[go: up one dir, main page]

JP2775718B2 - Chip resistor and manufacturing method thereof - Google Patents

Chip resistor and manufacturing method thereof

Info

Publication number
JP2775718B2
JP2775718B2 JP8149998A JP14999896A JP2775718B2 JP 2775718 B2 JP2775718 B2 JP 2775718B2 JP 8149998 A JP8149998 A JP 8149998A JP 14999896 A JP14999896 A JP 14999896A JP 2775718 B2 JP2775718 B2 JP 2775718B2
Authority
JP
Japan
Prior art keywords
electrode
substrate
resistor
electrodes
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8149998A
Other languages
Japanese (ja)
Other versions
JPH08339903A (en
Inventor
直 大郷
絋二 東
充 横山
陽三 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKURIKU DENKI KOGYO KK
Original Assignee
HOKURIKU DENKI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKURIKU DENKI KOGYO KK filed Critical HOKURIKU DENKI KOGYO KK
Priority to JP8149998A priority Critical patent/JP2775718B2/en
Publication of JPH08339903A publication Critical patent/JPH08339903A/en
Application granted granted Critical
Publication of JP2775718B2 publication Critical patent/JP2775718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Details Of Resistors (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、チップ状の絶縁
基板の表面に抵抗体が設けられ、この基板の両端部に電
極が形成されたチップ抵抗器とその製造方法に関する。 【0002】 【従来の技術】従来、チップ抵抗器の電極の構造は、ガ
ラスをバインダに用いてAg−Pt等を成分とするいわ
ゆるメタルグレーズペーストを塗布し焼成して形成した
ものであった。又、特開昭61-210601号公報に
開示されているように、基板裏面にも電極を形成し、表
裏の電極を、導電性ペーストによって包含し加熱硬化さ
せて電極を形成したものもある。 【0003】 【発明が解決しようとする課題】上記従来の技術の場
合、チップ抵抗器を回路基板にハンダ付けした際に、チ
ップ抵抗器裏面の電極に接合したハンダが、その裏面電
極周囲を覆って広がるようにハンダ付けされ、場合によ
っては不必要にハンダが広がったり、他の電極や回路パ
ターンとハンダが接触したりする場合があった。しか
も、ハンダが裏面電極の周囲に広く付着していると、回
路基板の実装密度向上の妨げとなり、後の回路基板の反
り等により、広がったハンダ付け部の一部がチップ抵抗
器の裏面電極又は回路基板のランドから外れてしまう場
合もあった。 【0004】さらに、チップ抵抗器の工程上、メタルグ
レーズペーストやガラスコート等、比較的高温での熱処
理が行なわれ、抵抗体等の劣化や他の形成部分に対する
悪影響があった。 【0005】この発明は、上記従来の問題点に鑑みてな
されたもので、ハンダ付け強度が高く、しかもハンダ付
け部の面積が小さく、回路基板への実装密度を上げるこ
とができ、高品質で製造も容易なチップ抵抗器とその製
造方法を提供することを目的とする。 【0006】 【課題を解決するための手段】この発明は、絶縁体の基
板表面の両端部に抵抗体と直接に接続しているメタルグ
レーズ系の第1電極を設け、この第1電極とは基板をは
さんで反対側の基板裏面にもメタルグレーズ系の第2電
極をその基板裏面から突出した状態に設け、上記基板の
両端面を覆い上記第1,2電極に接触したAg−レジン
系の第3電極を設け、この第3電極は上記第2電極を上
記基板端面側から一部分所定の厚さで覆い、上記基板裏
面の中央部側から両端面側に向かって、上記第2電極と
上記第3電極が2段階に階段状に突出して形成されてい
るチップ抵抗器である。 【0007】上記第3電極はコ字状に形成され、上記基
板の端面から延びて上記第1,2電極に直接接触し、上
記第1,2電極を上記基板の端面側から所定の厚さで覆
い、上記基板裏面の中央部側から端面側に向かって上記
第2電極及び上記第3電極が階段状に突出して形成され
ているチップ抵抗器である。また上記抵抗体は、ガラス
コート及びレジンコートにより覆われ、外部に露出する
上記電極がメッキで覆われているものでる。 【0008】またこの発明は、多数の分割溝が形成され
分割により多数のチップを得る絶縁性基板表面の個々の
チップ部の両端部に、メタルグレーズ系の第1電極を各
々形成し、この第1電極とは基板をはさんで反対側の基
板裏面にも基板裏面から突出した状態に各々メタルグレ
ーズ系の第2電極を形成し、上記各第1電極間に抵抗体
を形成し、上記基板を上記分割溝に沿って分割し、上記
基板の分割された両端面にAg−レジン系の導電性塗料
を塗布し、この導電性塗料がコ字状に形成されて上記第
1,2電極に接触するとともに上記第2電極の一部を上
記基板端面側から所定の厚さで覆った第3電極を形成
し、上記基板裏面の中央部側から端面側に向かって上記
第2電極及び上記第3電極を階段状に2段階に突出させ
て形成するチップ抵抗器の製造方法である。 【0009】さらに、上記導電性塗料は上記基板端面に
直接塗布され、この第3電極形成後に、外部に露出した
上記第1,2,3電極をメッキで覆うチップ抵抗器の製
造方法である。さらに、上記抵抗体形成後その抵抗体表
面にガラスコートを施し、上記抵抗体の抵抗値を調整す
るトリミングを、上記メッキ後に行なうものである。ま
た、上記抵抗体表面にガラスコートを施した後、上記抵
抗体の抵抗値を調整するトリミングを行ない、上記抵抗
体を覆うレジンコートを形成し、この後上記基板を個々
のチップ部毎に分割するチップ抵抗器の製造方法であ
る。 【0010】この発明のチップ抵抗器とその製造方法
は、基板裏面の両端部に第2,3電極が階段状に突出し
て形成され、回路基板にこのチップ抵抗器を取り付けた
際には、第3電極が回路基板に接触し、第2電極が僅か
に回路基板から離間した状態となり、この回路基板と第
2電極との間に確実にハンダが侵入し、チップ抵抗器の
ハンダ付けが確実になるとともに、ハンダ付け領域が正
確に制限され、ハンダが不用意に広がらないものであ
る。 【0011】 【発明の実施の形態】以下、この発明の一実施形態につ
いて図面に基づいて説明する。この実施形態のチップ抵
抗器1は、図1に示すように、セラミックの基板2の表
面に凸型の抵抗体3が印刷形成され、この両端に電極4
が設けられている。抵抗体3は、酸化ルテニウムを約1
0μの厚みに設け、レーザー又はサンドブラストにより
凸型の底辺から上方に向かってトリミング溝5を形成
し、抵抗値のトリミングが成されている。 【0012】このチップ抵抗器1の電極4は、抵抗体3
の両端部が直接に接続している第1電極6と、この第1
電極6と基板2をはさんで対向して基板2の裏面側に突
出して形成された第2電極7を有し、この第1、第2電
極6,7は、Ag−Pd、Ag−Pt等のメタルグレー
ズペーストを印刷形成したものである。さらに、第1、
第2電極6,7の間の基板2の端面に、キシレン又はエ
ポキシフェノール樹脂にAgを混入したAg−レジン系
の導電性塗料のペーストによる第3電極8が設けられて
いる。この第3電極8は、第1、第2電極6,7を基板
2の端面側から一部所定の厚さで被覆するように設けら
れ、両者の導通を図っている。これにより、基板2の裏
面の中央部側から端面側に向かって、第2電極7及び第
3電極8が、2段階に階段状に突出するように形成され
ている。 【0013】そして、外部に露出するこの第1、第2、
第3電極6,7,8全体を覆って、Niメッキ9及びハ
ンダメッキ10が順次施され、ハンダメッキ10が施さ
れた後の基板2の裏面側の電極4の形状も、基板2の裏
面の中央部側から端面側に向かって階段状に突出して形
成されている。また、抵抗体3の表面には、ガラスコー
ト11及びレジンコート12が施され保護されている。 【0014】次にこの実施形態のチップ抵抗器の製造方
法について、図3(A)ないし(F)に基づいて説明す
る。先ず、図3(A)に示すように、分割される大型の
基板であるセラミック板13の分割溝であるスリット1
4をはさんで所定間隔で、第1電極6となるメタルグレ
ーズペーストを複数列印刷し、900℃近い温度で焼成
する。さらに同様にして第2電極7も、セラミック板1
3の裏面に、第1電極6と対向する位置に形成する。次
に、図3(B)に示すように、第1電極6の間のセラミ
ック板13上にマトリクス状に多数の抵抗体3を印刷形
成し、平均850℃の温度で焼成する。そして、図3
(C)に示すように、抵抗体3の表面にガラスコート1
1を施し平均650℃の温度で焼成する。この後、セラ
ミック板13をスリット14に沿って分割し、図3
(D)に示すように、基板2の端面にAg−レジン系の
導電性塗料の第3電極8を約20μの厚みに塗布し、2
00℃程度の温度で硬化させる。そして図3(E)、
(F)に示すように、Niメッキ9、ハンダメッキ10
を各々順次施し、外部に露出した第1、第2、第3電極
6,7,8を被覆する。 【0015】最後に、各チップ抵抗器の抵抗体3をトリ
ミングして抵抗値を調整する。又、抵抗体3の表面にエ
ポキシ樹脂等のレジンコート12を施し、200℃付近
の温度で硬化させる。 【0016】なお、トリミングは、図3(C)の状態で
行なうこともあり、この場合はその後レジンコート12
を施して図3(D)以下の工程を行なう。これによっ
て、セラミック板13をチップ毎に分離しない状態で抵
抗値のトリミングを行なうので効率良くトリミング作業
を行なうことができ、しかもレジンコート12によっ
て、後のメッキ作業時にも抵抗体に悪影響を与えること
もない。 【0017】この実施形態のチップ抵抗器によれば、ハ
ンダ付けの際に回路基板との間で、第2電極7と回路基
板との間にハンダが侵入し、ハンダ付け領域が制限さ
れ、絶縁効果が高いとともに、回路基板に対する固着力
も極めて強いものである。又、はんだが第2電極の下方
に吸い付けられるので、電極間距離を短くすることがで
き、チップ抵抗器の小型化及び回路基板の高密度実装を
可能にするものである。さらには、この第2電極間の回
路基板表面に、回路パターンを通すことも可能であり、
ハンダの不要な広がりが防止されることによる実装密度
の向上効果は極めて大きい。 【0018】また、製造工程上、後工程での熱処理の温
度が、前工程の熱処理の温度より低い温度で行なわれ、
後工程での熱処理による前工程での形成部分に悪影響が
なく、高品質なチップ抵抗器を製造することができるも
のである。さらに、電極4にハンダメッキされ、個々の
チップ抵抗器が形成された後にトリミングを行なうこと
により、各工程での熱による抵抗体の影響を除去するこ
とができ、より精度の高いチップ抵抗器を提供すること
ができる。 【0019】さらに、この実施形態のチップ抵抗器は、
分割した端面部分を、導電性樹脂の第3電極8で覆って
いるので、分割部のエッジが樹脂で覆われ、このエッジ
部分での断線が生じにくいものである。又、チップ抵抗
器の裏面部分が階段状に突出し、その先端部分で基板に
ハンダ付けされるので、位置決めが正確に成され、抵抗
値の測定等も確実に可能なものである。 【0020】尚、この発明のチップ抵抗器の抵抗体は、
金属被膜抵抗体、炭素被膜抵抗体等その用途に合わせて
適宜選定し得るものである。またメタルグレーズペース
ト、Ag−レジン系導電性ペーストの成分は、適宜他の
添加物が入っていても良く、この実施形態のものに限定
されるものではない。 【0021】 【発明の効果】この発明のチップ抵抗器とその製造方法
は、チップ抵抗器を回路基板にハンダ付けする際に、第
2電極と回路基板との間にハンダが侵入し、ハンダ付け
領域が確実に制限され、回路基板に対する固着力も極め
て強いものである。又、ハンダが第2電極の下方に吸い
付けられるので、チップ抵抗器の電極間距離や、回路基
板上の他の電子部品との電極間隔を短くすることがで
き、チップ抵抗器の小型化及び回路基板の高密度実装を
可能にするものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip resistor in which a resistor is provided on the surface of a chip-shaped insulating substrate, and electrodes are formed at both ends of the substrate. It relates to the manufacturing method. 2. Description of the Related Art Conventionally, the electrode structure of a chip resistor has been formed by applying and firing a so-called metal glaze paste containing Ag-Pt or the like using glass as a binder. Further, as disclosed in Japanese Patent Application Laid-Open No. 61-210601, there is also an electrode in which electrodes are formed on the back surface of a substrate, and the front and back electrodes are covered with a conductive paste and cured by heating to form the electrodes. [0003] In the above-mentioned conventional technique, when the chip resistor is soldered to the circuit board, the solder joined to the electrode on the back surface of the chip resistor covers the periphery of the back surface electrode. In some cases, the solder spreads unnecessarily, or the solder contacts other electrodes or circuit patterns in some cases. Moreover, if the solder is widely adhered to the periphery of the back surface electrode, it will hinder the improvement of the mounting density of the circuit board. Or, it may come off the land of the circuit board. Further, in the process of the chip resistor, a heat treatment at a relatively high temperature, such as a metal glaze paste or a glass coat, is performed, which has a detrimental effect on the resistor and the like and an adverse effect on other formed portions. The present invention has been made in view of the above-mentioned conventional problems, and has a high soldering strength, a small soldering area, a high mounting density on a circuit board, and high quality. An object of the present invention is to provide a chip resistor that can be easily manufactured and a manufacturing method thereof. According to the present invention, a metal glaze-based first electrode which is directly connected to a resistor is provided at both ends of an insulator substrate surface. A metal glaze-based second electrode protruding from the rear surface of the substrate is also provided on the back surface of the opposite substrate with the substrate interposed therebetween, and the Ag-resin-based electrode covering both end surfaces of the substrate and contacting the first and second electrodes is provided. The third electrode partially covers the second electrode from the end face of the substrate with a predetermined thickness, and the third electrode is provided with the second electrode from the center of the back surface of the substrate toward both end faces. This is a chip resistor in which the third electrode is formed to protrude stepwise in two steps. The third electrode is formed in a U-shape, extends from an end surface of the substrate, directly contacts the first and second electrodes, and connects the first and second electrodes with a predetermined thickness from the end surface of the substrate. And a chip resistor in which the second electrode and the third electrode are formed so as to protrude in a stepwise manner from the center portion side to the end surface side of the back surface of the substrate. The resistor is covered with a glass coat and a resin coat, and the electrodes exposed to the outside are covered with plating. Further, according to the present invention, a metal glaze-based first electrode is formed at each end of each chip portion on the surface of an insulating substrate on which a large number of division grooves are formed to obtain a large number of chips by division. A metal glaze-based second electrode is formed on the opposite back surface of the substrate with the one electrode protruding from the back surface of the substrate, and a resistor is formed between the first electrodes; Is divided along the dividing grooves, and an Ag-resin-based conductive paint is applied to the divided both end surfaces of the substrate, and the conductive paint is formed in a U-shape and is formed on the first and second electrodes. A third electrode is formed which is in contact with and covers a part of the second electrode from the end face of the substrate with a predetermined thickness, and the second electrode and the third electrode are formed from the center of the back surface of the substrate toward the end face. A chip resistor formed by projecting three electrodes stepwise in two steps Vessels is a method of manufacturing. Further, the present invention is a method of manufacturing a chip resistor in which the conductive paint is directly applied to the end face of the substrate, and after forming the third electrode, the first, second and third electrodes exposed outside are covered with plating. Further, after the formation of the resistor, a glass coating is applied to the surface of the resistor, and trimming for adjusting the resistance value of the resistor is performed after the plating. Further, after applying a glass coat on the surface of the resistor, trimming is performed to adjust the resistance value of the resistor, a resin coat covering the resistor is formed, and then the substrate is divided into individual chip portions. This is a method for manufacturing a chip resistor. According to the chip resistor and the method of manufacturing the same of the present invention, the second and third electrodes are formed at both ends of the back surface of the substrate so as to protrude in a stepwise manner. The three electrodes come into contact with the circuit board, and the second electrode is slightly separated from the circuit board. Solder surely penetrates between the circuit board and the second electrode, and the soldering of the chip resistor is surely performed. At the same time, the soldering area is accurately restricted, and the solder is not inadvertently spread. An embodiment of the present invention will be described below with reference to the drawings. In the chip resistor 1 of this embodiment, as shown in FIG. 1, a convex resistor 3 is formed by printing on the surface of a ceramic substrate 2, and electrodes 4
Is provided. The resistor 3 is composed of about 1 part of ruthenium oxide.
It is provided with a thickness of 0 μm, and a trimming groove 5 is formed upward from the bottom of the convex shape by laser or sandblast to trim the resistance value. The electrode 4 of the chip resistor 1 is connected to the resistor 3
A first electrode 6 having both ends directly connected to each other,
A second electrode 7 is formed so as to protrude from the back surface side of the substrate 2 so as to face the electrode 6 with the substrate 2 interposed therebetween. The first and second electrodes 6 and 7 are made of Ag-Pd, Ag-Pt. Etc. are formed by printing a metal glaze paste. In addition, the first,
On the end face of the substrate 2 between the second electrodes 6 and 7, a third electrode 8 made of a paste of an Ag-resin-based conductive paint in which Ag is mixed in xylene or epoxyphenol resin is provided. The third electrode 8 is provided so as to partially cover the first and second electrodes 6 and 7 from the end face side of the substrate 2 with a predetermined thickness, thereby achieving conduction between the two. Thus, the second electrode 7 and the third electrode 8 are formed so as to protrude in two steps from the central portion of the back surface of the substrate 2 toward the end surface. Then, the first, second,
Ni plating 9 and solder plating 10 are sequentially applied to cover the entire third electrodes 6, 7 and 8, and the shape of the electrode 4 on the back surface side of the substrate 2 after the solder plating 10 is applied also changes to the back surface of the substrate 2. Is formed so as to protrude stepwise from the central portion side toward the end surface side. The surface of the resistor 3 is protected by a glass coat 11 and a resin coat 12. Next, a method of manufacturing the chip resistor according to this embodiment will be described with reference to FIGS. First, as shown in FIG. 3A, a slit 1 which is a dividing groove of a ceramic plate 13 which is a large substrate to be divided.
A plurality of rows of a metal glaze paste to be the first electrode 6 are printed at predetermined intervals with 4 interposed therebetween and fired at a temperature close to 900 ° C. Further, similarly, the second electrode 7 is also connected to the ceramic plate 1.
3 is formed on the back surface at a position facing the first electrode 6. Next, as shown in FIG. 3B, a large number of resistors 3 are printed and formed in a matrix on the ceramic plate 13 between the first electrodes 6, and fired at a temperature of 850 ° C. on average. And FIG.
As shown in (C), a glass coat 1 is formed on the surface of the resistor 3.
And firing at an average temperature of 650 ° C. Thereafter, the ceramic plate 13 is divided along the slits 14,
As shown in (D), a third electrode 8 of an Ag-resin-based conductive paint is applied to the end surface of the substrate 2 to a thickness of about 20 μm.
It is cured at a temperature of about 00 ° C. And FIG. 3 (E),
As shown in (F), Ni plating 9 and solder plating 10
Are sequentially applied to cover the first, second, and third electrodes 6, 7, and 8 exposed to the outside. Finally, the resistor 3 of each chip resistor is trimmed to adjust the resistance value. Further, a resin coat 12 such as an epoxy resin is applied to the surface of the resistor 3 and cured at a temperature of about 200 ° C. In some cases, the trimming is performed in the state shown in FIG. 3C.
To perform the steps shown in FIG. As a result, the trimming operation can be performed efficiently because the resistance value is trimmed without separating the ceramic plate 13 for each chip, and the resin coat 12 has an adverse effect on the resistor even during the subsequent plating operation. Nor. According to the chip resistor of this embodiment, the solder penetrates between the second electrode 7 and the circuit board at the time of soldering, between the second electrode 7 and the circuit board. The effect is high and the fixing force to the circuit board is extremely strong. Further, since the solder is sucked below the second electrode, the distance between the electrodes can be shortened, and the chip resistor can be reduced in size and the circuit board can be mounted at a high density. Furthermore, it is also possible to pass a circuit pattern on the circuit board surface between the second electrodes,
The effect of improving the mounting density by preventing unnecessary spread of the solder is extremely large. In the manufacturing process, the temperature of the heat treatment in the subsequent step is lower than the temperature of the heat treatment in the previous step.
A high-quality chip resistor can be manufactured without adversely affecting a portion formed in a previous step by a heat treatment in a subsequent step. Furthermore, by performing the trimming after the electrode 4 is solder-plated and the individual chip resistors are formed, the influence of the resistor due to heat in each step can be removed, and a more accurate chip resistor can be obtained. Can be provided. Furthermore, the chip resistor of this embodiment is
Since the divided end face is covered with the third electrode 8 made of a conductive resin, the edge of the divided part is covered with the resin, so that the edge is hardly disconnected. Further, since the back surface of the chip resistor protrudes stepwise and is soldered to the substrate at the tip, the positioning is accurately performed, and the measurement of the resistance value and the like can be reliably performed. Incidentally, the resistor of the chip resistor according to the present invention comprises:
A metal film resistor, a carbon film resistor, and the like can be appropriately selected according to the application. The components of the metal glaze paste and the Ag-resin-based conductive paste may contain other additives as appropriate, and are not limited to those of this embodiment. According to the chip resistor and the method of manufacturing the same of the present invention, when the chip resistor is soldered to the circuit board, the solder penetrates between the second electrode and the circuit board, and the soldering is performed. The area is reliably limited, and the adhesion to the circuit board is extremely strong. Also, since the solder is sucked below the second electrode, the distance between the electrodes of the chip resistor and the distance between the electrodes and other electronic components on the circuit board can be shortened. This enables high-density mounting of circuit boards.

【図面の簡単な説明】 【図1】この発明のチップ抵抗器の一実施形態を示す平
面図である。 【図2】図1のA−A断面図である。 【図3】各(A)(B)(C)(D)(E)(F)はこの実施
形態のチップ抵抗器の製造工程を示す縦断面図である。 【符号の説明】 1 チップ抵抗器 2 基板 3 抵抗体 4 電極 6 第1電極 7 第2電極 8 第3電極 9 Niメッキ 10 ハンダメッキ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view showing an embodiment of a chip resistor according to the present invention. FIG. 2 is a sectional view taken along line AA of FIG. FIGS. 3A, 3B, 3C, 3D, 3E, and 3F are longitudinal sectional views showing steps of manufacturing the chip resistor according to the embodiment; FIGS. [Description of References] 1 Chip resistor 2 Substrate 3 Resistor 4 Electrode 6 First electrode 7 Second electrode 8 Third electrode 9 Ni plating 10 Solder plating

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小原 陽三 富山県上新川郡大沢野町下大久保3158番 地 北陸電気工業株式会社内   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Yozo Ohara               3158 Shimo-Okubo, Osawano-cho, Kamishinkawa-gun, Toyama               Hokuriku Electric Industry Co., Ltd.

Claims (1)

(57)【特許請求の範囲】 1.絶縁体の基板表面の両端部に抵抗体と直接に接続し
ているメタルグレーズ系の第1電極を設け、この第1電
極とは基板をはさんで反対側の基板裏面にもメタルグレ
ーズ系の第2電極をその基板裏面から突出した状態に設
け、上記基板の両端面を覆い上記第1,2電極に接触し
た第3電極を設け、この第3電極は上記第2電極を上記
基板端面側から一部分所定の厚さで覆い、上記基板裏面
の中央部側から両端面側に向かって、上記第2電極と上
記第3電極が2段階の階段状に突出して形成されている
チップ抵抗器。 2.上記第3電極はコ字状に形成され、上記基板の端面
から延びて上記第1,2電極に直接接触し、上記第1,
2電極を上記基板の端面側から所定の厚さで覆い、上記
基板裏面の中央部側から端面側に向かって上記第2電極
及び上記第3電極が階段状に突出して形成されている請
求項1記載のチップ抵抗器。 3.上記抵抗体は、ガラスコート及びレジンコートによ
り覆われ、外部に露出する上記電極がメッキで覆われて
いる請求項1又は2記載のチップ抵抗器。 4.多数の分割溝が形成され分割により多数のチップを
得る絶縁性基板表面の個々のチップ部の両端部に、メタ
ルグレーズ系の第1電極を各々形成し、この第1電極と
は基板をはさんで反対側の基板裏面にも基板裏面から突
出した状態に各々メタルグレーズ系の第2電極を形成
し、上記各第1電極間に抵抗体を形成し、上記基板を上
記分割溝に沿って分割し、上記基板の分割された両端面
に導電性塗料を塗布し、この導電性塗料がコ字状に形成
されて上記第1,2電極に接触するとともに上記第2電
極の一部を上記基板端面側から所定の厚さで覆った第3
電極を形成し、上記基板裏面の中央部側から端面側に向
かって上記第2電極及び上記第3電極を階段状に2段階
に突出させて形成するチップ抵抗器の製造方法。 5.上記第3電極はAg−レジン系の導電性塗料であ
り、上記基板端面に直接塗布され、この第3電極形成後
に、外部に露出した上記第1,2,3電極をメッキで覆
う請求項4記載のチップ抵抗器の製造方法。 6.上記抵抗体形成後その抵抗体表面にガラスコートを
施し、上記抵抗体の抵抗値を調整するトリミングを、上
記メッキ後に行なう請求項5記載のチップ抵抗器の製造
方法。 7.上記抵抗体表面にガラスコートを施した後、上記抵
抗体の抵抗値を調整するトリミングを行ない、上記抵抗
体を覆うレジンコートを形成し、この後上記基板を個々
のチップ部毎に分割する請求項4又は5記載のチップ抵
抗器の製造方法。
(57) [Claims] A metal glaze-based first electrode that is directly connected to the resistor is provided at both ends of the substrate surface of the insulator, and the metal glaze-based first electrode is also provided on the back surface of the substrate opposite to the first electrode. A second electrode is provided so as to protrude from the back surface of the substrate, and a third electrode covering both end surfaces of the substrate and in contact with the first and second electrodes is provided. The third electrode connects the second electrode to the end surface of the substrate. A chip resistor which is partially covered with a predetermined thickness from the center of the back surface of the substrate, and wherein the second electrode and the third electrode are formed to protrude in two steps from the center to the both end surfaces. 2. The third electrode is formed in a U-shape, extends from an end surface of the substrate, directly contacts the first and second electrodes, and
The two electrodes are covered with a predetermined thickness from the end face side of the substrate, and the second electrode and the third electrode are formed so as to protrude in a stepwise manner from the center part side of the back surface of the substrate toward the end face side. 2. The chip resistor according to 1. 3. The chip resistor according to claim 1, wherein the resistor is covered with a glass coat and a resin coat, and the electrode exposed to the outside is covered with plating. 4. A large number of dividing grooves are formed, and a large number of chips are obtained by division. A metal glaze-based first electrode is formed at each end of each chip portion on the surface of the insulating substrate, and the substrate is sandwiched between the first electrodes. A metal glaze-based second electrode is formed on the opposite substrate back surface so as to protrude from the substrate back surface, a resistor is formed between the first electrodes, and the substrate is divided along the division grooves. Then, a conductive paint is applied to the divided two end surfaces of the substrate, and the conductive paint is formed in a U-shape, contacts the first and second electrodes, and a part of the second electrode is attached to the substrate. The third one covered with a predetermined thickness from the end face side
A method of manufacturing a chip resistor, comprising forming electrodes and forming the second electrode and the third electrode so as to protrude in two steps from the center to the end face of the back surface of the substrate. 5. 5. The third electrode is an Ag-resin-based conductive paint, applied directly to the end face of the substrate, and covers the first, second, and third electrodes exposed to the outside by plating after the formation of the third electrode. A manufacturing method of the chip resistor according to the above. 6. 6. The method according to claim 5, wherein after the formation of the resistor, a glass coating is applied to the surface of the resistor, and trimming for adjusting the resistance value of the resistor is performed after the plating. 7. After applying a glass coat on the surface of the resistor, trimming is performed to adjust the resistance value of the resistor, a resin coat covering the resistor is formed, and then the substrate is divided into individual chip portions. Item 6. The method for manufacturing a chip resistor according to item 4 or 5.
JP8149998A 1996-05-20 1996-05-20 Chip resistor and manufacturing method thereof Expired - Lifetime JP2775718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8149998A JP2775718B2 (en) 1996-05-20 1996-05-20 Chip resistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8149998A JP2775718B2 (en) 1996-05-20 1996-05-20 Chip resistor and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6180814A Division JP2866808B2 (en) 1994-07-08 1994-07-08 Manufacturing method of chip resistor

Publications (2)

Publication Number Publication Date
JPH08339903A JPH08339903A (en) 1996-12-24
JP2775718B2 true JP2775718B2 (en) 1998-07-16

Family

ID=15487240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8149998A Expired - Lifetime JP2775718B2 (en) 1996-05-20 1996-05-20 Chip resistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2775718B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102527723B1 (en) * 2016-11-15 2023-05-02 삼성전기주식회사 Chip resistor and chip resistor assembly

Also Published As

Publication number Publication date
JPH08339903A (en) 1996-12-24

Similar Documents

Publication Publication Date Title
US7907046B2 (en) Chip resistor and method for producing the same
US20090322468A1 (en) Chip Resistor and Manufacturing Method Thereof
JP3167968B2 (en) Manufacturing method of chip resistor
JP2775718B2 (en) Chip resistor and manufacturing method thereof
JP3118509B2 (en) Chip resistor
JPH01109702A (en) Chip resistor
JP2866808B2 (en) Manufacturing method of chip resistor
JP3353037B2 (en) Chip resistor
JP3012875B2 (en) Manufacturing method of chip resistor
JP3447728B2 (en) Chip resistor
JP2939425B2 (en) Surface mount type resistor and its manufacturing method
US20070119911A1 (en) Method of forming a composite standoff on a circuit board
JP3111823B2 (en) Square chip resistor with circuit inspection terminal
JPH0513201A (en) Square chip resistor
JP3297642B2 (en) Chip resistor
JP2806802B2 (en) Chip resistor
JP3435419B2 (en) Chip resistor
JP3159963B2 (en) Chip resistor
JP3323140B2 (en) Chip resistor
JP2002246206A (en) Chip resistor and its manufacturing method
JP3323156B2 (en) Chip resistor
CN115472360A (en) Chip component
JPH09120904A (en) Chip resistor
JPH08330115A (en) Network electronic component
JPH08122017A (en) Position recognition method for multiple chip elements

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080501

Year of fee payment: 10