JP2783332B2 - Optical element molding method - Google Patents
Optical element molding methodInfo
- Publication number
- JP2783332B2 JP2783332B2 JP34269889A JP34269889A JP2783332B2 JP 2783332 B2 JP2783332 B2 JP 2783332B2 JP 34269889 A JP34269889 A JP 34269889A JP 34269889 A JP34269889 A JP 34269889A JP 2783332 B2 JP2783332 B2 JP 2783332B2
- Authority
- JP
- Japan
- Prior art keywords
- glass material
- temperature
- mold
- molding
- molded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラス素材を加熱軟化し、一対の型間に搬
送して押圧成形する光学素子の成形方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for molding an optical element in which a glass material is heated and softened, conveyed between a pair of dies, and pressed.
一般にガラス素材を加熱し、押圧により成形する方法
においては、軟化ガラス塊を成形型に搬入押圧された時
点より型から熱を奪われることにより、表面部分が急冷
される。しかし、ガラス素材の内部においては、依然と
して加熱時の高温状態にある。従ってガラス素材は、均
一に収縮せず、大きく収縮する部分は「ヒケ」として発
生する。In general, in a method of heating a glass material and pressing the glass material, the surface portion is rapidly cooled by removing heat from the mold when the softened glass lump is carried into the molding die and pressed. However, the inside of the glass material is still in a high temperature state during heating. Therefore, the glass material does not shrink uniformly, and a portion that shrinks greatly occurs as a sink mark.
このヒケ対策を開発した発明に、特開昭61−53162号
公報がある。この公報によれば、プレス成形後徐荷し、
型とガラスを0.9℃/sec以下の一定速度で冷却し、ガラ
ス粘度1011.5〜1012.5ポアズの間にてプレスされた成形
品を型より取り出すことが記載されている。Japanese Patent Application Laid-Open No. 61-53162 discloses an invention which has developed a measure against such sink marks. According to this publication, after unloading after press molding,
It is described that a mold and glass are cooled at a constant rate of 0.9 ° C./sec or less, and a molded product pressed at a glass viscosity of 10 11.5 to 10 12.5 poise is removed from the mold.
上記公報に記載されているようにプレス成形された後
0.9℃/sec以下で冷却する場合、転写性に関しては良好
な品質のレンズが得られるが、冷却に要する時間が多大
となり、成形サイクルタイムが長くなるという問題点が
あった。After being press-formed as described in the above publication
When cooling at 0.9 ° C./sec or less, a lens of good quality can be obtained with respect to transferability, but there is a problem that the time required for cooling becomes long and the molding cycle time becomes long.
本発明は、上記問題点に鑑みてなされたものであっ
て、良好な転写性を得ながら冷却時間を短縮する即ち成
形サイクルタイムを短縮する光学素子成形方法を提供す
ることを目的とするものである。The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical element molding method that shortens a cooling time while obtaining good transferability, that is, shortens a molding cycle time. is there.
本発明は、ガラス素材の粘度が106〜108ポアズとなる
温度に加熱軟化させた後、ガラス素材の転移温度近くに
加熱した一対の型間に搬送して押圧成形する。押圧成形
直後に、一対の成形型のいずれか一方の型より強制冷却
を行い、熱の移動を強制冷却した型より光軸方向に冷却
し、ガラス素材の最高温度が、その転移点以下になった
時点で離型するガラス素材の成形方法である。In the present invention, the glass material is heated and softened to a temperature at which the viscosity of the glass material becomes 10 6 to 10 8 poise, and then conveyed between a pair of dies heated near the transition temperature of the glass material and pressed and formed. Immediately after press molding, forced cooling is performed from either one of a pair of molds, and heat transfer is cooled in the optical axis direction from the forcedly cooled mold, so that the maximum temperature of the glass material becomes less than its transition point. This is a method for molding a glass material that is released at a point in time.
上記方法による本発明によれば、押圧成形された直後
に一対の型のいずれか一方の型より強制冷却を行うこと
により、加熱されたガラス素材の熱は、冷却された側の
型に接する面から奪われる割合が増える。従ってガラス
素材の収縮、固化は強制冷却した側より温度勾配を生じ
ながら順次冷却されていく、即ち光軸方向に向かって徐
々に収縮固化していく。この状態において、型温度は転
移点近くに保持されており、押圧した直後は、加熱され
たガラス素材の熱を急速に奪うために初期的に内部が表
面近くに対して高温である状態が生じる。しかしこの状
態においては、表面近くの温度はまだ転移点以上の状態
を保っている。即ち十分流動可能な状態であるので、型
の押圧作用に追従できる状態である。According to the present invention according to the above method, by performing forced cooling from either one of the pair of molds immediately after the pressure molding, the heat of the heated glass material is brought into contact with the cooled side of the mold. More people are taken away. Therefore, the glass material contracts and solidifies while being cooled sequentially while generating a temperature gradient from the side of the forced cooling, that is, gradually contracts and solidifies in the optical axis direction. In this state, the mold temperature is maintained near the transition point, and immediately after pressing, the inside is initially hotter than the surface due to the rapid removal of heat from the heated glass material. . However, in this state, the temperature near the surface is still higher than the transition point. That is, since it is in a state where it can flow sufficiently, it is a state where it can follow the pressing action of the mold.
上記転移点以上の温度を保っている状態において、強
制冷却により一方の面(強制冷却型)から熱が奪われガ
ラス素材の温度は、冷却される型に接する面、内部冷却
しない型に接する面の順に転移点以下となる。In a state where the temperature is maintained at or above the above-mentioned transition point, heat is taken away from one surface (forced cooling type) by forced cooling, and the temperature of the glass material is brought into contact with the mold to be cooled and the surface in contact with the mold without internal cooling. In this order.
上記のようにガラス素材内部の温度が転移点以下にな
った時点では、必ず強制冷却を行わない型の面は、転移
点以上の状態であり、内部が転移点以下になり固化する
までの収縮に対し流動追従可能な状態となっている。こ
の場合において、仮に冷却を行わない側の型に接するガ
ラス素材の表面近くが内部より先に転移点以下となった
場合は、内部の収縮に対応する流動追従可能な部分が無
くなってしまうため、その収縮力は固化した表面近くの
形状を強制的に変化する力として作用し、ヒケとして表
面化する、従ってこのような状態によるヒケの発生の防
止に鑑みて創作されたのが本発明である。以下実施例に
基づいて説明する。When the temperature inside the glass material falls below the transition point as described above, the surface of the mold that does not necessarily perform forced cooling is in the state above the transition point and shrinks until the inside falls below the transition point and solidifies. Is in a state capable of following the flow. In this case, if the vicinity of the surface of the glass material in contact with the mold on which cooling is not performed becomes less than or equal to the transition point before the inside, there is no flow-followable portion corresponding to the shrinkage inside, The shrinking force acts as a force for forcibly changing the shape near the solidified surface, and the surface is formed as sink marks. Therefore, the present invention has been made in view of preventing the occurrence of sink marks due to such a state. Hereinafter, description will be made based on embodiments.
第1図は、本発明の光学素子成形方法に係わるレンズ
成形装置の概要を示す側面図である。FIG. 1 is a side view showing an outline of a lens forming apparatus according to the optical element forming method of the present invention.
第2図は、本発明の第1実施例による成形時の温度状
態を示すグラフ図である。FIG. 2 is a graph showing a temperature state during molding according to the first embodiment of the present invention.
第3図は、本発明の第2実施例による成形時の温度状
態を示すグラフ図である。FIG. 3 is a graph showing a temperature state during molding according to a second embodiment of the present invention.
(第1実施例) 第1図に示す符号1は、被成形ガラス素材を成形する
円柱形状の上金型2と同様形状で上下動自在に構成され
た下金型3がそれぞれの成形形成面を対向配設収納した
成形室である。(First Embodiment) Reference numeral 1 shown in FIG. 1 denotes a lower mold 3 having the same shape as a cylindrical upper mold 2 for molding a glass material to be molded and configured to be vertically movable and having respective molding surfaces. Is a molding chamber that is disposed opposite to and accommodated.
成形室1の上記下金型3の外周面近傍には、複数の冷
却用ノズル(噴出孔)4および5が上記下金型3をN2ブ
ローにて冷却するように開口を向けて配設されている。The vicinity of the outer peripheral surface of the lower mold 3 of the molding chamber 1, arranged a plurality of cooling nozzles (ejection holes) 4 and 5 towards the opening so as to cool the lower mold 3 at N 2 blow Have been.
成形室1の側壁には、被成形ガラス素材6を搬入出す
る開口部がもうけられており、その開口部には、加熱コ
イル7を配設し、被成形ガラス素材6を加熱する加熱炉
8が連設されている。The side wall of the forming chamber 1 is provided with an opening for carrying in and out the glass material 6 to be formed, and a heating coil 7 is provided in the opening, and a heating furnace 8 for heating the glass material 6 to be formed. Are connected.
加熱炉8と成形室1内には被成形ガラス素材6を成形
室1内に搬送する帯状形の搬送アーム9が搬送可能に配
設されている。この搬送アーム9の先端部には孔を穿設
して、その孔に被成形ガラス素材6を載置した搬送具10
を載置して搬送するように構成されている。A belt-shaped transfer arm 9 for transferring the glass material 6 to be formed into the forming chamber 1 is provided in the heating furnace 8 and the forming chamber 1 so as to be transferable. A hole is formed in the tip of the transfer arm 9, and a transfer tool 10 having the glass material 6 to be formed placed in the hole.
Is mounted and transported.
次に上記構成による成形装置にて被成形ガラス素材6
を成形する成形方法を説明する。Next, the glass material 6 to be molded is
A molding method for molding is described.
本実施例における被成形ガラス素材6の硝種は、SK11
でφ15の肉厚2.5mmの両凸の非球面レンズである。上記
硝種形状のガラス素材6の成形方法について述べる。予
め所望の形状に近似した形状に成形された被成形ガラス
素材6を搬送具10を介して搬送アーム9に載置する。搬
送アーム9にて被成形ガラス素材6は、加熱炉8に搬送
される。加熱炉8は予め750℃に保持されている。この
加熱炉8内に被成形ガラス素材6は搬送されて、60秒間
加熱され、その粘度が106〜108ポアズにされる。The glass type of the glass material to be molded 6 in this embodiment is SK11
This is a bi-convex aspheric lens with a thickness of 2.5 mm and a diameter of φ15. A method for forming the glass material 6 having the glass type shape will be described. A glass material to be formed 6 previously formed into a shape approximate to a desired shape is placed on a transfer arm 9 via a transfer tool 10. The glass material to be molded 6 is transferred to the heating furnace 8 by the transfer arm 9. The heating furnace 8 is maintained at 750 ° C. in advance. The glass material to be molded 6 is conveyed into the heating furnace 8 and heated for 60 seconds to have a viscosity of 10 6 to 10 8 poise.
次に所定の温度に加熱された被成形ガラス素材6は、
上金型2、下金型3の間に搬送される。上金型2、下金
型3間に搬送されてきた被成形がラス素材6は、予め被
成形ガラス素材6の転移点近くの温度に保持されている
上金型2および下金型3間に到達した後、第1図に矢印
にて示すように下金型3の移動により押圧成形されると
同時にノズル4,5よりN2ブローが噴出されて下金型3よ
り冷却される。Next, the glass material to be molded 6 heated to a predetermined temperature is
It is transported between the upper mold 2 and the lower mold 3. The lath material 6 to be molded conveyed between the upper mold 2 and the lower mold 3 is held between the upper mold 2 and the lower mold 3 at a temperature near the transition point of the glass material 6 in advance. After being reached, as shown by an arrow in FIG. 1, the lower mold 3 is pressed and formed by movement, and at the same time, N 2 blows are ejected from the nozzles 4 and 5 to be cooled by the lower mold 3.
N2ブローの冷却により被成形ガラス素材6の熱は光軸
方向に下金型3の方向に向かって奪われていく。The heat of the glass material to be molded 6 is taken away in the direction of the optical axis toward the lower mold 3 by the cooling of the N 2 blow.
上記被成形ガラス素材6の成形中において測定した被
成形ガラス素材6の上表面温度、内部温度、下表面温度
を第2図にて説明する。The upper surface temperature, the internal temperature, and the lower surface temperature measured during molding of the glass material 6 will be described with reference to FIG.
図に示すように、被成形ガラス素材6の加熱直後は、
上表面温度と下表面温度が内部温度に対し若干高くなる
が、押圧と共に被成形ガラス素材6の温度は降下し、下
金型3側からのN2ブローによる強制冷却により下表面温
度の温度低下が速く数秒後には上表面温度、内部温度、
下表面温度の順に温度勾配が生じていることが解る。押
圧終了(成形後)は、被成形ガラス素材6の最高温であ
る上表面温度が転移点以下に成った時点であり、その時
点では、下表面温度、内部温度は転移点以下になって固
化した状態にあるものである。そのために表面固化、内
部高温の状態が発生せず内部収縮によるヒケの発生がな
くなり良好な転写性が得られる。この強制冷却による方
法のため、被成形ガラス素材6の温度を上記温度勾配を
生じさせた状態で転移点以下にするのに要する時間は、
数秒〜数十秒であり押圧時間を大きく短縮することがで
き成形サイクルタイムが短縮できる。As shown in the figure, immediately after the glass material to be molded 6 is heated,
Although the upper surface temperature and the lower surface temperature are slightly higher than the internal temperature, the temperature of the glass material to be molded 6 decreases with the pressing, and the lower surface temperature decreases due to forced cooling by N 2 blow from the lower mold 3 side. Is fast after a few seconds after the top surface temperature, internal temperature,
It can be seen that a temperature gradient occurs in the order of the lower surface temperature. The end of the pressing (after molding) is the time when the upper surface temperature, which is the highest temperature of the glass material 6 to be molded, has fallen below the transition point. At that time, the lower surface temperature and the internal temperature have fallen below the transition point and solidify. It is in the state where it was done. Therefore, the surface is not solidified, the internal high temperature is not generated, and the sink is not generated due to the internal shrinkage, so that good transferability can be obtained. Due to this forced cooling method, the time required for the temperature of the glass material to be formed 6 to be equal to or lower than the transition point in a state where the above-mentioned temperature gradient is generated is as follows:
It is several seconds to several tens of seconds, so that the pressing time can be greatly reduced and the molding cycle time can be reduced.
また、上金型2および下金型3と被成形ガラス素材6
との接触時間が短縮できるので型寿命の向上がはかられ
る。Further, the upper mold 2 and the lower mold 3 and the glass
Since the contact time with the mold can be shortened, the life of the mold can be improved.
(第2実施例) 本実施例においての成形装置の構成は、第1実施例と
同一につき、その説明は省略する。従って成形方法のみ
を説明する。Second Embodiment The configuration of a molding apparatus according to the present embodiment is the same as that of the first embodiment, and a description thereof will be omitted. Therefore, only the molding method will be described.
先ず、本実施例における被成形ガラス素材6の硝種は
BaLF3で、φ20の肉厚3.8mmの両凸の非球面レンズであ
る。被成形ガラス素材6は、予め700℃に保持された加
熱炉8に搬送具10を介して搬送アーム9にて搬送されて
加熱される。First, the glass type of the glass material to be molded 6 in this embodiment is
This is a BaLF3, biconvex aspherical lens with a diameter of 20 mm and a thickness of 3.8 mm. The glass material to be molded 6 is transferred by a transfer arm 9 via a transfer tool 10 to a heating furnace 8 previously held at 700 ° C. and heated.
加熱された被成形ガラス素材6は、上金型2と、下金
型3間に搬送されて、下金型3の上昇により押圧成形さ
れる。上記の場合において被成形ガラス素材6は肉厚3.
8mmと厚いのため、上金型2、下金型3の温度は、予め
転移点以上に保存されている。押圧成形と同時にノズル
4,5よりN2が吐出されて下金型3より冷却される。被成
形ガラス素材6は、中肉厚が厚いためにN2ブローによる
強制冷却による冷却効果が若干落ちるので、その間に上
金型2による熱の移動により上表面温度が転移点以下の
温度になり、固化してしまうのを防ぐために上金型2の
温度を上昇させ転移点以上にする必要がある。The heated glass material 6 to be molded is conveyed between the upper mold 2 and the lower mold 3, and is pressed and formed by raising the lower mold 3. In the above case, the glass material 6 to be molded has a thickness of 3.
Because the thickness is as large as 8 mm, the temperatures of the upper mold 2 and the lower mold 3 are stored in advance at the transition point or higher. Nozzle simultaneously with press molding
N 2 is discharged from 4 and 5 and cooled by the lower mold 3. Since the glass material to be molded 6 has a large medium thickness, the cooling effect of the forced cooling by N 2 blow is slightly reduced, and during this time, the upper surface temperature becomes lower than the transition point due to the transfer of heat by the upper mold 2. In order to prevent solidification, it is necessary to raise the temperature of the upper mold 2 to be higher than the transition point.
そのため被成形ガラス素材6の加熱温度は低くするこ
とができ、上記条件により粘度108.5〜1011ポアズとさ
れる。下金型3の温度は、同様に被成形ガラス素材6の
粘度108.5〜1011ポアズに対応する温度(転移点以上)
に保持されている。このため押圧後に被成形ガラス素材
6が自然に固化するということはなく、強制冷却により
固化される。上記の場合第3図に示すような温度変化を
示すものである。被成形ガラス素材6と上金型2と下金
型3の温度がほぼ等しい状態の冷却速度であることがわ
かる。これによりヒケの発生がないレンズが成形できる
のである。Therefore, the heating temperature of the glass material to be molded 6 can be lowered, and the viscosity is set to 10 8.5 to 10 11 poise under the above conditions. Temperature of the lower mold 3 is likewise a temperature corresponding to a viscosity of 10 8.5 to 10 11 poise of the glass molding material 6 (or transition)
Is held in. Therefore, the glass material to be molded 6 does not solidify spontaneously after pressing, but is solidified by forced cooling. The above case shows a temperature change as shown in FIG. It can be seen that the cooling rates are such that the temperatures of the glass material to be molded 6, the upper mold 2 and the lower mold 3 are substantially equal. As a result, a lens having no sink marks can be formed.
成形直後の上金型2下金型3の型温は、転移点以上で
あるが、強制冷却により被成形ガラス素材6の最高温度
が転移点以下になった時点に離型するので、各金型へ被
成形ガラス素材6によるガラスの付着、およびそれに伴
う型への負荷にはならない。金型温度と被成形素材6の
温度が等しい状態から上記のように、プレス成形直後か
らの温度勾配を生じさせた冷却により、大口径、中肉厚
の厚いレンズなどの成形も可能となってくる。また、強
制冷却による押圧成形時間の短縮による成形サイクルタ
イムの短縮、また各金型2,3の寿命向上が延びることは
いうまでもない。Although the mold temperature of the upper mold 2 and the lower mold 3 immediately after molding is higher than the transition point, the mold is released when the maximum temperature of the glass material 6 to be molded falls below the transition point due to forced cooling. It does not cause adhesion of glass to the mold by the glass material to be molded 6 and the resulting load on the mold. As described above, from the state where the mold temperature and the temperature of the molding material 6 are equal to each other, the cooling with the temperature gradient generated immediately after the press molding makes it possible to mold large-diameter, medium-thick lenses and the like. come. Needless to say, the molding cycle time is shortened by shortening the press molding time by forced cooling, and the life of each of the molds 2 and 3 is extended.
また、本実施例においては、初期の被成形ガラス素材
6の温度と、各金型2,3の温度と等しい状態にしたが、
これに限るものではなく変形量の大きなレンズなどの場
合においては成形ガラス素材の温度をより高くして行え
ばよいことは、自明なことである。Further, in this embodiment, the temperature of the glass material 6 to be initially formed is set to be equal to the temperature of each of the molds 2 and 3.
It is self-evident that the temperature of the molded glass material may be increased in the case of a lens or the like having a large deformation amount without being limited to this.
(第3実施例) 本実施例においても上記第2実施例と同様に、成形装
置の構成は第1実施例と同一につき、その説明は省略す
る。ただし上記成形装置の構成上における上金型2と下
金型3の材質を上記第1実施例と第2実施例において
は、金属を用いたが、本実施例においては、上型2はセ
ラミックスにて形成され、下型3は、C−BN焼結体にて
形成されている点が異なる。(Third Embodiment) In this embodiment, as in the second embodiment, the configuration of the molding apparatus is the same as that of the first embodiment, and a description thereof will be omitted. However, the material of the upper mold 2 and the lower mold 3 in the structure of the molding apparatus is metal in the first and second embodiments, but in this embodiment, the upper mold 2 is made of ceramic. The difference is that the lower mold 3 is formed of a C-BN sintered body.
まず、成形方法について、本実施例における被成形ガ
ラス素材6の硝種は、SF8で、φ14の肉厚2.8mmの平凸の
非球面レンズの成形方法について説明する。被成形ガラ
ス素材6は、予め680℃に加熱保持された加熱炉8内に
搬送具10を介して、搬送アーム9により搬送され、60秒
間加熱されて106〜108ポアズにされる。加熱された被成
形ガラス素材6は上型2、下型3間に搬送されて下型3
の上昇により押圧成形される。上型2は、セラミックス
型である。また、下型3はC−BN焼結体により形成され
ている。下型3の方が上型2より熱伝導率が良好なた
め、熱の移動は成形押圧のみで下型3方向に発生する。First, the molding method of the glass material 6 to be molded in this embodiment is SF8, and a method of molding a plano-convex aspheric lens having a thickness of 2.8 mm and a thickness of φ14 is described. The glass material to be formed 6 is transferred by a transfer arm 9 via a transfer tool 10 into a heating furnace 8 preheated and held at 680 ° C., and is heated for 60 seconds to a poise of 10 6 to 10 8 poise. The heated glass material to be molded 6 is conveyed between the upper mold 2 and the lower mold 3 and
Is pressed by the rise of the pressure. The upper mold 2 is a ceramic mold. The lower mold 3 is formed of a C-BN sintered body. Since the lower mold 3 has better thermal conductivity than the upper mold 2, heat transfer occurs in the direction of the lower mold 3 only by molding pressure.
上記の熱移動だけでは表面固化、内部高温の状態が発
生するため、ノズル4および5よりN2を吐出して下型3
を冷却する。この場合、型材質による熱の移動もあるた
め、N2は流量が少量でよく、冷却による型温の変動が少
くてよいため、型温復帰に時間を費やさない効果があ
る。また上記各実施例と同様に成形サイクルタイムの短
縮、型寿命向上等の効果がある。Since only the above-described heat transfer causes a state of solidification of the surface and a high internal temperature, the lower mold 3 is discharged from the nozzles 4 and 5 by discharging N 2.
To cool. In this case, since heat is transferred by the mold material, the flow rate of N 2 may be small, and the mold temperature may not fluctuate due to cooling. Further, similarly to the above embodiments, there are effects such as shortening of a molding cycle time and improvement of a mold life.
成形ガラス素材の収縮を温度勾配を有した冷却方法で
行うことにより、ヒケのない良好な転写性を得ることが
できる。また、冷却は強制冷却によるため押圧成形時間
が短縮でき、成形サイクルタイム短縮と型と成形ガラス
の接触時間の短縮などにより型寿命の向上が行える等の
効果は大きい。By performing the shrinkage of the molded glass material by a cooling method having a temperature gradient, it is possible to obtain good transferability without sink marks. In addition, since the cooling is performed by forced cooling, the press molding time can be shortened, and there is a great effect that the life of the mold can be improved by shortening the molding cycle time and the contact time between the mold and the molded glass.
第1図は、本発明の光学素子成形方法に係わるレンズ成
形装置の概要を示す側面図。 第2図は、本発明の第1実施例による成形時の温度状態
を示すグラフ図。 第3図は、本発明の第2実施例による成形時の温度状態
を示すグラフ図。 1……成形室 2……上型(上金型) 3……下型(下金型) 4,5……ノズル 6……被成形ガラス素材 7……加熱コイル 8……加熱炉 9……搬送アーム 10……搬送具FIG. 1 is a side view showing an outline of a lens forming apparatus according to an optical element forming method of the present invention. FIG. 2 is a graph showing a temperature state during molding according to the first embodiment of the present invention. FIG. 3 is a graph showing a temperature state during molding according to a second embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Molding room 2 ... Upper mold (upper mold) 3 ... Lower mold (lower mold) 4,5 ... Nozzle 6 ... Glass material to be molded 7 ... Heating coil 8 ... Heating furnace 9 ... ... Transport arm 10 ... Transport tool
───────────────────────────────────────────────────── フロントページの続き (72)発明者 秋元 文二 東京都渋谷区幡ケ谷2丁目43番2号 オ リンパス光学工業株式会社内 (56)参考文献 特開 平2−275722(JP,A) 特開 昭57−98645(JP,A) (58)調査した分野(Int.Cl.6,DB名) C03B 11/00,11/12──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Bunji Akimoto 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Co., Ltd. (56) References JP-A-2-275722 (JP, A) 57-98645 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C03B 11/00, 11/12
Claims (2)
て押圧成形する光学素子の成形方法において、上記ガラ
ス素材の押圧成形と冷却とを同時に行う工程中に、いず
れか一方の型より強制冷却してこの冷却した型側より光
軸方向に温度勾配を生じるようにし、ガラス素材の温度
が転移点以下になるまで冷却と押圧をするようにしたこ
とを特徴とする光学素子成形方法。In a method for forming an optical element, wherein a glass material is heated and conveyed between a pair of dies, and pressed and formed, one of the dies is pressed during the step of simultaneously performing the pressing and cooling of the glass material. An optical element molding method, wherein forced cooling is performed to generate a temperature gradient in the optical axis direction from the cooled mold side, and cooling and pressing are performed until the temperature of the glass material falls below the transition point. .
て押圧成形する光学素子の成形方法において、 上記押圧成形の直後に上記一対の型のいずれか一方の型
より強制冷却してこの冷却した型側よりガラス素材を冷
却させ、ガラス素材の温度がその転移点以下になった時
点で離型することを特徴とする光学素子成形方法。2. A method of forming an optical element, comprising heating a glass material, transporting the glass material between a pair of dies, and press-forming, wherein the glass material is forcibly cooled from one of the pair of dies immediately after the press-forming. An optical element molding method, wherein the glass material is cooled from the cooled mold side, and the glass material is released when the temperature of the glass material becomes lower than its transition point.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34269889A JP2783332B2 (en) | 1989-12-28 | 1989-12-28 | Optical element molding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34269889A JP2783332B2 (en) | 1989-12-28 | 1989-12-28 | Optical element molding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03199186A JPH03199186A (en) | 1991-08-30 |
JP2783332B2 true JP2783332B2 (en) | 1998-08-06 |
Family
ID=18355807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34269889A Expired - Fee Related JP2783332B2 (en) | 1989-12-28 | 1989-12-28 | Optical element molding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2783332B2 (en) |
-
1989
- 1989-12-28 JP JP34269889A patent/JP2783332B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03199186A (en) | 1991-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002068757A (en) | Method of producing glass molded product, apparatus of producing the same, and method of producing glass product | |
JP2577055B2 (en) | Glass mold | |
JP2783332B2 (en) | Optical element molding method | |
JP2001058837A (en) | Method for molding optical element and device for molding optical element | |
JP3201887B2 (en) | Optical element molding method | |
JPH0435427B2 (en) | ||
JPH11171556A (en) | Glass gob for forming optical element and forming device and forming method therefor | |
JP2975167B2 (en) | Glass optical element molding method | |
JP3585260B2 (en) | Apparatus and method for manufacturing optical element | |
JP3618936B2 (en) | Optical element molding method | |
JP4436561B2 (en) | Optical element manufacturing method | |
JP2000233934A (en) | Method for press-forming glass product and device therefor | |
JP3045432B2 (en) | Method of forming concave lens-shaped optical element | |
JP2004231477A (en) | Method and apparatus for molding optical element | |
JPH0585747A (en) | Mold for molding glass lens and production of glass lens | |
JP2004091281A (en) | Apparatus for manufacturing glass lens | |
JP2001096584A (en) | Plastic molding apparatus | |
JP4030799B2 (en) | Optical element molding method | |
JP2746450B2 (en) | Optical element molding method | |
JPH0248498B2 (en) | KOGAKUBUHINNOSEIKEISOCHI | |
JP2001096578A (en) | Plastic molding apparatus | |
JP3162174B2 (en) | Optical element molding method | |
JP2718451B2 (en) | Optical glass parts molding method | |
JP3238445B2 (en) | Aging mold | |
JP2005187216A (en) | Optical element molding die and production method of optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080522 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090522 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |