[go: up one dir, main page]

JP2780294B2 - Solid-state imaging device - Google Patents

Solid-state imaging device

Info

Publication number
JP2780294B2
JP2780294B2 JP63321246A JP32124688A JP2780294B2 JP 2780294 B2 JP2780294 B2 JP 2780294B2 JP 63321246 A JP63321246 A JP 63321246A JP 32124688 A JP32124688 A JP 32124688A JP 2780294 B2 JP2780294 B2 JP 2780294B2
Authority
JP
Japan
Prior art keywords
imaging device
state imaging
solid
photoelectric conversion
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63321246A
Other languages
Japanese (ja)
Other versions
JPH02164066A (en
Inventor
景示 鳥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63321246A priority Critical patent/JP2780294B2/en
Publication of JPH02164066A publication Critical patent/JPH02164066A/en
Application granted granted Critical
Publication of JP2780294B2 publication Critical patent/JP2780294B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体撮像素子に関し、特にその信号電荷読出
し部の構造に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device, and more particularly, to a structure of a signal charge readout unit thereof.

〔従来の技術〕[Conventional technology]

光電変換素子と電荷転送素子とから成る固体撮像素子
では、信号電荷の読出しは光電変換素子と電荷転送素子
との間に設けられた読出し電極にパルス電圧を印加する
という操作によって行われるのが通常である。すなわ
ち、パルス電圧を印加することによってこの読出し電極
下にチャネルを形成し、光電変換素子からの信号電荷を
電荷転送素子へと移送する読出し手段がとられている。
In a solid-state imaging device including a photoelectric conversion element and a charge transfer element, signal charges are usually read out by applying a pulse voltage to a readout electrode provided between the photoelectric conversion element and the charge transfer element. It is. That is, a reading means is employed in which a channel is formed below the reading electrode by applying a pulse voltage, and the signal charge from the photoelectric conversion element is transferred to the charge transfer element.

第1図は従来の固体撮像素子の部分断面図で、光電変
換素子および電荷転送素子にN-P接合ホトダイオードお
よび埋込チャネル型CCDシフトレジスタをそれぞれ使用
し、また、受光部が縦型オーバ・フロー・ドレイン構造
とされた固体撮像素子の読出し部の構造を示すものであ
る。この固体撮像素子はN型シリコン基板1上に形成さ
れ、ホトダイオードのN-P接合はP型ウェル2内にN-
領域3を設けて形成され、また、CCDシフトレジスタは
同じくP型ウェル2内にN型領域4を設けて形成され
る。ここで、読出し電極5はN-型領域3とN型領域4と
の間に読出しチャネル領域6を形成し得るよう均一膜厚
のシリコン酸化膜7を介しこれら2つの領域上にまたが
ってMOS構造に形成される。一般に、この読出し電極5
は多結晶シリコンを用いてCCDシフトレジスタの転送電
極5′と一体化されて形成されることが多く、ホトレジ
スト工程における目合せのアラインメントずれおよび多
結晶シリコンの加工ばらつきを考慮して、これらがある
程度生じたとしても、読出しチャネル領域6上を確実に
おおうことができるように、その端部がホトダイオード
のN-型領域3上にまで懸るように設けるのが通常であ
る。なお、ここで、8,9および10は層間絶縁膜,遮光ア
ルミ膜およびP+チャネル・ストッパをそれぞれ示す。
Is a partial cross-sectional view of FIG. 1 is a conventional solid-state imaging device, the photoelectric conversion element and the charge transfer device N - P junction photodiode and a buried channel type CCD shift register using respectively, The light-receiving portion is vertical over- 3 shows a structure of a reading section of a solid-state imaging device having a flow / drain structure. This solid-state imaging device is formed on an N-type silicon substrate 1, an N - P junction of a photodiode is formed by providing an N - type region 3 in a P-type well 2, and a CCD shift register is similarly formed in a P-type well 2. It is formed with an N-type region 4 provided therein. Here, the read electrode 5 has a MOS structure over the two regions through a silicon oxide film 7 having a uniform thickness so that a read channel region 6 can be formed between the N type region 3 and the N type region 4. Formed. Generally, this read electrode 5
Is often formed integrally with the transfer electrode 5 'of the CCD shift register using polycrystalline silicon. In consideration of misalignment of alignment in the photoresist process and processing variation of polycrystalline silicon, these are somewhat Even if it occurs, it is usual to provide the end so as to hang over the N - type region 3 of the photodiode so that the read channel region 6 can be reliably covered. Here, 8, 9, and 10 indicate an interlayer insulating film, a light-shielding aluminum film, and a P + channel stopper, respectively.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

このように従来の固体撮像素子では、読出し電極5が
均一膜厚のシリコン酸化膜7を介しその端部がホトダイ
オードのN-型領域3上にまで懸るように形成されるの
で、読出しパルスが印加されたとき、読出し電極下に形
成されるチャネル電位はP型ウェル2内にある読出しチ
ャネル6の電位の方がホトダイオード領域のN-型領域3
に懸った部分領域の電位よりも第1図(b)に示すよう
に常に低くなり負電荷に対する電位の谷を生じる。従っ
て、従来の固体撮像素子では、信号電荷eの一部が読出
し電極5とホトダイオード領域のN-型領域3との重なり
部分で取り残されるようになり、残像が大きいという欠
点がある。
As described above, in the conventional solid-state imaging device, the readout pulse is applied since the readout electrode 5 is formed so as to extend over the N type region 3 of the photodiode via the silicon oxide film 7 having a uniform thickness. In this case, the channel potential formed under the read electrode is higher than the potential of the read channel 6 in the P-type well 2 in the N type region 3 of the photodiode region.
As shown in FIG. 1 (b), the potential is always lower than the potential of the partial region on which the electric potential falls due to the negative charge. Therefore, the conventional solid-state imaging device has a disadvantage that a part of the signal charge e is left behind at the overlapping portion between the readout electrode 5 and the N type region 3 of the photodiode region, resulting in a large residual image.

本発明の目的は、上記の情況に鑑み、従来の読出し電
極が光電変換素子のN型領域との重なり部分にチャネル
電位の谷を形成する欠点を解決した固体撮像素子を提供
することである。
In view of the above circumstances, an object of the present invention is to provide a solid-state imaging device which has solved the drawback that a conventional readout electrode forms a valley of a channel potential at a portion overlapping with an N-type region of a photoelectric conversion device.

[課題を解決するための手段] 本発明の固体撮像素子は、光電変換素子および電荷転
送素子と、前記光電変換素子と電荷転送素子との間にMO
S構造を形成して介在し、光電変換による信号電荷を光
電変換素子から電荷転送素子へパルス移送する読出し電
極とを含んでなり、前記読出し電極と光電変換素子領域
との重なり部分の絶縁膜の膜厚を前記2つの素子領域間
に形成する読出しチャネル上の絶縁膜の膜厚よりも厚膜
に形成される。
[Means for Solving the Problems] A solid-state imaging device according to the present invention includes a photoelectric conversion element and a charge transfer element, and an MO between the photoelectric conversion element and the charge transfer element.
A read electrode that intervenes to form an S structure, and that transfers a signal charge by photoelectric conversion from the photoelectric conversion element to the charge transfer element in a pulsed manner, and an insulating film in an overlapping portion between the read electrode and the photoelectric conversion element region. The thickness of the insulating film on the read channel formed between the two element regions is larger than that of the insulating film.

[作用] 本発明によれば、光電変換素子領域と読出し電極との
重なり部分に形成された厚膜の絶縁膜は読出し電極に加
えられたパルス電圧のMOS効果をこの部分で減少し、従
来の均一厚さの絶縁膜の場合にこの重なり部分に生じて
いた信号電荷に対するチャネル電位の谷を解消するの
で、信号電荷の光電変換素子から電荷転送素子への転送
を容易にする。
[Operation] According to the present invention, the thick insulating film formed at the overlapping portion between the photoelectric conversion element region and the read electrode reduces the MOS effect of the pulse voltage applied to the read electrode at this portion. In the case of an insulating film having a uniform thickness, the valley of the channel potential with respect to the signal charge generated in the overlapping portion is eliminated, so that the transfer of the signal charge from the photoelectric conversion element to the charge transfer element is facilitated.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第4図(a)および(b)はそれぞれ本発明の一実施
例を示す固体撮像素子の部分断面図およびその信号電荷
読出し時における読出し電極直下のチャネル電位図であ
る。本実施例の固体撮像素子は、従来例と同様に、N型
シリコン基板1と、この基板1上のP型ウェル2内にそ
れぞれ形成されたホトダイオード(光電変換素子)のN-
型領域3およびCCDシフトレジスタ(電荷転送素子)の
N型領域4ならびにP+チャネルストッパ10上の全面をシ
リコン酸化膜7で被覆し、このシリコン酸化膜7上にそ
の端部がN-型領域3上の周縁部に懸かっている読出し電
極5および、この読出し電極5と一体となった転送電極
5′が多結晶シリコンにより形成されている。しかし従
来例と異なり図示のようにN-型領域3上のシリコン酸化
膜7は他の領域より格段に厚膜としている。ここで9お
よび10はそれぞれ層間絶縁膜および遮光アルミ膜であ
る。
FIGS. 4 (a) and 4 (b) are a partial sectional view of a solid-state imaging device and a channel potential diagram immediately below a read electrode at the time of reading out signal charges, according to an embodiment of the present invention. Solid-state image sensor of the present embodiment, as in the conventional example, the N-type silicon substrate 1, the photodiode formed respectively on the P-type well 2 on the substrate 1 (photoelectric conversion element) N -
The entire surface of the mold region 3 and the N-type region 4 of the CCD shift register (charge transfer element) and the P + channel stopper 10 are covered with a silicon oxide film 7, and the end portion of the silicon oxide film 7 is an N -type region. A read electrode 5 hanging on the peripheral edge of the upper electrode 3 and a transfer electrode 5 'integrated with the read electrode 5 are formed of polycrystalline silicon. However, unlike the conventional example, as shown, the silicon oxide film 7 on the N type region 3 is much thicker than other regions. Here, 9 and 10 are an interlayer insulating film and a light-shielding aluminum film, respectively.

シリコン酸化膜7の膜厚を上記のように設定すると、
読出し電極5に読出しパルス電圧を印加した場合、チャ
ネル電位に対する電圧影響は、酸化膜の膜厚が厚いほど
小さくなる。従って、ホトダイオードのN-型領域3上の
チャネル電位を読出しチャネル電位6よりも低くなるよ
うにすることができる。すなわち、第4図(b)に示す
ように従来存在した電位の谷が解消するので、信号電荷
eはほとんど取り残されることなく、CCDシフトレジス
タのN型領域4に移送され読み出される。このようにし
て従来問題とされた固体撮像素子の残像欠陥は大幅に改
善される。この際、シリコン酸化膜は本来透光性の材質
であるので、N-型領域3上をこのように厚膜のシリコン
酸化膜で被覆したとしてもホトダイオードの光変換効率
は殆んど低下しないので、固体撮像素子が生命とする信
号変換特性を損う恐れは皆無である。
When the thickness of the silicon oxide film 7 is set as described above,
When a read pulse voltage is applied to the read electrode 5, the effect of the voltage on the channel potential decreases as the thickness of the oxide film increases. Therefore, the channel potential on the N type region 3 of the photodiode can be made lower than the read channel potential 6. That is, as shown in FIG. 4 (b), the valley of the potential existing in the related art is eliminated, so that the signal charge e is transferred to the N-type region 4 of the CCD shift register and read out with almost no signal charge left. In this way, the after-image defect of the solid-state imaging device, which has been conventionally regarded as a problem, is greatly improved. At this time, since the silicon oxide film is originally a light-transmitting material, even if the N type region 3 is covered with the thick silicon oxide film, the light conversion efficiency of the photodiode hardly decreases. There is no danger that the solid-state imaging device will impair the signal conversion characteristics that are vital.

本発明固体撮像素子の上記実施例の構造は次の手法に
より製造することができる。第2図(a)〜(i)に製
造方法の一手法の工程順序図を示す。まず第2図(a)
に示すように、N型シリコン基板1上にP型ウェル2を
形成し、ついでこの全面にシリコン酸化膜11およびシリ
コン窒化膜12を順次成長したものが準備され、続いてこ
の上面にレジスト膜13が選択的にパターニング形成され
る。つぎにレジスト膜13をマスクとしてシリコン窒化膜
12を選択的にエッチングし、さらにレジスト膜14をつけ
直してから、これらレジスト膜14とシリコン窒化膜12の
2つのパターンをマスクとしてN型不純物15を導入する
〔第2図(b)〕。ついで、不要となったレジスト膜14
を除去し、熱処理してN型不純物15を拡散させ、ホトダ
イオードのN-型領域3を形成した後、このN-型領域3上
をレジスト膜16で覆い、レジスト膜16と窒化膜12の2つ
のパターンをマスクとして再びN型不純物17を導入する
〔第2図(c)〕。ここで、レジスト膜16を除去し、再
び熱処理を加えれば、CCDシフトレジスタのN型領域14
が形成される〔第2図(d)参照〕。つぎにシリコン窒
化膜12のパターンをマスクにして熱酸化を行ないホトダ
イオードのN-型領域3およびCCDシフトレジスタのN型
領域4上に厚い酸化膜18をそれぞれ選択的に成長する
〔第2図(d)〕。その後、シリコン窒化膜12をそれぞ
れ除去し、ついで第2図(e)に示すようにN-型領域3
とN型領域4との間の離間領域上をレジスト膜19で被覆
した後、このレジスト・パターンと厚いシリコン酸化膜
18とをマスクにP型不純物を導入して、P+チャネルスト
ッパ10をそれぞれ形成する。つぎにこのレジスト膜19を
除去し、つけ直したレジスト膜20をマスクとしてCCDシ
フトレジスタのN型領域4上から厚いシリコン酸化膜18
をそれぞれエッチング除去する〔第2図(f)〕。つい
で、不要となったこのレジスト膜20を除去した後、ひき
続き、厚いシリコン酸化膜18が所定の膜厚となるように
この全面をエッチングする〔第2図(g)〕。つぎに、
基板全面を熱酸化するとN-型領域3上の厚みが他の領域
上の厚みの数倍になる所定の膜厚のシリコン酸化膜7が
形成される。ついでこの上に多結晶シリコンからなる読
出し電極5および転送電極5′をパターニング形成し
〔第2図(h)〕、最後に層間絶縁膜8および遮光アル
ミ膜9を順次形成すれば、上記実施例の本発明固体撮像
素子が完成する〔第2図(i)〕。
The structure of the above-described embodiment of the solid-state imaging device of the present invention can be manufactured by the following method. 2 (a) to 2 (i) show a process sequence diagram of one method of the manufacturing method. First, FIG. 2 (a)
As shown in FIG. 1, a P-type well 2 is formed on an N-type silicon substrate 1, and a silicon oxide film 11 and a silicon nitride film 12 are sequentially grown on the entire surface thereof. Are selectively formed by patterning. Next, using the resist film 13 as a mask, a silicon nitride film is used.
12 is selectively etched, and the resist film 14 is re-attached. Then, an N-type impurity 15 is introduced using the two patterns of the resist film 14 and the silicon nitride film 12 as masks (FIG. 2B). Next, the unnecessary resist film 14
Removed, by diffusing N-type impurity 15 is heat-treated, photodiode N - after the formation of the mold region 3, the N - 2 type region 3 above are covered with the resist film 16, the resist film 16 and a nitride film 12 Using the two patterns as masks, N-type impurities 17 are introduced again (FIG. 2 (c)). Here, if the resist film 16 is removed and heat treatment is performed again, the N-type region 14 of the CCD shift register can be obtained.
Is formed [see FIG. 2 (d)]. Then the pattern of the silicon nitride film 12 as a mask of the photodiode performs thermal oxidation N - growing type region 3 and the CCD shift register N-type region 4 on the thick oxide film 18, respectively selective [Figure 2 ( d)]. Thereafter, the silicon nitride film 12 is removed, respectively, then as shown in FIG. 2 (e) N - -type region 3
After the resist region 19 is coated on the space between the substrate and the N-type region 4, the resist pattern and the thick silicon oxide film are formed.
P + impurities are introduced using the mask 18 as a mask to form P + channel stoppers 10 respectively. Next, the resist film 19 is removed, and a thick silicon oxide film 18 is formed on the N-type region 4 of the CCD shift register by using the re-attached resist film 20 as a mask.
Are removed by etching [FIG. 2 (f)]. Then, after the unnecessary resist film 20 is removed, the entire surface is subsequently etched so that the thick silicon oxide film 18 has a predetermined thickness [FIG. 2 (g)]. Next,
When the entire surface of the substrate is thermally oxidized, a silicon oxide film 7 having a predetermined thickness is formed in which the thickness on N type region 3 is several times the thickness on other regions. Then, a readout electrode 5 and a transfer electrode 5 'made of polycrystalline silicon are formed thereon by patterning (FIG. 2 (h)), and finally, an interlayer insulating film 8 and a light-shielding aluminum film 9 are sequentially formed. 2 is completed [FIG. 2 (i)].

第3図(a)および(b)は、それぞれ本発明の他の
実施例を示す固体撮像素子の部分断面図および信号電荷
読出し時における読出し電極直下のチャネル電位図であ
る。本実施例によれば、読出し電極5とCCDシフトレジ
スタの転送電極5′とはそれぞれ独立に別個に形成され
る。この場合、読出し電極5と転送電極5′に読出しパ
ルス電圧を印加した場合のチャネル電位は、第3図
(b)に示したように前実施例の場合と同様となり、信
号電荷eの取り残しが発生しないので残像欠陥は改善さ
れる。また、これら2つの電極をそれぞれ独立に制御す
ることもできるので、CCDシフトレジスタの転送電圧の
制御電圧範囲を広く設定できる利点を有する。
FIGS. 3 (a) and 3 (b) are a partial sectional view of a solid-state imaging device and a channel potential diagram immediately below a read electrode at the time of reading signal charges, respectively, showing another embodiment of the present invention. According to this embodiment, the read electrode 5 and the transfer electrode 5 'of the CCD shift register are formed independently and separately. In this case, the channel potential when the read pulse voltage is applied to the read electrode 5 and the transfer electrode 5 'becomes the same as that of the previous embodiment as shown in FIG. 3B, and the signal charge e remains. Since it does not occur, afterimage defects are improved. Further, since these two electrodes can be independently controlled, there is an advantage that the control voltage range of the transfer voltage of the CCD shift register can be set wide.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したように、本発明によれば、読出し
電極下の絶縁膜を光電変換素子上で読出しチャネル領域
上より厚膜とすることによって、従来の固体撮像素子が
光電変換素子と読出し電極との重なり部分に生じていた
チャネル電位の谷を解消することができ、光電変換素子
から電荷転送素子への信号電荷の移送を容易とするの
で、従来問題とされた残像欠陥を改善できる効果があ
る。
As described above in detail, according to the present invention, the conventional solid-state imaging device is configured such that the insulating film below the readout electrode is thicker on the photoelectric conversion element than on the readout channel region. Can eliminate channel valleys that have occurred in the overlapping portion with the above, facilitating the transfer of signal charges from the photoelectric conversion element to the charge transfer element. is there.

【図面の簡単な説明】[Brief description of the drawings]

第4図(a)および(b)はそれぞれ本発明の一実施例
を示す固体撮像素子の部分断面図およびその信号電荷読
出し時における読出し電極直下のチャネル電位図、第2
図(a)〜(i)は本発明固体撮像素子の製造方法の一
手法を示す工程順序図、第3図(a)および(b)はそ
れぞれ本発明の他の実施例を示す固体撮像素子の部分断
面図およびその信号電荷読出し時における読出し電極直
下のチャネル電位図、第1図(a)および(b)はそれ
ぞれ従来の固体撮像素子の部分断面図およびその信号電
荷読出し時における読出し電極直下のチャネル電位図で
ある。 1……N型シリコン基板、2……P型ウェル、3……ホ
トダイオードのN-型領域、4……CCDシフトレジスタの
N型領域、5……読出し電極、6……読出しチャネル領
域、7……シリコン酸化膜、8……層間絶縁膜、9……
遮光アルミ膜、10……P+チャネルストッパ、e……信号
電荷。
4 (a) and 4 (b) are a partial cross-sectional view of a solid-state imaging device showing one embodiment of the present invention, a channel potential diagram immediately below a read electrode when reading out signal charges, and FIG.
FIGS. 3A to 3I are process sequence diagrams showing one method of manufacturing the solid-state imaging device of the present invention, and FIGS. 3A and 3B are each a solid-state imaging device showing another embodiment of the present invention. 1 and a channel potential diagram immediately below a read electrode when reading out signal charges. FIGS. 1 (a) and 1 (b) are a partial cross-sectional view of a conventional solid-state imaging device and immediately below a readout electrode when reading out signal charges, respectively. 3 is a channel potential diagram of FIG. 1 ... N-type silicon substrate, 2 ... P-type well, 3 ... N - type region of photodiode, 4 ... N-type region of CCD shift register, 5 ... Read electrode, 6 ... Read channel region, 7 ... silicon oxide film, 8 ... interlayer insulating film, 9 ...
Light-shielding aluminum film, 10 ... P + channel stopper, e ... Signal charge.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光電変換素子および電荷転送素子と、前記
光電変換素子と電荷転送素子との間にMOS構造を形成し
て介在し、光電変換による信号電荷を光電変換素子から
電荷転送素子へパルス移送する読出し電極とを含んでな
り、前記読出し電極と光電変換素子領域との重なり部分
の絶縁膜の膜厚を前記2つの素子領域間に形成する読出
しチャネル上の絶縁膜の膜厚よりも厚膜に設定されるこ
とを特徴とする固体撮像素子。
An MOS structure is formed between a photoelectric conversion element and a charge transfer element, and a MOS structure is interposed between the photoelectric conversion element and the charge transfer element, and a signal charge by photoelectric conversion is pulsed from the photoelectric conversion element to the charge transfer element. A read electrode to be transferred, wherein the thickness of the insulating film at the overlapping portion between the read electrode and the photoelectric conversion element region is larger than the thickness of the insulating film on the read channel formed between the two element regions. A solid-state imaging device characterized by being set on a film.
JP63321246A 1988-12-19 1988-12-19 Solid-state imaging device Expired - Lifetime JP2780294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63321246A JP2780294B2 (en) 1988-12-19 1988-12-19 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63321246A JP2780294B2 (en) 1988-12-19 1988-12-19 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH02164066A JPH02164066A (en) 1990-06-25
JP2780294B2 true JP2780294B2 (en) 1998-07-30

Family

ID=18130440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63321246A Expired - Lifetime JP2780294B2 (en) 1988-12-19 1988-12-19 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2780294B2 (en)

Also Published As

Publication number Publication date
JPH02164066A (en) 1990-06-25

Similar Documents

Publication Publication Date Title
JPS58138187A (en) Solid-state image sensor
JPS63153A (en) Charge transfer device
JPH0455028B2 (en)
JP2780294B2 (en) Solid-state imaging device
JPH04315474A (en) Manufacture of solid-state image pickup element
JP2795241B2 (en) Solid-state imaging device and method of manufacturing the same
JPH06296008A (en) Manufacture of solid-state image pickup element
JPH05182992A (en) Manufacture of solid-state image sensing element
JP2780512B2 (en) Solid-state imaging device
JPH05283668A (en) Solid state image pickup
JPH04158575A (en) Solid-state image sensing device
JPS63140568A (en) Solid-state image sensing device and manufacture thereof
JP2507015B2 (en) Method of manufacturing solid-state imaging device
JPH03125474A (en) Solid state imaging device
JPS6088463A (en) solid-state image sensor
JPS59208871A (en) Manufacture of solid-state image pickup element
JPH04299862A (en) Solid-state image sensor
JPH0775258B2 (en) Method of manufacturing solid-state image sensor
JPH01143256A (en) Solid-state image sensing device
JPH08306901A (en) Solid-state image sensor
JPH07297378A (en) Solid-state image sensing device and manufacture thereof
JPH02304978A (en) Manufacture of solid image-pickup element
JPS62237758A (en) Manufacturing method of solid-state image sensor
JPH04239173A (en) Manufacture of solid-state image sensing device
JPH02304977A (en) Solid image-pickup element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11