemical compound [Al]#C[Al]=C=[Al]C#[Al] CAVCGVPGBKGDTG-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical group [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- -1 that is Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、無水塩化アルミニウムの製造方法に係
り、特に着色がなく、白色度の高い無水アルミニウムの
製造方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for producing anhydrous aluminum chloride, and particularly to a method for producing anhydrous aluminum having no coloring and high whiteness.
無水塩化アルミニウムは、クラッキング反応やフリー
デルクラフツ反応等の酸触媒、炭化水素の異性化反応や
脱水素反応等の触媒。ブチルゴムの製造の重合触媒等の
用途に多用されており、一般に工業的には、アルミニウ
ムを溶融状態に保ち、そのアルミニウム溶湯中に塩素ガ
スを導入して反応させ、生成して昇華した塩化アルミニ
ウムガスをコンデンサーで凝固させて製造している。Anhydrous aluminum chloride is an acid catalyst such as a cracking reaction and a Friedel-Crafts reaction, and a catalyst such as a hydrocarbon isomerization reaction and a dehydrogenation reaction. Aluminum chloride gas is widely used in polymerization catalysts and the like for the production of butyl rubber, and is generally industrially produced by keeping aluminum in a molten state, introducing chlorine gas into the molten aluminum and reacting to produce and sublimate aluminum chloride gas. Is solidified with a condenser.
そして、この無水塩化アルミニウムは、それが純粋で
あると無色、実際には白色の固体であるが、工業的に製
造されたものは鉄等の不純物を含有し、従来の純化され
たものでも淡黄色から灰色(ハンター明度でL値:80〜8
5)を呈し、特に灰色の製品は外観的にもその商品価値
が低下するばかりでなく、例えば反応触媒として使用
し、その後に後処理として水を加えて溶解させたとき、
水溶液中に黒色状の残滓が生じ、この残滓が反応生成物
中に混入して製品の商品価値を低下させたり、副生塩化
アルミニウム溶液の利用が制限されていた。This anhydrous aluminum chloride is colorless if it is pure, and it is actually a white solid.However, industrially produced aluminum chloride contains impurities such as iron, and even conventional purified aluminum chloride is pale. Yellow to gray (Hunter brightness: L value: 80-8)
5), especially gray products are not only reduced in appearance and their commercial value, but also when used, for example, as a reaction catalyst and then dissolved by adding water as a post-treatment.
A black residue was formed in the aqueous solution, and the residue was mixed into the reaction product to reduce the commercial value of the product, and the use of the by-product aluminum chloride solution was restricted.
ところで、工業的に製造される無水塩化アルミニウム
中に存在する着色原因物質については、その色が黄色な
いし橙黄色の場合は主として塩化物であり、また、灰色
の場合は下記の主反応(1)に伴って副次的に生じる副
反応(2)及び(3)の生成物である金属アルミニウム
の微粒子であるとされていた。この場合、着色原因物質
が塩化鉄であれば触媒的作用も果たすので100ppm程度ま
での混入は許容されるが、他の不純物については可及的
少量にすることが要請されていた。By the way, with respect to coloring substances present in industrially produced anhydrous aluminum chloride, when the color is yellow or orange-yellow, it is mainly chloride, and when gray, the following main reaction (1) Were considered to be fine particles of metallic aluminum, which is a product of the side reactions (2) and (3) that occur as a secondary reaction. In this case, if the coloring agent is iron chloride, it also acts as a catalyst, so that it can be mixed up to about 100 ppm, but other impurities have been requested to be as small as possible.
2Al+3Cl2→2AlCl3 (1) AlCl3+2Al→3AlCl (2) 3AlCl→AlCl3+2Al (3) そこで、従来においては、この副反応を抑制するため
に、反応温度(溶湯温度)を低くしたり、あるいは、充
填塔内で金属アルミニウム片等の充填物中に生成した塩
化アルミニウムガスを長時間滞留させ、これによって副
生した金属アルミニウム微粒子を充填物中に付着させ、
そこで成長せしめて除去する(特公昭49−42,599号公
報、米国特許第3,152,864号明細書)等の方法が提案さ
れている。2Al + 3Cl 2 → 2AlCl 3 (1) AlCl 3 + 2Al → 3AlCl (2) 3AlCl → AlCl 3 + 2Al (3) Therefore, conventionally, in order to suppress this side reaction, the reaction temperature (melt temperature) is reduced. Alternatively, the aluminum chloride gas generated in the packing such as the metal aluminum pieces in the packed tower is allowed to stay for a long time, and thereby the metal aluminum fine particles produced as a by-product adhere to the packing,
Therefore, a method of growing and removing (Japanese Patent Publication No. 49-42,599, U.S. Pat. No. 3,152,864) has been proposed.
しかしながら、反応温度を低くして副反応を可及的に
抑制しても、アルミニウムサブハライド(AlCl)の生成
は不可避的であり、また、生成した無水塩化アルミニウ
ムの昇華の際にアルミニウム溶湯から同伴される金属ア
ルミニウム微粒子も存在するため、灰色に着色するのを
抑制する効果が充分でなく、また、生成した塩化アルミ
ニウムガスを充填塔内で充填物と接触させて副生した金
属アルミニウム微粒子を除去するには設備上の投資やそ
の操業管理上の煩雑を伴うほか、更に使用する原料アル
ミニウムのロット(近年、諸外国からの輸入塊の増加に
よって製造履歴の異なるものが増えている)によっては
灰色に着色するのを抑制する効果も充分でないという他
の問題もある。However, even if the reaction temperature is lowered to suppress the side reaction as much as possible, the formation of aluminum subhalide (AlCl) is inevitable, and entrainment from the molten aluminum during the sublimation of the formed anhydrous aluminum chloride. The effect of suppressing gray coloration is not sufficient because there are also metal aluminum fine particles to be produced, and the produced aluminum chloride gas is brought into contact with the packing in a packed tower to remove by-product metal aluminum fine particles. In addition to the investment in facilities and the complexity of the operation management, there are also grays depending on the lot of raw aluminum used (in recent years, the number of products with different production histories has increased due to the increase in lump imports from other countries). There is another problem that the effect of suppressing coloration is not sufficient.
そこで、本発明者らは、この灰色の着色原因物質とし
て上記の金属アルミニウム微粒子以外に何らかの物質が
存在することを予測し、その究明を行った結果、それが
不定形炭素であることを突き止めた。この不定形炭素の
混入経路については明らかではないが、原料のアルミニ
ウム中に含まれる炭化アルミニウム(Al4C3)や炭素で
あると考えられる。また、これらの着色原因物質、すな
わち金属アルミニウム微粒子や不定形炭素については、
それが0.1〜0.2μm程度の微粒子であり、通常のサイク
ロン等の手段では分離除去できず、しかも高温の無水塩
化アルミニウムガス中であるために複雑な装置も使用で
きない。Therefore, the present inventors have predicted that there is some substance other than the above-described metal aluminum fine particles as the gray coloring substance, and as a result of investigating the same, they have found that it is amorphous carbon. . Although the mixing route of the amorphous carbon is not clear, it is considered to be aluminum carbide (Al 4 C 3 ) and carbon contained in the raw material aluminum. In addition, for these coloring agents, that is, metal aluminum fine particles and amorphous carbon,
These are fine particles of about 0.1 to 0.2 μm, cannot be separated and removed by ordinary means such as a cyclone, and cannot be used in a complicated apparatus because they are in a high-temperature anhydrous aluminum chloride gas.
また、本発明者らは、この様に無水塩化アルミニウム
ガス中に不純物として含まれる金属アルミニウム微粒子
や不定形炭素をより簡便な方法でより効果的に除去する
方法について検討した結果、次のような知見、すなわ
ち、生成塩化アルミニウムガス中に含まれる不定形炭
素は、500℃以上の温度で容易に優先的に燃焼するた
め、反応により生成した凝固前の塩化アルミニウムガス
中に酸素ガス及び/又は空気等の酸素含有ガスを導入す
ることにより、塩化アルミニウムの酸化を抑えて、生成
塩化アルミニウムガス中からこの不定形炭素を除去する
ことができる、上記副反応(2)及び(3)により生
成塩化アルミニウムガス中に生じたアルミニウムサブハ
ライド(AlCl)や金属アルミニウム微粒子(Al)は凝固
前の塩化アルミニウムガス中に塩素ガスを導入し反応さ
せることにより、500〜950℃で容易に無水塩化アルミニ
ウムに変換させることができる、温度500〜950℃の凝
固前の生成塩化アルミニウムガス中に酸素含有ガス及び
塩素ガスを添加ガスとして共に導入し反応させることに
より、製品の白色度を高めその変動を可及的に抑制する
ことができる、という知見を得た。In addition, the present inventors have studied a method for more effectively removing metallic aluminum fine particles and amorphous carbon contained as impurities in anhydrous aluminum chloride gas in a simpler manner as described above. Knowledge, that is, the amorphous carbon contained in the produced aluminum chloride gas easily burns preferentially at a temperature of 500 ° C. or more, so that oxygen gas and / or air is contained in the aluminum chloride gas before solidification generated by the reaction. By introducing an oxygen-containing gas such as the above, the oxidation of aluminum chloride can be suppressed and the amorphous carbon can be removed from the produced aluminum chloride gas. The aluminum chloride produced by the side reactions (2) and (3) can be removed. The aluminum subhalide (AlCl) and metallic aluminum fine particles (Al) generated in the gas are converted into salt in the aluminum chloride gas before solidification. By introducing and reacting the gas, it can be easily converted to anhydrous aluminum chloride at 500 to 950 ° C. The oxygen-containing gas and chlorine gas are added to the formed aluminum chloride gas before solidification at a temperature of 500 to 950 ° C. It has been found that by introducing and reacting together, the whiteness of the product can be increased and its fluctuation can be suppressed as much as possible.
従って、本発明は、上記知見に基づいて達成されたも
のであり、その目的とするところは、アルミニウム溶湯
中に塩素ガスを導入して反応させ、生成した塩化アルミ
ニウムガスをコンデンサーで凝固させて無水塩化アルミ
ニウムを製造する際にその生成した塩化アルミニウムガ
ス中に使用するアルミニウム原料に応じて存在する着色
原因物質を可及的に除去し、白色度の高い無水塩化アル
ミニウムを安定的に製造することができる方法を提供す
ることにある。Therefore, the present invention has been achieved based on the above-mentioned findings, and it is an object of the present invention to introduce a chlorine gas into a molten aluminum to cause a reaction, and to solidify a generated aluminum chloride gas in a condenser to obtain an anhydrous aluminum. When producing aluminum chloride, it is possible to remove as much as possible the coloring agent present depending on the aluminum raw material used in the produced aluminum chloride gas, and to produce anhydrous aluminum chloride having high whiteness stably. It is to provide a method that can be performed.
また、本発明の他の目的は、経済的負担が嵩む設備上
や操業条件上の大幅な変更を必要とすることなく、生成
した無水塩化アルミニウム中の着色原因物質、特に灰色
の着色原因物質をより簡便な方法でより効果的に除去
し、白色度の高い無水塩化アルミニウムを製造すること
ができる方法を提供することにある。Further, another object of the present invention is to eliminate a coloring cause substance in the produced anhydrous aluminum chloride, particularly a gray coloring cause substance, without requiring a large change in equipment and operating conditions where the economic burden increases. It is an object of the present invention to provide a method capable of removing more effectively by a simpler method and producing anhydrous aluminum chloride having high whiteness.
すなわち、本発明は、アルミニウム溶湯中に塩素ガス
を導入して反応させ、生成した塩化アルミニウムガスを
コンデンサーで凝固させて無水塩化アルミニウムを製造
するに際し、温度500〜950℃の凝固前の塩化アルミニウ
ムガス中に酸素含有ガス及び塩素ガスを添加ガスとして
各々単独又は両者を共に導入し反応させる無水塩化アル
ミニウムの製造方法である。That is, the present invention is to introduce and react chlorine gas into the molten aluminum, and to produce anhydrous aluminum chloride by coagulating the produced aluminum chloride gas with a condenser, the aluminum chloride gas before coagulation at a temperature of 500 to 950 ° C. This is a method for producing anhydrous aluminum chloride in which an oxygen-containing gas and a chlorine gas are used as additive gases, each alone or both are introduced and reacted.
本発明方法において、反応に使用されるアルミニウム
溶湯は、できるだけ純度の高いものが好ましいが、汎用
的には純度99.0重量%以上の純アルミニウムが使用さ
れ、アルミニウム電解のホットメタル又はインゴットを
溶融させたものを750〜950℃に保持させたものである。
なお、反応途中でこのアルミニウム溶湯に追加投入され
る新たな原料インゴットは、反応熱によって溶融させる
こともできる。この場合、アルミニウム溶湯は、反応温
度等からして高温であることが望ましいが、前述の
(2)の副反応を抑制するため、950℃を越えないよう
にすることが好ましい。In the method of the present invention, the molten aluminum used for the reaction is preferably as high as possible in purity, but in general, pure aluminum having a purity of 99.0% by weight or more was used, and the hot metal or ingot of aluminum electrolysis was melted. The product was kept at 750 to 950 ° C.
It is to be noted that a new raw material ingot additionally added to the molten aluminum during the reaction can be melted by reaction heat. In this case, it is desirable that the temperature of the molten aluminum is high in view of the reaction temperature and the like, but it is preferable that the temperature does not exceed 950 ° C. in order to suppress the side reaction of the above (2).
また、主反応に使用される塩素ガスについては、純度
99.5重量%以上、好ましくは99.7重量%以上であって、
水分含有量が20ppm以下、好ましくは15ppm以下のものが
使用され、その吹込量についてはほぼ反応当量相当でよ
いが、具体的には、原料の純アルミニウム1tに対して通
常1,150〜1,260m3/20℃・1気圧の割合である。For chlorine gas used in the main reaction,
99.5% by weight or more, preferably 99.7% by weight or more,
Those having a water content of 20 ppm or less, preferably 15 ppm or less are used, and the blowing amount may be substantially equivalent to a reaction equivalent, but specifically, usually 1,150 to 1,260 m 3 / It is a ratio of 20 ° C and 1 atmosphere.
本発明方法においては、アルミニウム溶湯中に塩素ガ
スを導入することによってこのアルミニウム溶湯中から
昇華してくる生成塩化アルミニウムのガス中に、500〜9
50℃、より好ましくは550〜900℃の温度範囲の間に酸素
含有ガス及び塩素ガスを添加ガスとして各々単独又は両
者を共に導入し反応させるものである。ところで、アル
ミニウム溶湯中から昇華してくる生成塩化アルミニウム
ガスの発生時の温度(溶湯の湯面直上での温度)は、ア
ルミニウム溶湯の温度に依存し、通常750〜950℃であ
り、その温度をほぼ保持している領域に添加ガスを導入
するのが効果的である。なお、この凝固前の塩化アルミ
ニウムガスの温度はこの塩化アルミニウムガスを凝固さ
せるコンデンサーに到達するまでに反応塔の管路からの
放熱によって通常300〜400℃程度まで低下する。In the method of the present invention, by introducing chlorine gas into the aluminum melt, 500 to 9-9
In the temperature range of 50 ° C., more preferably 550 to 900 ° C., the oxygen-containing gas and the chlorine gas are used as additive gases, each alone or both are introduced and reacted. The temperature at which the generated aluminum chloride gas sublimates from the molten aluminum (the temperature just above the surface of the molten metal) depends on the temperature of the molten aluminum and is usually 750 to 950 ° C. It is effective to introduce the additive gas into a region where the additive gas is almost held. The temperature of the aluminum chloride gas before solidification usually drops to about 300 to 400 ° C. due to heat radiation from the pipe of the reaction tower before reaching the condenser for solidifying the aluminum chloride gas.
この様な凝固前の塩化アルミニウムガス中に共存させ
る添加ガスは、アルミニウム溶湯と塩素ガスとの反応条
件や原料アルミニウムの品質に応じて酸素含有ガス及び
/又は塩素ガスが使用される。ここで、酸素含有ガスと
は、純粋な酸素ガス、あるいは酸素以外に不活性ガスを
含む空気のようなガスを意味し、例えば酸素ガス単味、
空気単味、あるいは酸素ガス・空気の混合ガスを含むも
のである。従って、混合ガスとして用いる場合、酸素ガ
スと空気の混合ガス、酸素ガスと塩素ガスの混合ガス、
空気と塩素ガスの混合ガス、更には酸素ガス、空気及び
塩素ガスの三者混合ガスの何れであってもよく、好適に
は酸素ガスと塩素ガスとからなる混合ガスであり、その
反応塔への導入位置はそれぞれ別の位置でも、また、同
一の位置でもよい。この様な添加ガスとして使用する酸
素ガスについては純度99重量%以上のものがよく、空気
については水分含有量20ppm以下、好ましくは10ppm以下
のものがよく、また、塩素ガスについては原料としてア
ルミニウム溶湯中に導入されるものと同じ水分含有量20
ppm以下、好ましくは15ppm以下のものがよい。As the additive gas coexisting in the aluminum chloride gas before solidification, an oxygen-containing gas and / or a chlorine gas is used depending on the reaction conditions between the molten aluminum and the chlorine gas and the quality of the raw material aluminum. Here, the oxygen-containing gas means pure oxygen gas, or a gas such as air containing an inert gas in addition to oxygen.
It contains only air or a mixed gas of oxygen gas and air. Therefore, when used as a mixed gas, a mixed gas of oxygen gas and air, a mixed gas of oxygen gas and chlorine gas,
A mixed gas of air and chlorine gas, furthermore, any one of a three-way mixed gas of oxygen gas, air and chlorine gas, preferably a mixed gas of oxygen gas and chlorine gas, May be different positions or the same position. Oxygen gas used as such an additional gas should have a purity of 99% by weight or more, air should have a water content of 20 ppm or less, preferably 10 ppm or less, and chlorine gas should be a raw material of aluminum melt. The same water content as that introduced in 20
It is good to be less than ppm, preferably less than 15 ppm.
これらの添加ガスの添加量については、それが酸素ガ
ス又は空気を用いる場合、発生する不定形炭素(原料ア
ルミニウムによって異なる)を燃焼させるのに十分な量
でよく、塩化アルミニウムガス中に過剰量を導入し反応
させるとその一部が塩化アルミニウムを熱分解してアル
ミナ(Al2O3)を生成し、これが塩化アルミニウムの不
純物として増加してくるので、酸素ガスのときは塩化ア
ルミニウムガスに対して通常2〜10vol%、好ましくは
3〜5vol%の範囲がよく、また、空気のときには塩化ア
ルミニウムガスに対して通常5〜30vol%、好ましくは1
0〜20vol%の範囲がよい。これら酸素ガス又は空気の添
加量が少なすぎると製品の塩化アルミニウム中に混入し
てくる着色原因物質の炭素量を5ppm以下に抑制すること
が難しくなり、その結果として白色度が低下し、反対に
多すぎると不純物としてのアルミナ(Al2O3)が500ppm
以上になる場合がある。また、添加ガスとして塩素ガス
を添加する場合、その添加量は、生成されるサブハライ
ドや金属アルミニウムを転換するのに十分な量に相当す
る量でよいが、前述の溶湯温度以下の場合、生成塩化ア
ルミニウムガスに対して通常0.5〜4vol%、好ましくは
1〜2vol%の範囲がよい。この塩素ガスの添加量が少な
すぎると塩化アルミニウムガス中に生成する着色原因物
質の金属アルミニウムの含有量を5ppm以下に抑制するの
が難しくなり、その結果として白色度が低下する場合が
ある。When using oxygen gas or air, the amount of these additional gases may be sufficient to burn the generated amorphous carbon (depending on the raw material aluminum), and an excess amount in the aluminum chloride gas may be used. When introduced and reacted, a part of it thermally decomposes aluminum chloride to produce alumina (Al 2 O 3 ), which increases as aluminum chloride impurities. The range is usually 2 to 10 vol%, preferably 3 to 5 vol%, and in the case of air, it is usually 5 to 30 vol%, preferably 1 to 30 vol% with respect to the aluminum chloride gas.
The range of 0 to 20 vol% is good. If the added amount of oxygen gas or air is too small, it is difficult to suppress the carbon content of the coloring substance mixed into the aluminum chloride of the product to 5 ppm or less, and as a result, the whiteness decreases, and conversely, If too much, alumina (Al 2 O 3 ) as impurities is 500ppm
Or more. In addition, when chlorine gas is added as an additional gas, the amount of addition may be an amount corresponding to an amount sufficient to convert the generated subhalide and metallic aluminum. The range is usually 0.5 to 4 vol%, preferably 1 to 2 vol% with respect to the aluminum gas. If the amount of the chlorine gas is too small, it is difficult to suppress the content of metallic aluminum, which is a coloring agent, formed in the aluminum chloride gas to 5 ppm or less, and as a result, the whiteness may decrease.
更に、上記添加ガスを温度500〜950℃の凝固前の生成
塩化アルミニウムガス中に導入し反応させる方法につい
ては、塩素ガスの場合には特に制限はないが、添加ガス
が酸素含有ガスとしての酸素ガスや空気である場合に
は、アルミニウム溶湯が収容されて導入される塩素ガス
と反応する反応部から昇華した凝固前の生成塩化アルミ
ニウムガスをコンデンサーまで導くガス移送部までの間
であって、更には熱バランス上反応塔内であるのが好ま
しく、その場合、発生する不定形炭素量によって異なる
ところがあるが、ガス温度が好ましくは500〜700℃の領
域にガス導入口を設け、このガス導入口からガス移送部
中に導入するのがよく、アルミナの生成をより適切に抑
制しつつ不定系炭素を除去することができる。勿論、添
加ガスとして酸素含有ガスと塩素ガスを混合して使用す
る場合には、それぞれを単独で反応塔に導入してもよ
く、また、予め所定の割合で混合してから混合ガスとし
て導入してもよい。Further, there is no particular limitation on the method of introducing the above-mentioned additional gas into the formed aluminum chloride gas before solidification at a temperature of 500 to 950 ° C. and reacting it. In the case of gas or air, it is between the reaction part in which the molten aluminum is contained and introduced and reacts with the chlorine gas and the gas transfer part which guides the sublimated aluminum chloride gas before solidification to the condenser, and Is preferably in the reaction tower in terms of heat balance, in which case there is a difference depending on the amount of amorphous carbon generated, the gas temperature is preferably provided with a gas inlet in the region of 500 ~ 700 ℃, this gas inlet It is preferable to introduce the gas into the gas transfer section, so that the amorphous carbon can be removed while suppressing the generation of alumina more appropriately. Of course, when an oxygen-containing gas and a chlorine gas are mixed and used as additive gases, each may be introduced into the reaction tower alone, or may be mixed at a predetermined ratio in advance and then introduced as a mixed gas. You may.
この様にして添加ガスが導入された塩化アルミニウム
ガスは、それ以降は従来公知の方法と同様に処理され、
製品の無水塩化アルミニウムとなる。すなわち、着色原
因物質を反応除去した塩化アルミニウムガスは、そのま
まコンデンサー、例えば外側に冷却管を巻き付けた円筒
型凝縮器に導入され、通常40〜120℃まで冷却され、コ
ンデンサーの壁面で凝縮固化して無水塩化アルミニウム
の結晶となる。この無水塩化アルミニウムの結晶は、機
械的振動等の手段でコンデンサーの内壁面から剥離され
て回収される。得られた無水塩化アルミニウムの結晶
は、例えばダブルロールクラッシャー等の手段で粒度10
0mmφ以下に粉砕され、製品の無水塩化アルミニウムと
なる。The aluminum chloride gas into which the additive gas has been introduced in this manner is thereafter treated in the same manner as a conventionally known method,
The product becomes anhydrous aluminum chloride. That is, the aluminum chloride gas that has reacted and removed the coloring cause substance is directly introduced into a condenser, for example, a cylindrical condenser having a cooling pipe wound around the outside, and is usually cooled to 40 to 120 ° C., and condensed and solidified on the condenser wall. It becomes crystals of anhydrous aluminum chloride. The crystals of the anhydrous aluminum chloride are separated and recovered from the inner wall surface of the condenser by a means such as mechanical vibration. The obtained crystals of anhydrous aluminum chloride have a particle size of 10 by means of, for example, a double roll crusher.
It is pulverized to 0mmφ or less to become the product anhydrous aluminum chloride.
本発明方法によれば、生成した塩化アルミニウムガス
中に酸素含有ガスを導入し反応させることにより、この
生成塩化アルミニウムガス中に存在する灰色の着色原因
物質の1つである不定形炭素が500℃以上の温度で酸素
と効率的に反応し、一酸化炭素若しくは炭酸ガスとなっ
て系外に除かれる。According to the method of the present invention, by introducing an oxygen-containing gas into the produced aluminum chloride gas and causing it to react, amorphous carbon, which is one of the gray coloring substances present in the produced aluminum chloride gas, is heated to 500 ° C. At the above temperature, it reacts efficiently with oxygen and becomes carbon monoxide or carbon dioxide gas and is removed out of the system.
また、生成した塩化アルミニウムガス中に塩素ガスを
導入し反応させることにより、副反応により生じたアル
ミニウムサブハライドや金属アルミニウム微粒子が温度
500〜950℃で容易に無水塩化アルミニウムに変換され除
かれる。しかし、温度が950℃を越えると、再び副反応
の(2)を招いたり、アルミナの生成を招くことにな
り、好ましくない。In addition, by introducing chlorine gas into the generated aluminum chloride gas and causing it to react, the aluminum subhalide and metallic aluminum fine particles generated by the side reaction are heated to a temperature.
It is easily converted to anhydrous aluminum chloride at 500-950 ° C and removed. However, when the temperature exceeds 950 ° C., the side reaction (2) is again caused, or alumina is generated, which is not preferable.
この場合、塩素ガス単独導入では従来と同等程度のL
値のものに留まるが、酸素含有ガスを導入し反応させる
ことにより、L値が,90程度のものまで得ることがで
き、また、この酸素含有ガスと塩素ガスとを組み合わせ
て導入し反応させることにより、上述の不純物の双方を
除去できるので、操業管理も容易になり、また、L値が
92程度のものまで安定して得ることができるようにな
る。In this case, when the chlorine gas alone is introduced, the same L
However, by introducing and reacting with an oxygen-containing gas, it is possible to obtain an L value of up to about 90, and it is also necessary to introduce and react with a combination of this oxygen-containing gas and chlorine gas. As a result, both of the above-mentioned impurities can be removed, so that the operation management becomes easy, and the L value is reduced.
It is possible to stably obtain up to about 92 items.
以下、実施例及び比較例に基づいて、本発明方法を具
体的に説明するが、これに限定されるものではない。Hereinafter, the method of the present invention will be specifically described based on examples and comparative examples, but the present invention is not limited thereto.
実施例1 第1図に示すように、耐火キャスタブルで製造された
反応塔Aの反応部1に純度99.7重量%のアルミニウムイ
ンゴットから溶製した溶湯2(800℃)を仕込み、この
反応部1に設けられた塩素ガス導入口3から純度99.7重
量%で水分含有量10ppmの塩素ガス4を上記アルミニウ
ム溶湯2の1tに対して1,200m3/20℃・1気圧の割合で導
入した。Example 1 As shown in FIG. 1, a molten metal 2 (800 ° C.) produced from an aluminum ingot having a purity of 99.7% by weight was charged into a reaction section 1 of a reaction tower A manufactured by a refractory castable. the moisture content of 10ppm chlorine gas 4 from the chlorine gas inlet 3 provided in the purity of 99.7 wt% was introduced at a rate of 1,200m 3/20 ℃ · 1 atm respect 1t of the molten aluminum 2.
また、上記反応部1で生成し昇華してくる生成塩化ア
ルミニウムガス5中には、アルミニウム溶湯2の湯面よ
り上方約100cmの地点に位置するガス移送部6に添加ガ
ス導入口7を設け、この添加ガス導入口7から添加ガス
8として純度99.9重量%で水分含有量5ppmの酸素ガスを
塩化アルミニウムガスに対して3.6vol%の割合で連続的
に導入した。この添加ガス導入口7付近を移動する塩化
アルミニウムガス5の温度は600℃であった。Further, in the generated aluminum chloride gas 5 generated and sublimated in the reaction section 1, an additional gas introduction port 7 is provided in a gas transfer section 6 located at a point about 100 cm above the surface of the molten aluminum 2, Oxygen gas having a purity of 99.9% by weight and a water content of 5 ppm was continuously introduced from the additional gas inlet 7 as an additional gas 8 at a rate of 3.6 vol% with respect to the aluminum chloride gas. The temperature of the aluminum chloride gas 5 moving near the additional gas inlet 7 was 600 ° C.
更に、この様に酸素ガスを3.6vol%の割合で導入した
塩化アルミニウムガス5をガス移送部6によりコンデン
サーBに移送し、このコンデンサーBで塩化アルミニウ
ムガス5を凝固させ、無水塩化アルミニウム9を回収す
ると共に、凝固しない排気ガス10は水洗後排気させた。Further, the aluminum chloride gas 5 into which the oxygen gas is introduced at a rate of 3.6 vol% is transferred to the condenser B by the gas transfer unit 6, and the aluminum chloride gas 5 is solidified by the condenser B, and the anhydrous aluminum chloride 9 is recovered. At the same time, the exhaust gas 10 that did not coagulate was exhausted after washing with water.
回収された無水塩化アルミニウム9を平均粒径0.1mm
φの大きさに粉砕し、その白色度L値を測色色差計で測
定すると共に、分析をして炭素分、アルミナ及び金属ア
ルミニウムの含有量を測定した。結果は、L値が90であ
り、炭素分3ppm、アルミ280ppm、金属アルミニウム3ppm
及び鉄分30ppmであり、色相は目視で淡黄色であった。The recovered anhydrous aluminum chloride 9 has an average particle size of 0.1 mm.
The powder was crushed to a size of φ, and its whiteness L value was measured with a colorimeter and colorimeter, and analyzed to determine the contents of carbon, alumina and metallic aluminum. As a result, the L value was 90, the carbon content was 3 ppm, the aluminum was 280 ppm, and the metal aluminum was 3 ppm.
And the iron content was 30 ppm, and the hue was pale yellow visually.
実施例2 酸素ガスに代えて塩化ガスとして水分含有量10ppmの
乾燥空気を18vol%の割合で連続的に導入した以外は、
上記実施例1と同様にして無水塩化アルミニウムを製造
し、実施例1と同様にその白色度L値と炭素分、アルミ
ナ及び金属アルミニウムの含有量を測定した。結果は、
L値が87であり、炭素分10ppm、アルミナ320ppm、金属
アルミニウム3ppm及び鉄分30ppmであり、色相は淡黄色
であった。Example 2 Except that dry air having a water content of 10 ppm was continuously introduced as a chloride gas in place of oxygen gas at a rate of 18 vol%,
Anhydrous aluminum chloride was produced in the same manner as in Example 1, and the whiteness L value, the carbon content, and the contents of alumina and metallic aluminum were measured in the same manner as in Example 1. Result is,
The L value was 87, the carbon content was 10 ppm, the alumina was 320 ppm, the metal aluminum was 3 ppm, and the iron content was 30 ppm, and the hue was pale yellow.
比較例1 添加ガスの導入をしなかった以外は、上記実施例1と
同様にして無水塩化アルミニウムを製造し、実施例1と
同様にその白色度L値と炭素分、アルミナ及び金属アル
ミニウムの含有量を測定した。結果は、L値が84であ
り、炭素分20ppm、アルミナ200ppm、金属アルミニウム3
ppm及び鉄分30ppmであり、色相は灰色であった。Comparative Example 1 An anhydrous aluminum chloride was produced in the same manner as in Example 1 except that no additional gas was introduced, and the whiteness L value and the carbon content, the content of alumina and the metal aluminum in the same manner as in Example 1 The amount was measured. As a result, the L value was 84, the carbon content was 20 ppm, the alumina was 200 ppm, the metallic aluminum was 3 ppm.
ppm and iron content were 30 ppm, and the hue was gray.
実施例3 アルミニウム溶湯の温度を900℃とし、酸素ガスに代
えて添加ガスとして純度99.7重量%で水分含有量15ppm
の塩素ガスと純度99.9重量%で水分含有量5ppmの酸素ガ
スとの混合ガスを使用し、塩化アルミニウムガスに対し
て塩素ガスが1vol%、酸素ガスが5vol%の割合となるよ
うにこの混合ガスを連続的に導入した以外は、上記実施
例1と同様にして無水塩化アルミニウムを製造し、実施
例1と同様にその白色度L値と炭素分、アルミナ及び金
属アルミニウムの含有量を測定した。結果は、L値が92
であり、炭素分3ppm、アルミナ380ppm、金属アルミニウ
ム2ppm及び鉄分30ppmであり、色相は淡黄色であった。Example 3 The temperature of the molten aluminum was set to 900 ° C., and instead of oxygen gas, as an additive gas, the purity was 99.7% by weight and the water content was 15 ppm.
Use a mixed gas of chlorine gas and oxygen gas with a purity of 99.9% by weight and an oxygen content of 5 ppm. The mixed gas is adjusted so that the chlorine gas is 1 vol% and the oxygen gas is 5 vol% with respect to the aluminum chloride gas. Anhydrous aluminum chloride was produced in the same manner as in Example 1 except that the compound was continuously introduced, and the whiteness L value, the carbon content, and the contents of alumina and metallic aluminum were measured in the same manner as in Example 1. The result is that the L value is 92
And 3 ppm of carbon, 380 ppm of alumina, 2 ppm of metallic aluminum and 30 ppm of iron, and the color was pale yellow.
比較例2 添加ガスの導入をしなかった以外は、上記実施例3と
同様にして無水塩化アルミニウムを製造し、実施例1と
同様にその白色度L値と炭素分、アルミナ及び金属アル
ミニウムの含有量を測定した。結果は、L値が82であ
り、炭素分19ppm、アルミナ220ppm、金属アルミニウム1
20ppm及び鉄分30ppmであり、色相は灰色であった。Comparative Example 2 An anhydrous aluminum chloride was produced in the same manner as in Example 3 except that no additional gas was introduced, and the whiteness L value, the carbon content, the content of alumina and the metal aluminum in the same manner as in Example 1 The amount was measured. As a result, the L value was 82, the carbon content was 19 ppm, the alumina was 220 ppm, and the metal aluminum was 1 ppm.
The content was 20 ppm and the content of iron was 30 ppm, and the hue was gray.
本発明方法によれば、灰色の着色原因物質である炭素
分や金属アルミニウムの微粒子を可及的に減少させ、白
色度の高い、例えばL値で87〜92の無水塩化アルミニウ
ムを容易に製造することができる。その際、酸素含有ガ
スと塩素ガスとを添加ガスとして同時に用いる際に最適
の効果を得ることができ、高白色のものを安定して得る
ことができる。また、従来技術のように、充填塔を使用
する等の設備上の投資は操業管理上の煩雑さを必要とす
ることなく連続的操業下に灰色の着色原因物質をより簡
便に効果的に除去することができ、しかも、反応塔中の
発生時の温度がほぼ保持されている状態で添加ガスが導
入されるので、新たにヒーター等を付設する必要もなく
着色原因物質の除去操作を行うことができる。According to the method of the present invention, it is possible to easily produce anhydrous aluminum chloride having a high whiteness, for example, an L value of 87 to 92, by reducing as much as possible the carbon content and the fine particles of metallic aluminum, which are gray-causing substances. be able to. In this case, when the oxygen-containing gas and the chlorine gas are simultaneously used as the additive gas, an optimum effect can be obtained, and a high-white gas can be stably obtained. In addition, as in the prior art, investment in equipment such as the use of packed towers makes it easier and more effective to remove gray-colored substances during continuous operation without the need for complicated operation management. In addition, since the additive gas is introduced in a state where the temperature at the time of generation in the reaction tower is substantially maintained, it is not necessary to newly install a heater or the like to perform the operation of removing the coloring substance. Can be.
更に、本発明方法で製造された製品を触媒として使用
した際に、その反応生成物への着色や不純物の混入を防
止することが可能となる。Further, when the product produced by the method of the present invention is used as a catalyst, it is possible to prevent the reaction product from being colored or from being mixed with impurities.
【図面の簡単な説明】 第1図は本発明方法を実施する製造設備を模式的に説明
する説明図である。 符号の説明 (A)……反応塔、(B)……コンデンサー、 (1)……反応部、(2)……アルミニウム溶湯、 (3)……塩素ガス導入口、(4)……塩素ガス、 (5)……塩化アルミニウムガス、(6)……ガス移送
部、 (7)……添加ガス導入口、(8)……添加ガス、 (9)……無水塩化アルミニウム、(10)……排気ガスBRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view schematically illustrating a manufacturing facility for carrying out the method of the present invention. Explanation of symbols (A) ... reaction tower, (B) ... condenser, (1) ... reaction section, (2) ... molten aluminum, (3) ... chlorine gas inlet, (4) ... chlorine Gas, (5) ... aluminum chloride gas, (6) ... gas transfer section, (7) ... additive gas inlet, (8) ... additive gas, (9) ... anhydrous aluminum chloride, (10) …… exhaust gas
───────────────────────────────────────────────────── フロントページの続き (72)発明者 金子 雅英 静岡県庵原郡蒲原町蒲原161番地 日本 軽金属株式会社蒲原ケミカル工場内 (58)調査した分野(Int.Cl.6,DB名) C01F 7/58────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masahide Kaneko 161 Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture Japan Light Metal Co., Ltd. Kambara Chemical Plant (58) Field surveyed (Int.Cl. 6 , DB name) C01F 7 / 58
Claims (1)
反応させ、生成した塩化アルミニウムガスをコンデンサ
ーで凝固させて無水塩化アルミニウムを製造するに際
し、温度500〜950℃の凝固処理前の塩化アルミニウムガ
ス中に酸素含有ガス及び塩素ガスを添加ガスとして各々
単独又は両者を共に導入し反応させることを特徴とする
無水塩化アルミニウムの製造方法。1. An aluminum chloride gas before solidification treatment at a temperature of 500 to 950 ° C. for producing anhydrous aluminum chloride by introducing chlorine gas into a molten aluminum and reacting the solidified aluminum chloride gas with a condenser to produce anhydrous aluminum chloride. A method for producing anhydrous aluminum chloride, characterized in that an oxygen-containing gas and a chlorine gas are added as additional gases, and each alone or both are introduced and reacted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20241290A JP2788671B2 (en) | 1990-08-01 | 1990-08-01 | Manufacturing method of anhydrous aluminum chloride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20241290A JP2788671B2 (en) | 1990-08-01 | 1990-08-01 | Manufacturing method of anhydrous aluminum chloride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0489309A JPH0489309A (en) | 1992-03-23 |
JP2788671B2 true JP2788671B2 (en) | 1998-08-20 |
Family
ID=16457080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20241290A Expired - Lifetime JP2788671B2 (en) | 1990-08-01 | 1990-08-01 | Manufacturing method of anhydrous aluminum chloride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2788671B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010087955A (en) * | 2000-03-09 | 2001-09-26 | 김수태 | Process for simultaneously preparing anhydrous aluminum chloride and iron powder |
US6610350B2 (en) | 2000-10-05 | 2003-08-26 | Menicon Co., Ltd. | Method of modifying ophthalmic lens surface by plasma generated at atmospheric pressure |
DE102004044934A1 (en) * | 2004-09-16 | 2006-03-23 | Basf Ag | Desublimator for aluminum chloride |
-
1990
- 1990-08-01 JP JP20241290A patent/JP2788671B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0489309A (en) | 1992-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7780938B2 (en) | Production of silicon through a closed-loop process | |
EA015885B1 (en) | A method of producing titanium | |
US2823991A (en) | Process for the manufacture of titanium metal | |
MX2007011733A (en) | Process for the production of si by reduction of siclj with liquid zn. | |
EP1437326B1 (en) | Method for producing silicon | |
JPS6241165B2 (en) | ||
JP2788671B2 (en) | Manufacturing method of anhydrous aluminum chloride | |
US3760066A (en) | Process for preparing aluminum trichloride | |
US2829961A (en) | Producing aluminum | |
US3023115A (en) | Refractory material | |
US2618531A (en) | Method of purifying zirconium tetrachloride vapors | |
US3627483A (en) | Method of purifying aluminum chloride | |
CA1113685A (en) | Control of purity and particle size in production of aluminum chloride | |
JPH11319764A (en) | Treatment method of residual aluminum ash | |
US3975187A (en) | Treatment of carbothermically produced aluminum | |
US4363789A (en) | Alumina production via aluminum chloride oxidation | |
JPH05221654A (en) | Preparation of material | |
JPH06263438A (en) | Production of high purity anhydrous aluminum chloride | |
JP3528424B2 (en) | Method for producing high-purity anhydrous aluminum chloride | |
US3475139A (en) | Process for the separation of aluminum chloride and titanium tetrachloride from gaseous reaction gases containing chlorosilanes | |
US4003738A (en) | Method of purifying aluminum | |
US4073875A (en) | Oxidation of magnesium chloride | |
US3856511A (en) | Purification of crude aluminum | |
RU2074109C1 (en) | Method of preparing aluminium nitride | |
CN114644339B (en) | A kind of method adopting inorganic zinc salt to remove impurity in silicon |