[go: up one dir, main page]

JP2787829B2 - Manufacturing method of calcium phosphate ceramic implant - Google Patents

Manufacturing method of calcium phosphate ceramic implant

Info

Publication number
JP2787829B2
JP2787829B2 JP63095662A JP9566288A JP2787829B2 JP 2787829 B2 JP2787829 B2 JP 2787829B2 JP 63095662 A JP63095662 A JP 63095662A JP 9566288 A JP9566288 A JP 9566288A JP 2787829 B2 JP2787829 B2 JP 2787829B2
Authority
JP
Japan
Prior art keywords
calcium phosphate
strength
manufacturing
phosphate ceramic
ceramic implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63095662A
Other languages
Japanese (ja)
Other versions
JPH01268560A (en
Inventor
秀希 青木
勝 赤尾
勝義 斉藤
美治 秦
徹 斯波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADOBANSU KK
Original Assignee
ADOBANSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADOBANSU KK filed Critical ADOBANSU KK
Priority to JP63095662A priority Critical patent/JP2787829B2/en
Publication of JPH01268560A publication Critical patent/JPH01268560A/en
Application granted granted Critical
Publication of JP2787829B2 publication Critical patent/JP2787829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Description

【発明の詳細な説明】 本発明は、インプラントに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an implant.

生体親和性に優れたハイドロキシアパタイトを使用し
て形成されるインプラントは、その用途により様々な複
雑な形状に成形加工しなければならないが、一軸プレス
やラバープレス法などの従来の方法だと、成形性、寸法
精度及び表面滑沢性など品質を向上させるためには、仕
上げ加工や表面研摩などの後加工を必要とする。そのた
め、リン酸カルシウムセラミックスのように強度の比較
的小さいセラミックスの場合、後加工により表面に無数
のマクロクラックやマイクロクラックができ、強度の低
下を招く。さらに、生体内での溶解による強度低下もよ
り一層大きくなり、実用上大きな問題となっている。
Implants formed using hydroxyapatite, which has excellent biocompatibility, must be molded into a variety of complex shapes depending on the application.However, conventional methods such as uniaxial pressing and rubber pressing require molding. In order to improve the quality such as properties, dimensional accuracy and surface lubricity, post-processing such as finishing and surface polishing is required. Therefore, in the case of ceramics having relatively low strength such as calcium phosphate ceramics, countless macrocracks and microcracks are formed on the surface by post-processing, and the strength is reduced. Further, the strength decrease due to dissolution in a living body is further increased, which is a serious problem in practical use.

他方、複雑な形状を有する加工品を大量生産できる最
も効率的な方法であるという長所を有する射出成形法を
セラミックス材料に通用する試みが近年なされている
が、製造コストが高くつく他、混練する有機材料の選
択、脱脂条件の決定など、技術的にむずかしい点を多く
含んでいる点で、実用に達しているとは言えない。さら
に、セラミック原料粉末自体の比表面積が大きい材料
は、より多くの有機材料を必要とするため、ますます技
術的に困難となっていた。ましてハイドロキシアパタイ
トは、セラミック材料の中では比表面積が格段に大き
く、種々の物質の吸着能にすぐれ、液クロ用吸着カラム
として広く用いられているほどで、射出成形用材料とし
ては、ほとんど成形不能と言われている原料の一つであ
った。
On the other hand, in recent years, attempts have been made to apply an injection molding method, which has the advantage of being the most efficient method capable of mass-producing processed products having complicated shapes, to ceramic materials, but the production cost is high and kneading is required. It cannot be said that it has reached practical use because it contains many technically difficult points such as selection of organic materials and determination of degreasing conditions. Further, materials having a large specific surface area of the ceramic raw material powder itself require more organic materials, and thus have become increasingly technically difficult. Hydroxyapatite has a remarkably large specific surface area among ceramic materials, is excellent in the ability to adsorb various substances, and is widely used as an adsorption column for liquid chromatography. It was one of the ingredients said to be.

我々は鋭意努力の結果、リン酸カルシウム粉末を熱可
塑性有機材料に混練した後、射出成形を行ない、さらに
脱脂及び焼結を行なった緊密なセラミック成形体が、一
次加工のみで十分な成形性、均質性、寸法精度、表面滑
沢性などを有し、又、材料表面にマクロクラックやマイ
クロクラックをつくらないことから強度が向上し、又、
生体内での強度低下も少ないことを知見し、本発明に到
達したものである。
As a result of our diligent efforts, after kneading the calcium phosphate powder with the thermoplastic organic material, injection molding was performed, and further, degreasing and sintering were performed. , Dimensional accuracy, surface lubricity, etc., and the strength is improved because macrocracks and microcracks are not formed on the material surface,
The inventors have found that there is little decrease in strength in a living body, and have reached the present invention.

材料及び製法 本発明に於けるCa/Pモル比が1.5〜2.0であるリン酸カ
ルシウム化合物は、例えばハイドロキシアパタイト、リ
ン酸三カルシウム、リン酸四カルシウム等が具体的に例
示され、その製法は、例えば湿式法等で合成したスラリ
ーを噴霧乾燥し、0.1〜150μの粒径をもつ球状微粒子と
したものを300〜1300℃で焼成した方法が提示される。
Materials and Production Method The calcium phosphate compound having a Ca / P molar ratio of 1.5 to 2.0 in the present invention is specifically exemplified by, for example, hydroxyapatite, tricalcium phosphate, tetracalcium phosphate, and the like. A method is proposed in which a slurry synthesized by a method or the like is spray-dried to obtain spherical fine particles having a particle size of 0.1 to 150 µ and fired at 300 to 1300 ° C.

噴霧乾燥粉以外にボールミルやサンプルミル、ジェッ
トミル、アトマイザーなどの種々の粉砕法による破砕粉
や造粒粉、あるいは熱分解法、アルコキシド法、乾式法
などの別な合成法による造粒粉を用いてもよい。又、牛
骨や魚骨など天然の骨や歯を高温で焼結した焼成粉を用
いることもできる。
In addition to spray-dried powder, use crushed powder or granulated powder by various pulverization methods such as ball mill, sample mill, jet mill, atomizer, or granulated powder by another synthesis method such as pyrolysis method, alkoxide method, dry method You may. Further, calcined powder obtained by sintering natural bones and teeth such as cow bones and fish bones at a high temperature can also be used.

また、Mg,Zr,Fe,Ti,Si,Srなどの陽イオンや、Cl-,F-,
I-,CO3 2-などの陰イオンを0〜10%程度含むものを用い
てもよい。
Also, Mg, Zr, Fe, Ti , Si, and cations such as Sr, Cl -, F -,
I -, CO 3 2- anions, such as may be used those containing about 0-10%.

次に、このリン酸カルシウム化合物粉末に、結合剤、
解こう剤、潤滑剤、可塑剤、湿潤剤、消泡剤、カップリ
ング剤、界面活性剤、保護コロイド剤などの目的で種々
の有機材料を適宜混練する。結合剤としては、ポリエチ
レン、ポリプロピレン、エチレン−酢酸ビニル共重合体
(EVA)、エチレン−アクリレート共重合体(EEA)、ア
クリル系樹脂、ポリスチレン、SMR樹脂、セルロース系
樹脂、ポリエステルなどが例示される。
Next, a binder,
Various organic materials are appropriately kneaded for the purpose of peptizer, lubricant, plasticizer, wetting agent, defoaming agent, coupling agent, surfactant, protective colloid agent and the like. Examples of the binder include polyethylene, polypropylene, ethylene-vinyl acetate copolymer (EVA), ethylene-acrylate copolymer (EEA), acrylic resin, polystyrene, SMR resin, cellulose resin, and polyester.

潤滑剤としては、パラフィンワックス、マイクロクリ
スタリンワックスなどのワックス類、高級脂肪酸、脂肪
酸アシド、脂肪酸エステルなどが例示される。又、可塑
剤としてはジブチルフタレート、ブチルベンジンフタレ
ートなどが例示される。
Examples of the lubricant include waxes such as paraffin wax and microcrystalline wax, higher fatty acids, fatty acid acids, fatty acid esters, and the like. Examples of the plasticizer include dibutyl phthalate and butyl benzene phthalate.

これら有機材料をリン酸カルシウム粉末に対して5〜
50重量%添加し、加圧ニーダーを用いて100〜250℃でよ
く融解、混練する。これを破砕し、粒状にしたものを射
出成形機に投入し、予め所定の形状に加工したインプラ
ント体成形金型中に射出成形する。次に、取り出した成
形体を常圧又は加圧脱脂炉に入れ、2〜7日間で350〜6
00℃でゆっくり有機材料を脱気除去する。
These organic materials are added to calcium phosphate
Add 50% by weight, and melt and knead well at 100-250 ° C using a pressure kneader. This is crushed and made into a granule, which is then put into an injection molding machine, and is injection-molded into an implant molding die previously processed into a predetermined shape. Next, the removed molded body is put into a normal pressure or pressure degreasing furnace, and 350 to 6 days in 2 to 7 days.
Degas the organic material slowly at 00 ° C.

最後に、この有機分を除いた成形体を真空、常圧又は
加圧焼結炉で1〜3日間で800〜1300℃でゆっくり焼結
し、緻密なセラミック成形体を得る。又は、熱間等方圧
縮(HIP)を用いて、150〜800℃、10〜15,000t/cm2で焼
結させることもできる。
Finally, the molded body excluding the organic components is slowly sintered at 800 to 1300 ° C. for 1 to 3 days in a vacuum, normal pressure or pressure sintering furnace to obtain a dense ceramic molded body. Alternatively, sintering can be performed at 150 to 800 ° C. and 10 to 15,000 t / cm 2 using hot isostatic pressing (HIP).

インプラントは、医学及び歯学の分野で、生体内に埋
入し長期にわたって留置し臨床治療に用いる器具又は装
置を指す、代表的なセラミックインプラントとしては経
皮端子(Perctaneous Device)、人工血管(Artificial
Vascular Prosthesis)、ブラッドアクセスデバイス
(Blood Access Device)、人工歯根(Artificial toot
h root)、人工気管(Artificial Trachea)、人工骨
(Artificial Bone Prosthesis)、センサー(Sensor)
などがある。
An implant refers to an instrument or device that is implanted in a living body for a long term and used for clinical treatment in the fields of medicine and dentistry. Representative ceramic implants include a percutaneous device (Perctaneous Device) and an artificial blood vessel (Artificial
Vascular Prosthesis, Blood Access Device, Artificial toot
h root), Artificial Trachea, Artificial Bone Prosthesis, Sensor
and so on.

実験1 湿式法で合成した後、ジェットミルで粉砕したハイド
ロキシアパタイトに第1表の割合で有機材料を加えた。
Experiment 1 After synthesizing by a wet method, an organic material was added at a ratio shown in Table 1 to hydroxyapatite pulverized by a jet mill.

これを、東洋精機製混練機ラボプラストミルで十分に
混練した後、山城精機製射出成形機MD−20型で円筒状成
形体が得られる金型に射出成形した。これを鴻製作所製
脱脂炉SHKS−2型で550℃で約5日間有機分の除去を行
なった。
This was sufficiently kneaded with a kneader Labo Plastomill manufactured by Toyo Seiki, and then injection-molded into a mold capable of obtaining a cylindrical molded body by an injection molding machine MD-20 manufactured by Yamashiro Seiki. The organic matter was removed from this in a degreasing furnace SHKS-2 manufactured by Kono Seisakusho at 550 ° C. for about 5 days.

シリコニット高熱工業製焼成炉BM−1530型で1250℃で
焼成し、外径7.6mm、内径3.5mm、長さ10mmの円筒形緻密
焼結体を得た。
The mixture was fired at 1250 ° C. in a firing furnace BM-1530 manufactured by Siliconit Kokusai Kogyo to obtain a cylindrical dense sintered body having an outer diameter of 7.6 mm, an inner diameter of 3.5 mm, and a length of 10 mm.

インストロン材料試験機1123型で圧管テストを行な
い、圧縮引張強度を求めた結果を第1図に示す。比較と
して、東洋油圧製一軸プレス機で、約1t/cm2の圧力で圧
縮成形した円柱体を旋盤及びボール盤を用いて二次加工
し、上記と同様の円筒体を得た後、同様にして焼結体と
したものを用いた。
FIG. 1 shows the results obtained by performing a pressure tube test using an Instron Material Testing Machine Model 1123 and determining the compressive tensile strength. As a comparison, Toyo hydraulic made uniaxial press machine, a compression molded cylindrical body at a pressure of about 1t / cm 2 and secondary processing using a lathe and drilling machine, after obtaining the similar cylinder, in the same manner A sintered body was used.

この結果、本法による成形体は、一軸プレスによる圧
縮成形後、二次加工により円筒形としたものに比べて1.
5〜2倍近い強度があった。又、圧縮成形のみで二次加
工を行なっていない円柱形のものと比べても同等以上の
強度を持っていることが明らかとなった。
As a result, the molded body according to the present method is 1.
There was almost 5 to 2 times the strength. In addition, it has been clarified that it has a strength equal to or higher than that of a columnar shape which is not subjected to secondary processing only by compression molding.

実験2 湿式法で合成した後、噴霧乾燥した粉末に第2表の割
合で有機材料を混練した。
Experiment 2 After synthesizing by a wet method, an organic material was kneaded at a ratio shown in Table 2 into a spray-dried powder.

これを曲げ試験試料成形用金型で成形後、実験1と同
様にして焼結した。これらを成犬背部皮下に埋入し、1
ケ月後及び3ケ月後に取り出した。これらの試料の3点
曲げ強度を鳥津オートグラフAG2000Aで測定した結果を
第2図に示す。対照として、一軸プレス機で圧縮成形の
後、焼結した円板形焼結体をアイソメットダイヤモンド
カッター11−180で切断したものを用いた。
This was molded in a bending test sample molding die and then sintered as in Experiment 1. These are implanted under the back of the adult dog,
Removed after 3 months and 3 months. FIG. 2 shows the results of measuring the three-point bending strength of these samples with the Toritsu Autograph AG2000A. As a control, a disk-shaped sintered compact obtained by compression molding with a uniaxial press machine and then cut by an isomet diamond cutter 11-180 was used.

本法で製造した試験片は、対照に比べて約9%強度が
大きかった。又、埋入1ケ月後の強度低下は対照に比べ
て小さく、本法が約8%、対照が約13%であった。この
ことから、本法が二次加工を必要とする従来の方法に比
べて強度が大きく、生体内での強度低下も少ないことが
わかった。
The test piece produced by this method had about 9% greater strength than the control. One month after implantation, the decrease in strength was smaller than that of the control, about 8% in this method and about 13% in the control. From this, it was found that the present method has higher strength and less decrease in strength in a living body than the conventional method requiring secondary processing.

以上のことから、本法はリン酸カルシウムセラミック
スを用いた長期生体内埋入用インプラント体の成形法と
して優れていることがわかった。
From the above, it was found that the present method is excellent as a method for molding a long-term implantable implant using a calcium phosphate ceramic.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例に於ける圧縮引張強度を示すグ
ラフ、第2図は本発明の実施例に於ける曲げ強度を示す
グラフである。
FIG. 1 is a graph showing the compressive tensile strength in the example of the present invention, and FIG. 2 is a graph showing the bending strength in the example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−21763(JP,A) 特開 昭62−167250(JP,A) 特開 昭62−270164(JP,A) 特開 平2−6375(JP,A) (58)調査した分野(Int.Cl.6,DB名) A61L 27/00──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-21763 (JP, A) JP-A-62-167250 (JP, A) JP-A-62-270164 (JP, A) JP-A-2- 6375 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) A61L 27/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リン酸カルシウム化合物粉末と5〜50重量
%の有機材料を100〜250℃で、融解、混練し、射出成形
を行ったのち、2〜7日間350℃〜600℃で脱脂し、焼成
を行うことを特徴とするリン酸カルシウムセラミックス
インプラントの製造方法。
1. Calcium phosphate compound powder and 5 to 50% by weight of an organic material are melted and kneaded at 100 to 250 ° C., injection-molded, degreased at 350 to 600 ° C. for 2 to 7 days, and fired. A method for producing a calcium phosphate ceramic implant.
JP63095662A 1988-04-20 1988-04-20 Manufacturing method of calcium phosphate ceramic implant Expired - Lifetime JP2787829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63095662A JP2787829B2 (en) 1988-04-20 1988-04-20 Manufacturing method of calcium phosphate ceramic implant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63095662A JP2787829B2 (en) 1988-04-20 1988-04-20 Manufacturing method of calcium phosphate ceramic implant

Publications (2)

Publication Number Publication Date
JPH01268560A JPH01268560A (en) 1989-10-26
JP2787829B2 true JP2787829B2 (en) 1998-08-20

Family

ID=14143706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63095662A Expired - Lifetime JP2787829B2 (en) 1988-04-20 1988-04-20 Manufacturing method of calcium phosphate ceramic implant

Country Status (1)

Country Link
JP (1) JP2787829B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3472970B2 (en) * 1993-12-10 2003-12-02 株式会社アドバンス Method for producing bioimplant material
US6642285B1 (en) * 1999-02-02 2003-11-04 Robert Mathys Stiftung Implant comprising calcium cement and hydrophobic liquid
CN105013006A (en) * 2015-06-24 2015-11-04 东莞天天向上医疗科技有限公司 A bioabsorbable bone repair material and its application and production method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021763A (en) * 1983-07-15 1985-02-04 ティーディーケイ株式会社 Artificial bone material
JPS62167250A (en) * 1986-01-17 1987-07-23 工業技術院長 Manufacture of high strength calcium phosphate sintered bodyby slip casting process
JPH07114803B2 (en) * 1986-03-05 1995-12-13 株式会社アドバンス Method for producing substitute material for biological hard tissue repair
JP2859289B2 (en) * 1988-03-31 1999-02-17 旭光学工業株式会社 Method for producing porous ceramic material and green compact used in the method

Also Published As

Publication number Publication date
JPH01268560A (en) 1989-10-26

Similar Documents

Publication Publication Date Title
US5549123A (en) Process for producing biocompatible implant material by firing a mixture of a granulated powder and a combustible substance
US5306673A (en) Composite ceramic material and method to manufacture the material
EP0331071B1 (en) Mouldings obtainable from mouldable artificial bone material
US4846838A (en) Prosthetic body for bone substitute and a method for the preparation thereof
US5134009A (en) Shaped article of oriented calcium phosphate type compounds, sinter thereof and processes for producing same
EP0705802A1 (en) TYPE $g(a) TRICALCIUM PHOSPHATE CERAMIC AND PROCESS FOR PRODUCING THE SAME
JPS595536B2 (en) Calcium aluminum fluorosilicate glass powder
JPH067425A (en) Manufacture of biological compatibility complex
IE42442B1 (en) Ceramic material
US4207306A (en) Process for producing polycrystalline ceramic oxides
CN101352372A (en) Dental implant and method for producing dental implant
CN107043267A (en) A kind of zirconia ceramics raw material, feeding and preparation method for being applied to manufacture artificial tooth
KR20200066226A (en) Process for the preparation of a zirconia blank
CN106699174A (en) Powder for high-strength zirconia sintered body and application of high-strength zirconia sintered body
JP2787829B2 (en) Manufacturing method of calcium phosphate ceramic implant
JPS63182274A (en) Method for manufacturing a ceramic molded body having a particle layer on the surface
JP2002320667A (en) Material buried in living body and its manufacturing method
US4772573A (en) High-strength sintered article of calcium phosphate compound, raw material for production of said sintered article, and method for production of said sintered article
JPS6179462A (en) Porous artificial bone material
JPS6212680A (en) Block-form apatite sintered body
JPS6179463A (en) Composite apatite artificial bone material
JPH05220177A (en) Implant made of ti base sintered alloy having excellent bioaffinity
JPS61270249A (en) Tetracalcium phosphate settable composition
JP3308355B2 (en) Method for producing sintered carbonated apatite
CA1158078A (en) Artificial dental root