JP2780302B2 - Exposure equipment - Google Patents
Exposure equipmentInfo
- Publication number
- JP2780302B2 JP2780302B2 JP1028146A JP2814689A JP2780302B2 JP 2780302 B2 JP2780302 B2 JP 2780302B2 JP 1028146 A JP1028146 A JP 1028146A JP 2814689 A JP2814689 A JP 2814689A JP 2780302 B2 JP2780302 B2 JP 2780302B2
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- optical system
- projection optical
- focus
- pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 claims description 37
- 238000001514 detection method Methods 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 6
- 238000005286 illumination Methods 0.000 description 11
- 238000001444 catalytic combustion detection Methods 0.000 description 10
- 238000012937 correction Methods 0.000 description 7
- 238000005452 bending Methods 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/707—Chucks, e.g. chucking or un-chucking operations or structural details
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70716—Stages
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は露光装置に関し、特にIC、LSI等の半導体集
積回路の製作において、マスク若しくはレチクル等の第
1物体面上の回路パターンを投影光学系によりウエハ等
の第2物体面上に高精度に焦点合わせをして投影露光す
る際に好適な自動終点制御手段を有した縮少投影型の露
光装置に関するものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus, and more particularly, to the projection optics of a circuit pattern on a first object surface such as a mask or a reticle in the manufacture of semiconductor integrated circuits such as ICs and LSIs. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reduced-projection type exposure apparatus having automatic end point control means suitable for performing projection exposure by focusing on a second object surface such as a wafer with high accuracy by a system.
(従来の技術) 近年、微細な回路パターンを露光転写する装置として
縮小投影型の露光装置(所謂ステッパー)がICやLSI等
の半導体製造装置の生産現場に多数使用されてきた。こ
の縮小型の露光装置はレチクル(マスク)に描かれた回
路パターンの像を投影光学系により縮小してウエハ上の
フォトレジスト(感光剤)の層に投影露光するものであ
る。(Related Art) In recent years, as a device for exposing and transferring a fine circuit pattern, a large number of reduction projection type exposure devices (so-called steppers) have been used in production sites of semiconductor manufacturing devices such as ICs and LSIs. In this reduction type exposure apparatus, an image of a circuit pattern drawn on a reticle (mask) is reduced by a projection optical system and projected onto a photoresist (photosensitive material) layer on a wafer.
最近は、投影露光する回路パターンの更なる微細化及
び高集積化に伴い、より高分解能、高精度な投影露光の
できる露光装置が要求されている。Recently, with further miniaturization and high integration of circuit patterns for projection exposure, an exposure apparatus capable of higher-resolution and higher-precision projection exposure has been demanded.
一般に投影露光する回路パターンの焼付け線幅の微細
化の為に例えば露光光の波長を短く、又は投影光学系の
開口数を大きくすると、それに伴い焦点深度が比例、又
は2乗に比例して小さくなってくる。そうすると、例え
ば投影光学系を構成する硝材の屈折率が周囲の温度や空
気の気圧等の変化により変わり焦点位置(ピント面)が
変動してくるという問題点が生じてくる。In general, for example, when the wavelength of the exposure light is shortened or the numerical aperture of the projection optical system is increased in order to reduce the printing line width of the circuit pattern to be projected and exposed, the depth of focus is proportionally reduced in proportion to the square or the square. It is becoming. Then, for example, there arises a problem that the refractive index of the glass material constituting the projection optical system changes due to a change in ambient temperature, air pressure, or the like, and the focus position (focus plane) fluctuates.
又ウエハは平面加工技術の点からある程度の厚さと曲
りのバラツキを有している。通常ウエハの曲りについて
は平面度1μm以下に加工されたウエハーチャック面上
にウエハを吸着固定することにより平面矯正を行ってい
る。しかしながらウエハに厚さのバラツキがあるときは
これを矯正することができない。Further, the wafer has a certain degree of thickness and variation in bending in view of the plane processing technology. Normally, with respect to the bending of the wafer, the flatness is corrected by sucking and fixing the wafer on a wafer chuck surface processed to a flatness of 1 μm or less. However, when the thickness of the wafer varies, it cannot be corrected.
そこで従来は投影光学系と所定の位置に関係づけたピ
ント検出器を露光装置内の一部に設け、投影光学系のピ
ント面は固定のものとして、その位置にウエハ面がくる
ようにして位置決めを行っていた。Therefore, conventionally, a focus detector associated with the projection optical system and a predetermined position is provided in a part of the exposure apparatus, the focus surface of the projection optical system is fixed, and the wafer surface is positioned at that position. Had gone.
このピント検出器を用いた位置決め方法は間接的にピ
ント面を検出するものであり、直接的にピント面を検出
していない。この為、例えば温度変動や気圧変動等の要
因によりピント検出器の取付面から実際に投影された回
路パターン像面までの機械的な距離及び投影光学系のピ
ント面が変化したり又、露光光の吸収により投影光学系
の光学的性質が変化し、ピント面が変動したりして高い
焼付け解像力を得るのが大変難しいという問題点があっ
た。The positioning method using this focus detector detects the focus surface indirectly, and does not directly detect the focus surface. For this reason, the mechanical distance from the mounting surface of the focus detector to the actually projected circuit pattern image plane and the focus plane of the projection optical system change due to factors such as temperature fluctuations and atmospheric pressure fluctuations, and the exposure light The optical properties of the projection optical system change due to the absorption of light, and the focus surface fluctuates, so that it is very difficult to obtain a high printing resolution.
特にこのような問題点は露光光としてg線を用いた露
光装置はもとより例えば波長248nmの光を放射するエキ
シマレーザーを用いた露光装置においては、より重要な
問題点となっている。In particular, such a problem is more important in an exposure apparatus using an excimer laser that emits light having a wavelength of 248 nm, as well as an exposure apparatus using g-line as exposure light.
(発明が解決しようとする問題点) 本発明はレチクル面上のパターンを投影光学系を介し
てウエハ面上に投影し、露光する際、周囲の温度や気圧
等の環境条件が変化しても常に高精度に焦点位置を検出
できるとともに、その焦点位置とウエハとのずれ量とず
れの方向とが同時に検出でき、高い解像力が容易に得ら
れる露光装置の提供を目的とする。(Problems to be Solved by the Invention) The present invention projects a pattern on a reticle surface onto a wafer surface via a projection optical system, and performs exposure even when ambient conditions such as ambient temperature and atmospheric pressure change. An object of the present invention is to provide an exposure apparatus capable of always detecting a focal position with high accuracy, and simultaneously detecting the focal position, the amount of deviation from a wafer, and the direction of deviation, and easily obtaining a high resolution.
(問題点を解決するための手段) 上記目的を達成するための本発明の特徴は、第1物体
面のパターンを投影光学系を介して第2物体面上に投影
露光する露光装置において、前記第1物体面と共役な面
に対して互いに異なる面に設けられた複数の撮像素子
と、前記第2物体面上のピント位置検出用のパターンを
前記撮影光学系を介して前記複数の撮像素子で検出し、
前記複数の撮像素子からの出力信号と前記投影光学系の
デフォーカス特性とに基づいて、前記第2物体面の前記
投影光学系の高軸方向の最適位置を求める処理手段とを
有することを特徴とする。(Means for Solving the Problems) A feature of the present invention for achieving the above object is an exposure apparatus for projecting and exposing a pattern on a first object plane onto a second object plane via a projection optical system. A plurality of image sensors provided on surfaces different from each other with respect to a plane conjugate to the first object surface; and a plurality of image sensors provided on the second object surface via a photographic optical system. Detected by
Processing means for obtaining an optimum position of the second object plane in the high-axis direction of the projection optical system based on output signals from the plurality of imaging elements and a defocus characteristic of the projection optical system. And
(実施例) 第1図は本発明の一実施例の露光装置の要部概略図で
ある。(Embodiment) FIG. 1 is a schematic view of a main part of an exposure apparatus according to one embodiment of the present invention.
同図において11は光源で例えばエキシマレーザー、He
−Cdレーザー、超高圧水銀灯等である。光源11からの直
線偏光の光束はミラー10,9で反射させた後、照明系8に
入射している。照明系8はミラー9からの光束を偏光ビ
ームスプリッター7を介して第1物体としてのレチクル
又はマスク(以下「レチクル」という。)を照射してい
る。そして該レチクル1面上の回路パターンを投影光学
系3によって第2物体としてのウエハ2面上に投影露光
している。In the figure, reference numeral 11 denotes a light source, for example, an excimer laser, He
-Cd lasers, ultra-high pressure mercury lamps and the like. The linearly polarized light flux from the light source 11 is reflected by mirrors 10 and 9 and then enters the illumination system 8. The illumination system 8 irradiates a light beam from the mirror 9 to a reticle or mask (hereinafter, referred to as a “reticle”) as a first object via a polarizing beam splitter 7. The circuit pattern on the reticle 1 is projected and exposed by the projection optical system 3 onto the wafer 2 as a second object.
ウエハ2面上には感光体としてのレジストが塗布され
ており、ウエハチャック4により吸着支持されている。
このとき偏光ビームスプリッター7は照明系8からの所
定方向に振動している直線偏光の光束は効率よく反射さ
せる。5は補正補助手段としてのθ−Z−tiltステージ
であり、ウエハチャック4を投影光学系3の光軸方向で
あるピント方向(Z方向)と傾き及び回転方向に駆動制
御している。6はXYステージであり、ウエハチャック4
をX方向とY方向に駆動制御している。A resist as a photoreceptor is applied on the surface of the wafer 2, and is supported by a wafer chuck 4 by suction.
At this time, the polarizing beam splitter 7 efficiently reflects the linearly polarized light beam oscillating in a predetermined direction from the illumination system 8. Reference numeral 5 denotes a θ-Z-tilt stage as a correction assisting unit, which drives and controls the wafer chuck 4 in a focus direction (Z direction), which is an optical axis direction of the projection optical system 3, and in a tilt and rotation direction. Reference numeral 6 denotes an XY stage, and a wafer chuck 4
Are drive-controlled in the X and Y directions.
101は第1検出手段であり、ウエハ2面の高さ方向の
検出用の光束を発する投光部12と被測定面からの反射光
を受光する受光部13とを有しており、ウエハ2面のZ方
向の高さを検出している。Reference numeral 101 denotes first detecting means, which includes a light projecting unit 12 for emitting a light beam for detecting the height direction of the surface of the wafer 2 and a light receiving unit 13 for receiving light reflected from the surface to be measured. The height of the surface in the Z direction is detected.
このときの高さ方向(Z方向)の検出方法としては例
えば特開昭62−140418号公報で示したような方法により
行っている。At this time, as a method of detecting the height direction (Z direction), for example, a method shown in Japanese Patent Application Laid-Open No. 62-140418 is used.
即ちウエハ2面上からの光束の反射点と受光素子(CC
D)上の入射点とが結像関係となるようにし、ウエハ2
の上下方向の位置ずれ受光素子面上に入射する光束の入
射装置として検出し、これにより高さ方向の位置を検出
している。That is, the reflection point of the light beam from the surface of the wafer 2 and the light receiving element (CC
D) The incident point on the upper surface of the wafer 2
Is detected as an incident device for a light beam incident on the light receiving element surface, thereby detecting the position in the height direction.
14は第2検出手段であり、投影光学系3によるウエハ
面上のパターンのレチクル11近傍に逆投影された像のピ
ント位置を検出している。第2検出手段14は例えば第2
図に示すような構成より成っており、このような検出手
段が投影光学系3の光軸に対称に4つ、かつレチクルと
平行面内で移動可能に設けられている。但し、4つでな
くともよい。3つ以上あればよい。Reference numeral 14 denotes a second detecting means for detecting a focus position of an image back-projected by the projection optical system 3 near the reticle 11 of the pattern on the wafer surface. The second detecting means 14 is, for example, a second detecting means.
As shown in the figure, four such detecting means are provided symmetrically with respect to the optical axis of the projection optical system 3 and movably in a plane parallel to the reticle. However, the number may not be four. It is sufficient if there are three or more.
第2図において22はレチクル1面上のパターン面であ
る。15は結像レンズ、16,17は各々ハーフミラー、18〜2
0は各々撮像素子であり、例えば面型のCCD等から成って
いる。21は各々レチクル面のパターン面22の結像レンズ
15による結像位置を示している。即ちCCD18は結像レン
ズ15を介してパターン面22と共役の関係にあり、CCD19
は結像レンズ15による後ピンの位置にあり、CCD18は逆
に前ピンの位置にあり、各々所定量オフセットして配置
されている。In FIG. 2, reference numeral 22 denotes a pattern surface on the reticle 1 surface. 15 is an imaging lens, 16 and 17 are half mirrors, 18 and 2
Numerals 0 denote imaging devices, each of which is composed of, for example, a planar CCD. 21 is an image forming lens of the pattern surface 22 of the reticle surface, respectively.
15 shows an image forming position. That is, the CCD 18 has a conjugate relationship with the pattern surface 22 via the imaging lens 15, and the CCD 19
Is located at the position of the rear focus by the imaging lens 15, and the CCD 18 is located at the position of the front focus on the contrary, and is arranged offset by a predetermined amount.
第3図(A)はレチクル1の要部平面図である。図中
24は有効画面範囲、25は実素子回路パターン領域であ
る。26,34,35,36は各々レチク1面上の透明領域であ
り、例えばウエハ面2上のスクライブライン上に設けた
第3図(B)に示すようなパターンが逆投影され、透過
する領域に相当している。そして透明領域26,34,35,36
は投影光学系3の光軸に対称に配置されている4つの第
2検出手段14に各々対応して設けられている。FIG. 3A is a plan view of a main part of the reticle 1. In the figure
24 is an effective screen range, and 25 is a real element circuit pattern area. Reference numerals 26, 34, 35, and 36 denote transparent areas on the reticle 1 surface, for example, areas where a pattern as shown in FIG. 3B provided on a scribe line on the wafer surface 2 is back projected and transmitted. Is equivalent to And transparent areas 26,34,35,36
Are provided corresponding to the four second detection means 14 symmetrically arranged with respect to the optical axis of the projection optical system 3, respectively.
第2図に戻って、41は照明用レンズであり、42は導光
用の光ファイバーであり、45はハーフミラーである。そ
して第1図に示す光路切換ミラー43により露光と同一波
長の照明光が導入される。そして照明光は前記ウエハー
スクライブ上に設けたパターン27の領域のみを照明する
様、設定されている。Referring back to FIG. 2, reference numeral 41 denotes an illumination lens, reference numeral 42 denotes an optical fiber for guiding light, and reference numeral 45 denotes a half mirror. Then, illumination light having the same wavelength as that of the exposure is introduced by the optical path switching mirror 43 shown in FIG. The illumination light is set so as to illuminate only the area of the pattern 27 provided on the wafer scribe.
次に本実施例の動作について説明する。 Next, the operation of this embodiment will be described.
本実施例では不図示の搬送系によりウエハ2がウエハ
チャック4に装填され固定されている。そして不図示の
アライメント系によりレチクル1とウエハとが所定の位
置関係となるように位置決めしている。次いでウエハ2
の上面の高さを第1検出手段101によりXYステージ6を
駆動してウエハ2面内の各位置について計測し、これよ
りウエハ2の曲りや厚さ等のバラツキを計測している。In this embodiment, the wafer 2 is loaded on the wafer chuck 4 and fixed by a transfer system (not shown). The reticle 1 and the wafer are positioned so as to have a predetermined positional relationship by an alignment system (not shown). Then wafer 2
The height of the upper surface of the wafer 2 is measured at each position in the surface of the wafer 2 by driving the XY stage 6 by the first detecting means 101, and the variation such as the bending and thickness of the wafer 2 is measured.
次に第2検出手段による検出を行なうが、それに先だ
ち第2検出手段14は予め指定されているレチクル上の位
置(この例では26,34,35,36の位置)に移動設定されて
いる。そして光源11からの光が光路切換ミラー43によ
り、光ファイバー43に導光され照明レンズ41、ハーフミ
ラー45を経てレチクル1面上の透明領域26,34,35,36を
通過させてウエハ面2上を照明している。Next, detection is performed by the second detection means, and before that, the second detection means 14 is set to move to a position on the reticle which is designated in advance (the positions 26, 34, 35, 36 in this example). The light from the light source 11 is guided to the optical fiber 43 by the optical path switching mirror 43, passes through the illumination lens 41 and the half mirror 45, passes through the transparent areas 26, 34, 35, and 36 on the reticle 1 surface, and passes on the wafer surface 2. Lighting.
ウエハ2面上のスクライブライン領域には2ndレイヤ
ー以降の第3図(B)に示すようなピント検出パターン
27が形成されており、照明光はこのパターンを含むスク
ライブライン上の局部的な領域を照明している。そして
パターン27が投影光学系3によりレチクル1面のパター
ン面22近傍に逆投影され、第2検出手段によりピント検
出を行なう。In the scribe line area on the wafer 2 surface, the focus detection pattern as shown in FIG.
27 are formed, and the illumination light illuminates a local area on the scribe line including this pattern. Then, the pattern 27 is back-projected by the projection optical system 3 to the vicinity of the pattern surface 22 of the reticle 1, and focus detection is performed by the second detection means.
ここでレチクル1面近傍に投影光学系3により逆投影
されたウエハ2のパターンの結像面(ピント面)と第2
検出手段14の各受光素子(CCD)18,19,20からの出力信
号との関係は例えば第4〜第6図に示すようになる。Here, the image formation plane (focus plane) of the pattern of the wafer 2 back-projected by the projection optical system 3 to the vicinity of the reticle 1 plane and the second plane
The relationship with the output signals from the respective light receiving elements (CCD) 18, 19, 20 of the detection means 14 is as shown in FIGS. 4 to 6, for example.
第4図はCCD20からの出力信号、第5図はCCD18からの
出力信号、そして第6図はCCD19からの出力信号を各々
示している。設計上、既知である投影光学系3のディフ
ォーカス特性値とこれらの各出力信号を公知の電気処理
系により処理することにより、第7図に示すような出力
特性を得ている。これらの結果より演算手段102により
ウエハ面上の投影レンズ3によるピント位置とレチクル
1のパターン面22との差分、即ちディフォーカス量を検
出し、それをウエハ面側のディフォーカス量に換算して
いる。4 shows the output signal from the CCD 20, FIG. 5 shows the output signal from the CCD 18, and FIG. 6 shows the output signal from the CCD 19. The output characteristics as shown in FIG. 7 are obtained by processing the defocus characteristic values of the projection optical system 3 which are known in design and their respective output signals by a known electric processing system. From these results, the arithmetic means 102 detects the difference between the focus position of the projection lens 3 on the wafer surface and the pattern surface 22 of the reticle 1, that is, the amount of defocus, and converts it to the amount of defocus on the wafer surface. I have.
そしてこのような検出を各々の第2検出手段14により
ウエハ2面上の各位置について行っている。この結果よ
り、本例においてウエハ上1画面の周囲4点のディフォ
ーカス量(レチクルから見た)が検出できたことにな
る。さらに同様の検出をウエハ全面についてXYステージ
6を駆動して行なう。以上の第2検出手段による検出結
果及び第1検出手段による検出結果による演算手段102
からの信号に基づいてθ−Z−tiltステージ5によりウ
エハ2をZ方向の最適位置であるレチクル1の投影光学
系によるピント位置に位置するように、例えば各ショッ
ト毎に駆動制御している。Such detection is performed for each position on the surface of the wafer 2 by the respective second detection means 14. From this result, in this example, the defocus amounts (as viewed from the reticle) at four points around one screen on the wafer could be detected. Further, similar detection is performed by driving the XY stage 6 over the entire surface of the wafer. Calculation means 102 based on the detection result by the second detection means and the detection result by the first detection means
The wafer 2 is controlled by the θ-Z-tilt stage 5 based on the signal from the controller 2 so that the wafer 2 is positioned at the optimum position in the Z direction by the projection optical system of the reticle 1, for example, for each shot.
例えばウエハ2を各ショット毎にθ−Z−tiltステー
ジ5によりウエハ面の傾斜及びピントを補正するように
駆動制御して露光するようにしている。For example, the wafer 2 is driven and controlled by the θ-Z-tilt stage 5 for each shot so as to correct the inclination and the focus of the wafer surface, thereby performing exposure.
この様に本実施例においては第1検出手段にてウエハ
の曲りや厚みバラツキを検出し、第2検出手段にてピン
トズレの絶対値及び傾斜を検出し両者より最適なピント
位置を算出し補正駆動、露光を行なう様にしている。As described above, in the present embodiment, the first detecting means detects the wafer bending and thickness variation, and the second detecting means detects the absolute value and the inclination of the focus shift, and calculates the optimum focus position based on the both to perform correction driving. Exposure is performed.
第8図は本発明に係る第2検出手段の他の実施例の要
部概略図である。FIG. 8 is a schematic view of a main part of another embodiment of the second detecting means according to the present invention.
同図においては1つの受光素子(CCD)18をピエゾ素
子のような圧電素子29を用いて駆動機構28により受光素
子18をピント方向に駆動制御することにより投影光学系
3によるウエハ面のピント面を検出している。この場
合、駆動量は公知の手段により検出、制御されている。
又、別の例として受光素子を固定してθ−Zステージを
上下させてもよい。そして各位置における受光素子18か
らの信号出力の取扱いについては第2図に示した検出方
法と同様である。In the figure, a single light receiving element (CCD) 18 is driven and controlled in a focusing direction by a driving mechanism 28 using a piezoelectric element 29 such as a piezo element, so that the projection optical system 3 focuses the wafer surface. Has been detected. In this case, the driving amount is detected and controlled by known means.
As another example, the light-receiving element may be fixed and the θ-Z stage may be moved up and down. The handling of the signal output from the light receiving element 18 at each position is the same as the detection method shown in FIG.
尚、前述の実施例では補正駆動手段としてθ−Z−ti
ltステージを用いてウエハ2を上下方向に駆動させてピ
ント面に位置させるようにしたが、θ−Z−tiltステー
ジを用いなくても実質的にウエハをピント面に位置させ
ることができる方法であればどのような手段を用いても
良い。In the above-described embodiment, θ-Z-ti
Although the wafer 2 is driven up and down using the lt stage and positioned on the focus plane, the wafer 2 can be substantially positioned on the focus plane without using the θ-Z-tilt stage. Any means may be used.
例えば、第1図においてミラー9の一部分を半透過面
とし、照明光束の一部を波長モニター30に導光し、光源
11からの発振波長を計測し、ピント補正に必要な波長補
正量を演算処理系31により演算し、波長補正部32により
波長補正をすることによりピント面の補正を行うように
しても良い。For example, in FIG. 1, a part of the mirror 9 is a semi-transmissive surface, a part of the illumination light beam is guided to the wavelength monitor 30, and a light source
The focus wavelength may be corrected by measuring the oscillation wavelength from 11, calculating the wavelength correction amount required for focus correction by the arithmetic processing system 31, and correcting the wavelength by the wavelength correction unit 32.
例えば波長λ(248nm)における投影光学系の波長と
ピント位置の関係は第9図に示すようになるので、この
ときの関係より発振波長を変えてピント位置を制御する
ようにしても良い。又このとき波長補正の作業中の光モ
レを防止する為にはシャッター33を設け、該シャッター
を開閉するようにすれば良い。For example, since the relationship between the wavelength of the projection optical system and the focus position at the wavelength λ (248 nm) is as shown in FIG. 9, the focus position may be controlled by changing the oscillation wavelength based on this relationship. At this time, in order to prevent light leakage during the wavelength correction operation, a shutter 33 may be provided, and the shutter may be opened and closed.
又、ウエハに曲りや厚みバラツキがない若しくは少な
い場合には第1検出手段なしで行なうことも可能であ
る。In addition, when the wafer has no or little bending or thickness variation, it can be performed without the first detecting means.
又、ピント検出用パターンは実施例と異なる形状でも
よいし、露光かぶりが許容されるか若しくは非露光波長
光を照明光にすれば実素子パターンでも可能である。The focus detection pattern may have a shape different from that of the embodiment, or may be an actual element pattern if exposure fog is allowed or non-exposure wavelength light is used as illumination light.
(発明の効果) 本発明によれば、レチクル面上のパターンを投影光学
系を介してウエハ面上に投影し、露光する際、周囲の温
度や気圧等の環境条件が変化しても常に高精度に焦点位
置を検出できるとともに、その焦点位置とウエハとのず
れ量とずれの方向とが同時に検出でき、高い解像力が容
易に得られる露光装置を達成することができる。(Effects of the Invention) According to the present invention, when a pattern on a reticle surface is projected onto a wafer surface via a projection optical system, and exposure is performed, the pattern is always high even when environmental conditions such as ambient temperature and atmospheric pressure change. The focus position can be detected with high accuracy, and the focus position, the amount of deviation from the wafer, and the direction of the deviation can be simultaneously detected, so that an exposure apparatus that can easily obtain high resolution can be achieved.
第1図は本発明の一実施例の要部概略図、第2図,第3
図(A),(B)は第1図の一部分の説明図、第4,第5,
第6図は本発明に係る検出手段から得られるピント面に
関する出力信号の説明図、第7図は本発明においてピン
ト面からのディフォーカス量と検出手段から得られる出
力信号との関係を示す説明図、第8図は本発明の一部分
の他の実施例の要部概略図、第9図は本発明における照
明光束の波長と投影光学系によるピント位置との関係を
示す説明図である。 図中1はレチクル、2はウエハ、3は投影光学系、4は
ウエハチャック、5は補正駆動手段(θ−Z−tiltステ
ージ)、6はXYステージ、7,9,10はミラー、11は光源、
101は第1検出手段、14は第2検出手段、102は演算手
段、18,19,20はCCD、28は駆動機構、29は圧電素子、26,
34,35,36は透明領域、25は実素子回路パターン領域であ
る。FIG. 1 is a schematic view of a main part of an embodiment of the present invention, and FIGS.
(A) and (B) are explanatory views of a part of FIG.
FIG. 6 is an explanatory diagram of an output signal relating to a focus surface obtained from the detecting means according to the present invention, and FIG. 7 is an explanatory diagram showing a relationship between a defocus amount from the focus surface and an output signal obtained from the detecting means in the present invention. FIG. 8 is a schematic view of a main part of another embodiment of a part of the present invention, and FIG. 9 is an explanatory diagram showing a relationship between a wavelength of an illumination light beam and a focus position by a projection optical system in the present invention. In the figure, 1 is a reticle, 2 is a wafer, 3 is a projection optical system, 4 is a wafer chuck, 5 is a correction driving means (θ-Z-tilt stage), 6 is an XY stage, 7, 9, and 10 are mirrors, and 11 is a mirror. light source,
101 is a first detecting means, 14 is a second detecting means, 102 is a calculating means, 18, 19, 20 are CCDs, 28 is a driving mechanism, 29 is a piezoelectric element, 26,
Numerals 34, 35 and 36 are transparent areas, and 25 is a real element circuit pattern area.
フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 21/027Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 21/027
Claims (1)
て第2物体面上に投影露光する露光装置において、 前記第1物体面と共役な面に対して互いに異なる面に設
けられた複数の撮像素子と、 前記第2物体面上のピント位置検出用のパターンを前記
投影光学系を介して前記複数の撮像素子で検出し、前記
複数の撮像素子からの出力信号と前記投影光学系のデフ
ォーカス特性とに基づいて、前記第2物体面の前記投影
光学系の光軸方向の最適位置を求める処理手段と を有することを特徴とする露光装置。1. An exposure apparatus for projecting and exposing a pattern on a first object plane onto a second object plane via a projection optical system, wherein the exposure apparatus is provided on a plane different from a plane conjugate with the first object plane. A plurality of image sensors, a pattern for focus position detection on the second object plane, which is detected by the plurality of image sensors via the projection optical system, and an output signal from the plurality of image sensors and the projection optical system Processing means for obtaining an optimum position of the second object plane in the optical axis direction of the projection optical system based on the defocus characteristic of the exposure apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1028146A JP2780302B2 (en) | 1989-02-07 | 1989-02-07 | Exposure equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1028146A JP2780302B2 (en) | 1989-02-07 | 1989-02-07 | Exposure equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02207520A JPH02207520A (en) | 1990-08-17 |
JP2780302B2 true JP2780302B2 (en) | 1998-07-30 |
Family
ID=12240623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1028146A Expired - Fee Related JP2780302B2 (en) | 1989-02-07 | 1989-02-07 | Exposure equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2780302B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08229759A (en) * | 1995-02-24 | 1996-09-10 | Canon Inc | Positioning device, and device and method of manufacturing device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5548693B2 (en) * | 1973-06-26 | 1980-12-08 | ||
JPS5330878A (en) * | 1976-09-03 | 1978-03-23 | Fujitsu Ltd | Focus adjusting device in projection type exposure apparatus |
JPS5759326A (en) * | 1980-09-29 | 1982-04-09 | Hitachi Ltd | Method for detection of image-forming position and device thereof |
JPS62114222A (en) * | 1985-11-14 | 1987-05-26 | Hitachi Ltd | Exposing apparatus |
JPS6355430U (en) * | 1986-09-26 | 1988-04-13 | ||
JPH07123102B2 (en) * | 1986-10-24 | 1995-12-25 | 株式会社ニコン | Projection optics |
-
1989
- 1989-02-07 JP JP1028146A patent/JP2780302B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02207520A (en) | 1990-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3093528B2 (en) | Scanning exposure equipment | |
KR100471524B1 (en) | Exposure method | |
JP3181050B2 (en) | Projection exposure method and apparatus | |
JP3308063B2 (en) | Projection exposure method and apparatus | |
TWI417508B (en) | Surface position survey apparauts, exposure system and manufacturing method of the semiconductor device | |
JP4323608B2 (en) | Exposure apparatus and device manufacturing method | |
CN103728848A (en) | Position detection apparatus, exposure apparatus, and exposure method | |
US20100285400A1 (en) | Position detecting apparatus, position detecting method, exposure apparatus and device manufacturing method | |
JPS5994032A (en) | Apparatus for measuring characteristics of image forming optical system | |
JP2001257157A (en) | Device and method for alignment and device and method for exposure | |
JP2004134474A (en) | Method for inspecting position detector, position detector, aligner, and aligning method | |
JPH08162397A (en) | Projection light exposure device and manufacture of semiconductor device by use thereof | |
JPH07130636A (en) | Position detector and manufacture of semiconductor element using same | |
JP2780302B2 (en) | Exposure equipment | |
JP2008042036A (en) | Exposure apparatus, and device manufacturing method | |
JP2005175383A (en) | Aligner, method of alignment and device manufacturing method | |
JP2004273861A (en) | Aligner | |
JP5622126B2 (en) | Surface position detection apparatus, exposure apparatus, and device manufacturing method | |
JP2001267196A (en) | Position detecting apparatus, position detecting method, aligner and exposing method | |
JP3049911B2 (en) | Alignment scope having focus detection means | |
JPH02207522A (en) | Aligner | |
JP2003035511A (en) | Position detector and aligner equipped with it | |
JP3295244B2 (en) | Positioning device | |
JP3211246B2 (en) | Projection exposure apparatus and element manufacturing method | |
JP2004273860A (en) | Exposure method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |