JP2785300B2 - Plasma carburizing furnace - Google Patents
Plasma carburizing furnaceInfo
- Publication number
- JP2785300B2 JP2785300B2 JP3234389A JP3234389A JP2785300B2 JP 2785300 B2 JP2785300 B2 JP 2785300B2 JP 3234389 A JP3234389 A JP 3234389A JP 3234389 A JP3234389 A JP 3234389A JP 2785300 B2 JP2785300 B2 JP 2785300B2
- Authority
- JP
- Japan
- Prior art keywords
- heater
- furnace
- resistance value
- plasma
- carburizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005255 carburizing Methods 0.000 title claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 238000009413 insulation Methods 0.000 description 8
- 239000012212 insulator Substances 0.000 description 8
- 238000001514 detection method Methods 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- GPWDPLKISXZVIE-UHFFFAOYSA-N cyclo[18]carbon Chemical compound C1#CC#CC#CC#CC#CC#CC#CC#CC#C1 GPWDPLKISXZVIE-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- -1 carbon ions Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、被処理物の表面にプラズマを利用して浸
炭処理を施すようにしたプラズマ浸炭炉に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma carburizing furnace in which a surface of a workpiece is subjected to a carburizing treatment using plasma.
この種の炉においては、炉内に備えられた電気ヒータ
によって被処理物を加熱した状態において上記浸炭処理
が行なわれる。このような浸炭処理が繰り返し行なわれ
るうちに、炉内でイオン化しなかった炭素が炉内におけ
るヒータの絶縁支持物に次第に付着すると、その絶縁度
が低下してヒータに供給される電流の一部がヒータとは
別の経路に流れてしまう。In this type of furnace, the above-described carburizing process is performed in a state where the object to be processed is heated by an electric heater provided in the furnace. If carbon not ionized in the furnace gradually adheres to the insulating support of the heater in the furnace while such a carburizing process is repeatedly performed, the degree of insulation is reduced and a part of the current supplied to the heater is reduced. Flows in a different path from the heater.
上記のような状態になると、ヒータに向けてそれを適
正に発熱させるに必要充分な量の電力を供給してもヒー
タはその全量を受け取れなくなって発熱量が不足し、そ
の結果被処理物が所定の温度まで到達せず、その適正な
浸炭が行なわれなくなって不良品となってしまう問題が
生ずる。そこでそのような問題の発生の防止の為に、絶
縁支持物を定期的に交換することが行なわれる。しかし
この方法では、絶縁支持物の絶縁度がさほど低下してい
なくてもそれを交換してしまうといった不経済が生ずる
問題点があった。In the above state, even if a sufficient amount of electric power is supplied to the heater to properly generate heat, the heater cannot receive the entire amount of heat, and the amount of heat generated is insufficient. If the temperature does not reach the predetermined temperature, proper carburization is not performed, and there is a problem that a defective product is produced. Therefore, in order to prevent such a problem from occurring, the insulating support is periodically replaced. However, in this method, there is a problem that uneconomical operation occurs in that the insulation support is replaced even if the insulation degree of the insulation support is not so reduced.
本発明は以上のような点に鑑みてなされたもので、そ
の目的とするところは、ヒータへ向けての所定量の充分
な電力供給をした場合において、ヒータがその略全量を
受け取って適正に発熱し、適正な浸炭処理ができるか否
かの判断を行なうことができ、その上、ヒータの絶縁支
持物をその使用限界まで使用することをも可能にできる
ようにしたプラズマ浸炭炉を提供することである。The present invention has been made in view of the above points, and an object of the present invention is to, when a predetermined amount of sufficient power is supplied to a heater, the heater receives substantially the entire amount of the power and properly receives the power. Provided is a plasma carburizing furnace that generates heat and can determine whether or not proper carburizing treatment can be performed, and furthermore, it is possible to use the insulating support of the heater to its use limit. That is.
上記目的を達成する為に、本願発明は前記請求の範囲
記載の通りの手段を講じたものであって、その作用は次
の通りである。In order to achieve the above object, the present invention employs the means described in the claims, and the operation is as follows.
炉内において、被処理物はヒータにより加熱される。
そしてその表面は、プラズマ化された浸炭用ガスにより
浸炭処理される。In the furnace, the object to be processed is heated by the heater.
Then, the surface is carburized by the plasma-forming carburizing gas.
上記浸炭処理が行なわれるうちに、イオン化しなかっ
た炭素がヒータの絶縁支持物に付着する。その付着の程
度は、抵抗値検出手段によりヒータの抵抗値を検出する
ことによって知ることができる。During the carburizing process, the non-ionized carbon adheres to the insulating support of the heater. The degree of the adhesion can be known by detecting the resistance value of the heater by the resistance value detecting means.
以下本願の実施例を示す図面について説明する。第1
図において、1は炉体で、中空に形成してあり、内部に
は被処理物2の存置空間3を有しており、また被処理物
2をその存置空間3に存置させる為の支持体4例えば炉
床あるいは保持枠が備わっている。上記炉体1には炉体
内部の浸炭用ガスをプラズマ化する為のプラズマ化手段
が備わっている。該プラズマ化手段は、陽極(本例では
炉体1)と陰極(本例では被処理物2)とプラズマ発生
用電源5とから構成される。プラズマ発生用電源5とし
ては直流電源が用いられ、そのプラス側は上記炉体1
に、マイナス側は上記支持体4に夫々接続してある。6
は被処理物加熱用のヒータで、炉内において複数の電気
の絶縁支持物によって支持されており、また炉外のヒー
タ用電源7が接続してある。8は浸炭用ガスの供給装置
である。上記炉体1と、ヒータ6の支持構造は第2図に
示される。上記炉体1は、炉殻10とその内側に備えられ
た断熱材11例えば黒鉛とによって構成してある。尚断熱
材11は炉殻10に取付けた支持枠12に取り付けてある。ま
た上記ヒータ6は、上記支持枠12に取付けた支持片13
に、絶縁支持物として例示する碍子14を介して取付けて
ある。Hereinafter, drawings showing an embodiment of the present application will be described. First
In the figure, reference numeral 1 denotes a furnace body which is formed hollow and has a space 3 in which an object 2 is to be placed, and a support for allowing the object 2 to be located in the space 3. 4 For example, a hearth or a holding frame is provided. The furnace body 1 is provided with plasma forming means for converting the carburizing gas inside the furnace body into plasma. The plasma generating means includes an anode (furnace body 1 in this example), a cathode (object 2 in this example), and a power supply 5 for plasma generation. A DC power source is used as the power source 5 for plasma generation, and the
The negative sides are connected to the support 4 respectively. 6
Is a heater for heating an object to be processed, is supported by a plurality of electric insulating supports in the furnace, and is connected to a heater power supply 7 outside the furnace. Reference numeral 8 denotes a carburizing gas supply device. The supporting structure of the furnace 1 and the heater 6 is shown in FIG. The furnace body 1 includes a furnace shell 10 and a heat insulating material 11 provided inside the furnace shell 10, for example, graphite. The heat insulating material 11 is attached to a support frame 12 attached to the furnace shell 10. Further, the heater 6 includes a support piece 13 attached to the support frame 12.
Is attached via an insulator 14 exemplified as an insulating support.
次に第3図には上記ヒータ6と電源7との電気的接続
関係が示される。ヒータ6は一例としてデルタ結線とな
っているが、スター結線の場合もある。15は炉外におい
てヒータ6と電源7とを結ぶ電路に接続した抵抗値検出
手段を示す。該検出手段15は、本例ではヒータ6に向け
て供給される電流値を検出する為の電流検出手段16a,16
b,16cと、ヒータ6に印加される電圧値を検出する為の
電圧検出手段17a,17b,17cとにより構成してある。Next, FIG. 3 shows an electrical connection relationship between the heater 6 and the power supply 7. The heater 6 has a delta connection as an example, but may have a star connection. Reference numeral 15 denotes a resistance detecting means connected to an electric path connecting the heater 6 and the power supply 7 outside the furnace. In this example, the detecting means 15 includes current detecting means 16a, 16a for detecting a current value supplied to the heater 6.
b, 16c and voltage detecting means 17a, 17b, 17c for detecting a voltage value applied to the heater 6.
上記構成のプラズマ浸炭炉による被処理物の浸炭処理
は次のように行なわれる。先ず被処理物2が支持体4に
乗せられる。次に炉体1に接続されている周知の真空引
装置により炉体1の内部が真空引されると共に、ガス供
給装置8から浸炭用ガス例えばメタン、プロパンが存置
空間3に供給される。また一方ではヒータ用電源7から
ヒータ6に給電され、その発熱によって被処理物が加熱
されると共に、電源5からのプラズマ発生用の直流が炉
体1と、導電材製の支持体4を介して被処理物2との間
に印加される。Carburizing of the object to be processed by the plasma carburizing furnace having the above-described configuration is performed as follows. First, the object 2 is placed on the support 4. Next, the inside of the furnace body 1 is evacuated by a known vacuuming device connected to the furnace body 1, and a carburizing gas such as methane and propane is supplied from the gas supply device 8 to the storage space 3. On the other hand, power is supplied from the heater power supply 7 to the heater 6, and the heat generated by the heater 6 heats the object to be processed. And applied between the object 2 to be processed.
以上のような操作により、陽極である炉体1と、陰極
である被処理物2との間に周知の如く放電が生じ、その
放電により上記浸炭用ガスが分解されてプラズマ化され
る。尚上記陽極としては上記ヒータ6が用いられたり、
炉内に別途備えられるサセプタが用いられる場合もあ
る。上記のように分解したガスの内の炭素イオンが被処
理物2の表面に打込み乃至は吸着され、その被処理物2
の浸炭処理が遂行される。By the above operation, a discharge is generated between the furnace body 1 as the anode and the workpiece 2 as the cathode, as is well known, and the discharge decomposes the carburizing gas into plasma. The heater 6 is used as the anode,
A susceptor separately provided in the furnace may be used. The carbon ions in the gas decomposed as described above are implanted or adsorbed on the surface of the object 2 and the object 2
Is carried out.
上記のような浸炭処理が行なわれる場合、上記放電や
加熱による分解によってイオン化しなかった炭素が、第
2図に符号18で示す如く断熱材11やヒータ6や支持片1
3、碍子14の表面に付着する。その付着量が増大する
と、碍子14の絶縁機能が低下し、電源7からヒータ6に
向けて供給される電流の一部が、矢印19で示す如く、ヒ
ータ6から碍子14の表面の炭素18の層や支持片13を通っ
て断熱材11に至り、更に他の支持片13、碍子14の表面の
炭素18の層を通ってヒータ6に戻る経路で流れる(第3
図の符号20参照)ようになってしまう。これはヒータ6
が自体に供給された電流の全量を受け取れなくなってそ
の発熱不足をもたらす。従って上記炭素の付着の状態を
知ること、換言すればその付着による碍子14の絶縁度の
低下を知ることが必要となる。When the carburizing treatment is performed as described above, the carbon that has not been ionized by the above-described decomposition due to the electric discharge or the heating is converted into the heat insulating material 11, the heater 6, and the support piece 1 as indicated by reference numeral 18 in FIG.
3. It adheres to the surface of the insulator 14. When the amount of adhesion increases, the insulating function of the insulator 14 decreases, and a part of the current supplied from the power source 7 to the heater 6 reduces the carbon 18 on the surface of the insulator 14 from the heater 6 as indicated by an arrow 19. It flows to the heat insulating material 11 through the layer and the support piece 13, and further flows through the other support piece 13 and the layer of carbon 18 on the surface of the insulator 14 to return to the heater 6 (third part).
(See reference numeral 20 in the figure). This is heater 6
Cannot receive the full amount of current supplied to itself, resulting in insufficient heat generation. Therefore, it is necessary to know the state of the adhesion of the carbon, in other words, to know the decrease in the insulation degree of the insulator 14 due to the adhesion.
次にその検知について説明する。抵抗値検出手段15に
よって、ヒータ6への電気の出入口即ちヒータ6に接続
している炉外の電路から見たヒータ6の抵抗値を測定す
る。即ち、例えば炉の稼動中において各電流検出手段16
a,16b,16cによる電流の検出値I1,I2,I3と、電圧検出手
段17a,17b,17cによる電圧の検出値V1,V2,V3とを得る。
そしてそれらを用いて、V1/I1,V2/I2,V3/I3等の演算を
行ない、ヒータ6への電気の出入口から見たヒータ6の
抵抗値を知る。この抵抗値を予め判っているヒータ6自
身の抵抗値と比較し、前者が後者に比べてどの程度低下
しているかを見ることによって碍子14に対する炭素の付
着の状態を知る。尚上記抵抗値の測定は、炉の非稼動時
に測定のみを目的にして電源7からの通電を行なって実
施しても良いことは言うまでもない。Next, the detection will be described. The resistance value of the heater 6 as viewed from the inlet / outlet of electricity to the heater 6, that is, the electric path outside the furnace connected to the heater 6, is measured by the resistance value detecting means 15. That is, for example, during operation of the furnace,
The current detection values I1, I2, I3 based on a, 16b, 16c and the voltage detection values V1, V2, V3 obtained by the voltage detecting means 17a, 17b, 17c are obtained.
Then, using them, calculations such as V1 / I1, V2 / I2, and V3 / I3 are performed, and the resistance value of the heater 6 as seen from the entrance of electricity to the heater 6 is known. The resistance value of the heater 6 is compared with the resistance value of the heater 6 itself, which is known in advance, and the state of carbon deposition on the insulator 14 is known by observing how much the former is lower than the latter. Needless to say, the measurement of the resistance value may be performed by supplying power from the power supply 7 only for measurement when the furnace is not operating.
以上のようにして知った炭素の付着の状態が、碍子14
の絶縁度を許容範囲以上に低下させる程度になると、上
記のような電流のバイパスによるヒータ6の発熱量の低
下が許容限度を越えてしまう。従って、上記測定された
抵抗値がヒータ6自身の抵抗値に対して予め定めた許容
限度例えば90%程度(最も好ましくは95%程度)にまで
低下したならば、碍子14の交換その他の措置を講ずる。The state of carbon deposition that was learned as described above
If the degree of insulation of the heater 6 becomes lower than the allowable range, the decrease in the amount of heat generated by the heater 6 due to the above-described current bypass exceeds the allowable limit. Therefore, if the measured resistance value falls to a predetermined allowable limit, for example, about 90% (most preferably about 95%) with respect to the resistance value of the heater 6, the replacement of the insulator 14 and other measures are taken. Take.
次に上記のような絶縁劣化の自動報知システムを示す
第4図について説明ずる。図において、21は抵抗値演算
手段、22は判別手段を示し、許容限度の設定手段23と比
較手段24とにより構成される。これらとしては例えばコ
ンピュータが利用される。25は報知手段で、例えばラン
プ、ブザー等である。このような構成のものにあって
は、検出手段16a〜16c、17a〜17cからの検出値を基に演
算手段21が抵抗値を演算する。そして比較手段24は、演
算された抵抗値が、設定手段23に設定されている抵抗値
の許容限度(例えば前記90%)を下回ると報知指令を発
し、その指令に基づき報知手段25が報知動作を行なう。Next, FIG. 4 showing the automatic insulation deterioration notification system as described above will be described. In the figure, reference numeral 21 denotes a resistance value calculating means, 22 denotes a discriminating means, and is constituted by an allowable limit setting means 23 and a comparing means 24. For example, a computer is used as these. Reference numeral 25 denotes a notifying means, for example, a lamp, a buzzer or the like. In such a configuration, the calculating means 21 calculates the resistance value based on the detection values from the detecting means 16a to 16c and 17a to 17c. Then, the comparing means 24 issues a notification command when the calculated resistance value falls below the allowable limit of the resistance value set in the setting means 23 (for example, 90%), and based on the command, the notification means 25 performs a notification operation. Perform
次に第5図は抵抗値検出手段としてテスタ27を用いた
例を示すものであり、相互に連動する切替スイッチ28a,
28bを介して、ヒータ6eと電源7eとを結ぶ電路に接続し
てある。Next, FIG. 5 shows an example in which a tester 27 is used as a resistance value detecting means.
It is connected to an electric circuit connecting the heater 6e and the power supply 7e via 28b.
この構成のものにあっては、炉の非稼動時に切替スイ
ッチ28a,28bを破線の状態に切替えて抵抗値の測定を行
なう。In this configuration, when the furnace is not operating, the changeover switches 28a and 28b are switched to the state shown by the broken lines to measure the resistance value.
なお、機能上前図のものと同一又は均等構成と考えら
れる部分には、前図と同一の符号にアルファベットのe
と付して重複する説明を省略した。In addition, functionally considered to be the same or equivalent to those in the previous figure, the same reference numerals as those in the previous figure denote the same parts as in the previous figure.
And repeated description is omitted.
以上のように本発明にあっては、被処理物2の表面処
理をしたい場合、ヒータ6によって加熱した被処理物2
の表面をプラズマ化させた浸炭用ガスによって浸炭処理
できる特長がある。As described above, according to the present invention, when the surface treatment of the object 2 is desired, the object 2 heated by the heater 6 is processed.
It has the feature that it can be carburized by a carburizing gas whose surface has been turned into plasma.
しかも上記のような浸炭処理を経時的に行なった後に
おいては、抵抗値検出手段15によりヒータ6への電気の
出入口からみたヒータ6の抵抗値を知ることによって、
炉内におけるヒータ6の絶縁支持物14に対する炭素の付
着の状態を知ることのできる特長がある。Moreover, after the above-described carburizing treatment is performed with time, the resistance value of the heater 6 as seen from the entrance and exit of electricity to the heater 6 is known by the resistance value detecting means 15.
There is a feature that the state of the adhesion of carbon to the insulating support 14 of the heater 6 in the furnace can be known.
このことは先ず第1に、ヒータ6へ向けて所定量の充
分な電力供給をした場合において、ヒータ6がその略全
量を受け取って適正に発熱し、上記被処理物2を適正に
浸炭処理することができるか否かの判断をすることので
きる利点があり、 第2に、上記絶縁支持物14を使用限界まで使うことを可
能ならしめて、前記従来技術の如き使用可能なものまで
取り替えてしまうという不経済性を防止できる有用性が
ある。First, when a predetermined amount of sufficient power is supplied to the heater 6, the heater 6 receives substantially the entire amount and appropriately generates heat, thereby appropriately carburizing the workpiece 2. There is an advantage that it is possible to judge whether or not the insulating support 14 can be used. Secondly, the insulating support 14 can be used up to its use limit, and can be replaced with a usable one as in the prior art. That is, there is utility that can prevent such uneconomics.
図面は本願の実施例を示すもので、第1図はプラズマ浸
炭炉の縦断面略示図、第2図は炉体及びヒータの支持構
造を示す縦断面部分拡大図、第3図はヒータと電源との
電気接続回路図、第4図は絶縁劣化の自動報知システム
を示すブロック図、第5図は抵抗値検出手段の異なる実
施例を示す電気接続回路図。 1……炉体、2……被処理物、6……ヒータ、7……ヒ
ータ用電源、14……絶縁支持物、15……抵抗値検出手
段。The drawings show an embodiment of the present invention. FIG. 1 is a schematic longitudinal sectional view of a plasma carburizing furnace, FIG. 2 is a partially enlarged longitudinal sectional view showing a supporting structure of a furnace body and a heater, and FIG. FIG. 4 is a block diagram showing an automatic notification system for insulation deterioration, and FIG. 5 is an electrical connection circuit diagram showing another embodiment of a resistance value detecting means. DESCRIPTION OF SYMBOLS 1 ... Furnace body, 2 ... Workpiece, 6 ... Heater, 7 ... Power supply for heater, 14 ... Insulating support, 15 ... Resistance detecting means.
Claims (2)
は、上記空間の浸炭用ガスをプラズマ化する為のプラズ
マ化手段を備えさせると共に、上記炉体内には複数の絶
縁支持物で支持された、上記被処理物加熱用のヒータを
備えさせ、上記ヒータは炉外のヒータ用電源から電力供
給を受けるようにしてあるプラズマ浸炭炉において、上
記ヒータとヒータ用電源とを結ぶ電路に、上記ヒータの
抵抗値を検出する為の抵抗値検出手段を付設したプラズ
マ浸炭炉。A furnace body having a space in which an object to be treated is placed therein is provided with a plasma generating means for converting the carburizing gas in the space into plasma, and a plurality of insulating supports are provided in the furnace body. An electric circuit connecting the heater to a heater power supply in a plasma carburizing furnace provided with a heater for heating the object to be processed, the heater being supplied with power from a heater power supply outside the furnace. And a resistance value detecting means for detecting the resistance value of the heater.
が、予め設定された値の範囲内か否かを判別する判別手
段と、上記判別手段による判別結果が上記範囲を外れる
ときに報知動作をする報知手段とが備えられている請求
項1記載のプラズマ浸炭炉。2. A discriminating means for discriminating whether a resistance value detected by a resistance value detecting means is within a preset value range, and a notifying operation when a discrimination result by the discriminating means is out of the range. 2. The plasma carburizing furnace according to claim 1, further comprising a notification unit for performing the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3234389A JP2785300B2 (en) | 1989-02-10 | 1989-02-10 | Plasma carburizing furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3234389A JP2785300B2 (en) | 1989-02-10 | 1989-02-10 | Plasma carburizing furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02209461A JPH02209461A (en) | 1990-08-20 |
JP2785300B2 true JP2785300B2 (en) | 1998-08-13 |
Family
ID=12356317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3234389A Expired - Lifetime JP2785300B2 (en) | 1989-02-10 | 1989-02-10 | Plasma carburizing furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2785300B2 (en) |
-
1989
- 1989-02-10 JP JP3234389A patent/JP2785300B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02209461A (en) | 1990-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2657850B2 (en) | Plasma generator and etching method using the same | |
US4672170A (en) | Apparatus for thermochemical treatments of metals by ionic bombardment | |
TWI489513B (en) | An ion bombardment device and a substrate surface cleaning method using the device | |
JPH0817171B2 (en) | Plasma generator and etching method using the same | |
EP0997926A3 (en) | Plasma treatment apparatus and method | |
JP2007502916A (en) | Control system for sputtering system | |
JP7043437B2 (en) | Oxygen measuring device and oxygen measuring method | |
KR20090091293A (en) | Method and apparatus for manufacturing a cleaned substrate or a cleaning substrate requiring further processing | |
US4900371A (en) | Method and apparatus for thermochemical treatment | |
JP2785300B2 (en) | Plasma carburizing furnace | |
US7815813B2 (en) | End point detection method, end point detection device, and gas phase reaction processing apparatus equipped with end point detection device | |
US4179618A (en) | Apparatus for ion-nitriding treatment | |
US5595643A (en) | Method for generating negatively charged oxygen atoms and apparatus used therefor | |
JP2594051B2 (en) | Plasma processing method | |
US5717186A (en) | Method and device for controlling the electric current density across a workpiece during heat treatment in a plasma | |
CN110387539B (en) | Wafer Holder | |
GB2154754A (en) | Controlling current density | |
US20060124202A1 (en) | Nitriding method and device | |
JP3558209B2 (en) | Thorium-containing tungsten hot cathode DC discharge electrode and method for modifying the electrode | |
JPH1053876A (en) | Gas injector for plasma chemical vapor deposition | |
CN112908816A (en) | Hollow cathode tube starting method and device and hollow cathode neutralizer | |
JP2000241281A5 (en) | ||
CN212750802U (en) | Gas distribution heater of plasma etching machine | |
CN113543444B (en) | Microwave-induced metal discharge combustion-supporting method and control system thereof | |
JPH02213459A (en) | Method for plasma carburization |