[go: up one dir, main page]

JP2774843B2 - Spiral type degassing module - Google Patents

Spiral type degassing module

Info

Publication number
JP2774843B2
JP2774843B2 JP1308065A JP30806589A JP2774843B2 JP 2774843 B2 JP2774843 B2 JP 2774843B2 JP 1308065 A JP1308065 A JP 1308065A JP 30806589 A JP30806589 A JP 30806589A JP 2774843 B2 JP2774843 B2 JP 2774843B2
Authority
JP
Japan
Prior art keywords
membrane
degassing
spiral
module
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1308065A
Other languages
Japanese (ja)
Other versions
JPH03169304A (en
Inventor
修美 戸沢
武 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP1308065A priority Critical patent/JP2774843B2/en
Publication of JPH03169304A publication Critical patent/JPH03169304A/en
Application granted granted Critical
Publication of JP2774843B2 publication Critical patent/JP2774843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液体中に溶存しているガス(気体)を分離
する膜モジュールに関し、詳しくは種々の液体中に溶存
しているガスを効率よく脱気するスパイラル型脱気膜モ
ジュールに関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane module for separating a gas (gas) dissolved in a liquid, and more particularly, to a method for efficiently converting a gas dissolved in various liquids. The present invention relates to a spiral degassing membrane module that frequently degasses.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be solved by conventional technology and invention]

液体の使用上、脱気を必要とする分野は非常に多い。
例えば分析機器関連としては液体クロマトグラフィー、
自動臨床化学分析、医用分光光度計等の脱気がある。ま
た工業用用途としては、イオン交換水プロセス、超純水
システム、ボイラー用水、原発用水、タービン用水等の
脱気がある。
There are many fields that require degassing in the use of liquids.
For example, liquid chromatography,
Degassing of automated clinical chemistry analysis, medical spectrophotometer, etc. Industrial applications include degassing of ion-exchanged water processes, ultrapure water systems, boiler water, nuclear power water, turbine water, and the like.

例えば、液体クロマトグラフィーでは、溶媒に空気が
溶存していると、ポンプ内、弁周辺、検知器内に気泡が
生じトラブルの原因となる。また溶存酸素は溶質と化学
反応を起こす可能性もある。自動臨床化学分析では、検
体量の少量化に伴い、わずかの溶存酸素も分析精度に悪
影響を及ぼす。また分光光度計では紫外短波長領域にお
ける溶存酸素等による吸収の影響が大きい。一方、イオ
ン交換水プロセスでは液体中の溶存酸素や炭酸ガスがイ
オン交換樹脂の寿命を短くする。さらにボイラー用水、
原発用水では溶存酸素が容器、配管等の腐食を促進す
る。
For example, in liquid chromatography, when air is dissolved in a solvent, air bubbles are generated in a pump, around a valve, and in a detector, causing a trouble. Also, dissolved oxygen may cause a chemical reaction with the solute. In automated clinical chemistry analysis, even with a small amount of sample, even a small amount of dissolved oxygen adversely affects the analysis accuracy. In a spectrophotometer, absorption by dissolved oxygen and the like in the ultraviolet short wavelength region has a large influence. On the other hand, in the ion exchange water process, dissolved oxygen and carbon dioxide in the liquid shorten the life of the ion exchange resin. Boiler water,
In nuclear power water, dissolved oxygen promotes corrosion of containers, piping, etc.

その他、飲料水、ビル給水、飲料製造用原料水、飲料
製造用水等の分野で脱気が必要とされている。
In addition, deaeration is required in fields such as drinking water, building water supply, raw material water for beverage production, and water for beverage production.

従来より液体中の溶存ガスを脱気するために、例えば
加熱沸騰法、減圧法、超音波法、ヘリウム法等の方法が
知られている。しかしながら加熱沸騰法は高温操作のた
め危険性が高く、減圧法および超音波法は脱気能力が低
く、ヘリウム法は運転費が高いなど決して効果的、経済
的な方法ではなかった。
Conventionally, methods for degassing a dissolved gas in a liquid, such as a heating boiling method, a decompression method, an ultrasonic method, and a helium method, are known. However, the heating and boiling method has a high danger due to high temperature operation, the decompression method and the ultrasonic method have low degassing ability, and the helium method is not an effective and economical method because the operation cost is high.

以上に述べた如く、脱気を必要とする分野は非常に多
く、いずれの分野においても満足できる脱気方法はなか
った。
As described above, there are so many fields that require degassing, and there has been no satisfactory degassing method in any field.

近年、シリコーン、ポリテトラフルオロエチレン等の
合成樹脂からなるチューブ(中空糸)状の膜を用いた脱
気方法が提案されている(特開昭60−25514号、実開昭6
3−43609号等)。
In recent years, a deaeration method using a tube (hollow fiber) membrane made of a synthetic resin such as silicone or polytetrafluoroethylene has been proposed (Japanese Patent Application Laid-Open No. Sho 60-25514, Japanese Utility Model Application Laid-Open No.
No. 3-43609).

例えば、中空糸状の膜の外側を減圧雰囲気に保った状
態で膜の内側に溶存ガスを含む液体を流し、該液体中の
溶存ガスを脱気する方法である。
For example, there is a method in which a liquid containing a dissolved gas is caused to flow inside the membrane while keeping the outside of the hollow fiber membrane in a reduced-pressure atmosphere, and the dissolved gas in the liquid is degassed.

しかしながら、かかるチューブ(中空糸)状の所謂、
中空糸膜からなる膜モジュールは、中空糸膜内側に被脱
気液体の乱流(表面更新)を促進し脱気速度を増加させ
る、所謂、乱流促進機構を有しないため、実用的に脱気
用膜として使用するには、経済効率を決定する脱気速度
を大きくする手段として中空糸膜の内径を小さくする方
法がとられている。しかし、中空糸膜の内径を小さくす
ることは、機械的強度及び成形上の問題点と共に液体を
流す際の高い圧力損失の問題点を発生させる原因となる
という欠点があった。
However, what is called such a tube (hollow fiber) shape,
The membrane module made of a hollow fiber membrane does not have a so-called turbulence promoting mechanism that promotes the turbulence (renewal of the surface) of the liquid to be degassed inside the hollow fiber membrane and increases the degassing rate, so that the membrane module is practically degassed. For use as an air-permeable membrane, a method of reducing the inner diameter of a hollow fiber membrane has been adopted as a means for increasing the deaeration rate that determines economic efficiency. However, reducing the inner diameter of the hollow fiber membrane has the drawback of causing problems of high pressure loss when flowing the liquid, as well as problems of mechanical strength and molding.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、種々の液体中に溶存しているガス(気
体)の脱気における前記問題点を解決するために鋭意研
究した結果、溶存ガスを含む液体を、乱流促進機構を有
するシート状物とシート状膜を巻回してなる、所謂、ス
パイラル型膜モジュールで処理することによって、効率
よく溶存ガスを脱気することができることを見い出し
て、本発明に至ったものである。
The present inventors have conducted intensive studies in order to solve the above-mentioned problems in degassing gas (gas) dissolved in various liquids. As a result, the liquid containing the dissolved gas was converted into a sheet having a turbulence promoting mechanism. The inventors have found out that the dissolved gas can be efficiently degassed by treating with a so-called spiral-type membrane module formed by winding a sheet and a sheet-like membrane, and have reached the present invention.

即ち本発明は、透過膜に溶存ガスを含む液体を接触さ
せ、該溶存ガスを選択的に透過させてこれを分離する膜
モジュールであって、上記透過膜がシート状であって、
該シート状膜がスパイラル状に巻回されてなることを特
徴とするスパイラル型脱気膜モジュールを提供する。
That is, the present invention is a membrane module for contacting a liquid containing a dissolved gas with a permeable membrane, selectively permeating the dissolved gas and separating the same, wherein the permeable membrane is in the form of a sheet,
Provided is a spiral degassing membrane module, wherein the sheet-like membrane is wound in a spiral shape.

スパイラル型膜モジュールはその構造上、シート状の
透過膜の間に、被脱気液体(原液)の乱流(表面更新)
を促進し脱気速度を増加させる乱流促進機構を有するス
ペーサーを備えている。かかるスペーサーとしては、特
に限定されないが、例えばポリプロピレン等からなるネ
ット状あるいは格子状流路材等が用いられる。
Due to its structure, the spiral type membrane module has a turbulent flow of the liquid to be degassed (stock solution) between the sheet-shaped permeable membranes (surface renewal)
And a spacer having a turbulence promoting mechanism for promoting the degassing speed. The spacer is not particularly limited, but a net-like or lattice-like channel material made of, for example, polypropylene or the like is used.

また透過側のガスの流路材としては、特に限定されな
いが、通常、耐圧強度を有するポリエステルあるいはポ
リプロピレン等のスペーサーが用いられる。
Although there is no particular limitation on the flow path material of the gas on the permeation side, a spacer such as polyester or polypropylene having pressure resistance is usually used.

本発明で用いられる透過膜は、シート状であれば特に
限定されず、さらに不織布等の補強材上に形成されたも
のを用いて機械的強度を高めることもできる。
The permeable membrane used in the present invention is not particularly limited as long as it is in the form of a sheet. Further, the mechanical strength can be increased by using a permeable membrane formed on a reinforcing material such as a nonwoven fabric.

本発明では、好ましくは多孔質支持膜上に合成樹脂の
非多孔質活性薄膜が形成されてなる選択透過性複合膜を
用いることができる。ここで活性とは、溶存ガスと存在
とを分離する性質を有するという意味である。活性薄膜
は膜厚が小さいので溶存ガスの透過抵抗にならず、モジ
ュールの脱気速度を大きくすることができる。
In the present invention, a permselective composite membrane in which a non-porous active thin film of a synthetic resin is preferably formed on a porous support membrane can be used. Here, the activity means having a property of separating a dissolved gas from an existing gas. Since the active thin film has a small film thickness, the active thin film does not have resistance to dissolved gas permeation, and the degassing speed of the module can be increased.

また特に好ましい透過膜として、その構造に限定され
ないが、後述の特定の膜物性値を有する、例えば非多孔
質活性薄膜からなる均質膜や、緻密層または活性緻密層
とこれを一体に支持する多孔質層とからなる非対称膜
や、非対称膜の緻密層中に非多孔質薄膜が一部しみこん
で形成されてなる複合膜等が用いられる。
Further, as a particularly preferred permeable membrane, although not limited to its structure, it has a specific membrane physical property value described later, for example, a homogeneous membrane made of a non-porous active thin film, or a dense layer or a porous layer which supports the active dense layer integrally with the same. An asymmetric film composed of a porous layer and a composite film formed by partially infiltrating a nonporous thin film into a dense layer of the asymmetric film are used.

かかる膜物性値の一つは、30℃における窒素ガス透過
速度が7×10-4〜2×102Nm3/m2・h・atmである。窒素
ガス透過速度が7×10-4Nm3/m2・h・atmより小さい場
合、溶存ガスの透過速度、即ち脱気速度が小さくなる恐
れがあり、一方、2×102Nm3/m2・h・atmより大きい場
合は、液体分子の膜透過速度が増加して脱気効率が低下
する恐れがある。
One of the physical properties of the film is a nitrogen gas permeation rate at 30 ° C. of 7 × 10 −4 to 2 × 10 2 Nm 3 / m 2 · h · atm. If the nitrogen gas permeation rate is smaller than 7 × 10 −4 Nm 3 / m 2 · h · atm, the permeation rate of the dissolved gas, that is, the deaeration rate may be reduced, while 2 × 10 2 Nm 3 / m If it is larger than 2 · h · atm, there is a possibility that the membrane permeation rate of the liquid molecules increases and the degassing efficiency decreases.

さらにもう一つの膜物性値は、その透過側圧力を40mm
Hgとし大気圧20℃の水を膜に供給した場合、水蒸気の膜
透過量が、100g/m2・h以下である。水蒸気の膜透過量
が、100g/m2・hより大きい場合、その水蒸気圧により
透過側圧力が上昇し、その結果脱気速度が低下すること
や、透過側に大規模な水蒸気の濃縮装置を装備しなけれ
ばならないことがあるため好ましくない。
Yet another membrane property value is that the pressure on the permeate side is 40 mm.
When water at an atmospheric pressure of 20 ° C. is supplied to the membrane as Hg, the membrane permeation amount of water vapor is 100 g / m 2 · h or less. When the water vapor permeation rate is greater than 100 g / m 2 · h, the permeate pressure increases due to the water vapor pressure, and as a result, the deaeration rate decreases. It is not preferable because it must be equipped.

本発明の脱気膜モジュールを用いて、前記透過膜に溶
存ガスを含有する液体を接触させて、溶存ガスを選択的
に膜を透過させることによって、膜の供給側に溶存ガス
濃度が低減された液体を得ることができる。この際、透
過側の圧力を減圧にすることが好ましく、その圧力が小
さいほど供給側により低い溶存ガス濃度の液体を得るこ
とができ、その圧力は通常0〜200mmHg、好ましくは20
〜150mmHgとする。
Using the degassing membrane module of the present invention, the dissolved gas concentration is reduced on the supply side of the membrane by bringing the liquid containing the dissolved gas into contact with the permeable membrane and selectively permeating the dissolved gas through the membrane. Liquid can be obtained. At this time, it is preferable to reduce the pressure on the permeation side, and a liquid having a lower dissolved gas concentration can be obtained on the supply side as the pressure is lower, and the pressure is usually 0 to 200 mmHg, preferably 20 mmHg.
~ 150mmHg.

〔発明の効果〕〔The invention's effect〕

本発明の脱気膜モジュールは、前記の特徴を有するス
パイラル型であるので、従来のチューブ(中空糸)状の
所謂中空糸膜モジュールに比べて、脱気速度を大きくで
き、かつ設備費、運転費、メンテナンス費等が低減でき
るという利点がある。
Since the degassing membrane module of the present invention is a spiral type having the above characteristics, the degassing rate can be increased, and the equipment cost and operation can be increased as compared with a conventional tube (hollow fiber) -shaped hollow fiber membrane module. There is an advantage that costs and maintenance costs can be reduced.

〔実施例〕〔Example〕

以下に実施例により本発明を説明するが、本発明はこ
れら実施例に何ら限定されるものではない。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

以下において部及び%は重量部及び重量%を意味す
る。
In the following, parts and% mean parts by weight and% by weight, respectively.

実施例1 芳香族ポリスルホン(ユニオン・カーバイド社製「ポ
リサルホンP−1700」)15部と平均分子量600のポリエ
チレングリコール5部を、N−メチル−2−ピロリドン
80部に溶解した。この溶液を不織布上に塗布して水中で
凝固し、150μmのシート状多孔質膜を得た。
Example 1 15 parts of an aromatic polysulfone ("Polysulfone P-1700" manufactured by Union Carbide Co., Ltd.) and 5 parts of polyethylene glycol having an average molecular weight of 600 were mixed with N-methyl-2-pyrrolidone.
Dissolved in 80 parts. This solution was applied on a nonwoven fabric and solidified in water to obtain a 150 μm sheet-like porous membrane.

この多孔質膜を60℃で乾燥させて乾燥膜とした。この
乾燥多孔質膜は、その断面を走査型電子顕微鏡で観察し
た結果、表面に緻密層を有し、内部へ向かうに従って粗
な多孔質構造を有し、部分的に所謂脂状構造と称される
重合体の欠落部分を有する非対称膜であった。かかる多
孔質膜の30℃における窒素ガス透過速度は60Nm3/m2・h
・atmであった。また膜の透過側圧力を40mmHgとし大気
圧20℃の水を膜に供給した場合に膜を透過してくる水蒸
気は0.45g/m2・hであった。
This porous film was dried at 60 ° C. to obtain a dried film. As a result of observing the cross section of the dried porous membrane with a scanning electron microscope, the dried porous membrane has a dense layer on the surface, has a coarse porous structure toward the inside, and is partially referred to as a so-called greasy structure. Asymmetric membrane having a missing portion of the polymer. The nitrogen gas permeation rate at 30 ° C. of such a porous membrane is 60 Nm 3 / m 2 · h
・ It was atm. Further, when the pressure on the permeate side of the membrane was set to 40 mmHg and water at an atmospheric pressure of 20 ° C. was supplied to the membrane, the water vapor permeating the membrane was 0.45 g / m 2 · h.

このようにして得られた膜に、被脱気液体(原液)流
路用としてポリプロピレンからなるネット状スペーサー
を挟み込み、透過側流路用としてトリコット織りのポリ
エステル製スペーサーと共に巻回して、スパイラル型膜
モジュールとした。かかるスパイラルエレメントの径は
90mm、長さは1m、膜面積は6.5m2であった。
A spiral-type membrane is formed by sandwiching a net-shaped spacer made of polypropylene for the flow path of the liquid to be degassed (raw liquid) and a tricot-woven polyester spacer for the flow path of the permeation side. Module. The diameter of such a spiral element is
The length was 90 mm, the length was 1 m, and the membrane area was 6.5 m 2 .

かかるモジュールに、大気圧の空気で飽和した蒸留水
(25℃で溶存酸素ガス濃度が8.11ppm)を流し、透過側
を40mmHgの圧力に保持した。
Distilled water (dissolved oxygen gas concentration at 25 ° C. and the concentration of 8.11 ppm) saturated with air at atmospheric pressure was passed through the module, and the pressure on the permeate side was maintained at 40 mmHg.

その脱気結果、即ち処理液の流量と被透過液中の溶存
酸素濃度との関係を図に示す。
The result of the deaeration, that is, the relationship between the flow rate of the treatment liquid and the concentration of dissolved oxygen in the permeate is shown in the figure.

実施例2 イソオクタン90部、反応性基としてビニル基を有する
架橋性ポリジメチルシロキサンのプレポリマー10部及び
架橋剤1部からなる溶液を70℃で7時間加熱して、シリ
コーン樹脂溶液を調製した後、これをイソオクタンで希
釈して、樹脂濃度1.8%の溶液とした。実施例1で得た
多孔質膜上に上記架橋性シリコーン樹脂溶液を厚さ50μ
mにて均一に塗布した。この塗膜を100℃の温度に加熱
して塗膜からイソオクタンを蒸発除去させた後、室温で
24時間放置して多孔質膜の緻密層上に、厚さ約1μmの
架橋性シリコーン樹脂からなる活性薄膜を有する選択透
過性複合膜を得た。かかる複合膜の30℃における窒素ガ
ス透過速度は、0.7Nm3/m2・h・atmであった。また膜の
透過側圧力を40mmHgとし大気圧20℃の水を膜に供給した
場合に膜を透過してくる水蒸気量は5.8g/m2・hであっ
た。
Example 2 A solution comprising 90 parts of isooctane, 10 parts of a crosslinkable polydimethylsiloxane prepolymer having a vinyl group as a reactive group and 1 part of a crosslinking agent was heated at 70 ° C. for 7 hours to prepare a silicone resin solution. This was diluted with isooctane to obtain a solution having a resin concentration of 1.8%. On the porous membrane obtained in Example 1, the above crosslinkable silicone resin solution was applied to a thickness of 50 μm.
m. After heating this coating film to a temperature of 100 ° C. to evaporate isooctane from the coating film,
After allowing to stand for 24 hours, a permselective composite membrane having an active thin film of a crosslinkable silicone resin having a thickness of about 1 μm was obtained on the dense layer of the porous membrane. The nitrogen gas permeation rate at 30 ° C. of the composite membrane was 0.7 Nm 3 / m 2 · h · atm. Further, when the pressure on the permeation side of the membrane was set to 40 mmHg and water at an atmospheric pressure of 20 ° C. was supplied to the membrane, the amount of water vapor permeating the membrane was 5.8 g / m 2 · h.

かかる選択透過性複合膜を用いた以外は、実施例1と
同様のスパイラル型モジュールを作製し、脱気性能を測
定した。その脱気結果を図に示す。
A spiral type module similar to that of Example 1 was prepared except that the permselective composite membrane was used, and the degassing performance was measured. The degassing result is shown in the figure.

比較例1 実施例1と同様の芳香族ポリスルホン溶液を環状ノズ
ルから中空状に押出し、水を凝固液として内側及び外側
表面から凝固させ、内径0.55mm、外径1.00mmの中空糸状
多孔質膜を得た。
Comparative Example 1 The same aromatic polysulfone solution as in Example 1 was extruded into a hollow shape from an annular nozzle, and water was coagulated from the inner and outer surfaces as a coagulating liquid to form a hollow fiber porous membrane having an inner diameter of 0.55 mm and an outer diameter of 1.00 mm. Obtained.

この中空糸状多孔質膜を100℃で乾燥させて乾燥膜と
した。この乾燥中空糸状多孔質膜は、その断面を走査型
電子顕微鏡で観察した結果、表面に緻密層を有し、内部
へ向かうに従って粗な多孔質構造を有し、部分的に所謂
指状構造と称される重合体の欠落部分を有する非対称膜
であった。かかる多孔質膜の30℃における窒素ガス透過
速度は26Nm3/m2・h・atmであった。
This hollow fiber-shaped porous membrane was dried at 100 ° C. to obtain a dried membrane. As a result of observing the cross section of the dried hollow fiber-shaped porous membrane with a scanning electron microscope, it has a dense layer on the surface, has a coarse porous structure toward the inside, and has a so-called finger-like structure partially. This was an asymmetric membrane having a missing portion of the named polymer. The nitrogen gas permeation rate at 30 ° C. of the porous membrane was 26 Nm 3 / m 2 · h · atm.

実施例2と同様の架橋性シリコーン樹脂溶液を、上記
多孔質膜の内側(内径側)の緻密層上にエアードクター
法にて均一に塗布した。この塗膜を80℃の温度に加熱し
て塗膜からイソオクタンを蒸発除去した後、室温で24時
間放置して多孔質膜の緻密層上に架橋性シリコーン樹脂
からなる活性薄膜を有する複合膜を得た。かかる複合膜
の30℃における窒素ガス透過速度は、0.031Nm3/m2・h
・atmであった。また実施例1と同様にして測定した水
蒸気量は、0.32g/m2・hであった。
The same crosslinkable silicone resin solution as in Example 2 was uniformly applied on the dense layer inside (inner diameter side) of the porous membrane by an air doctor method. This coating film was heated to a temperature of 80 ° C. to remove isooctane from the coating film by evaporation, and then left at room temperature for 24 hours to form a composite film having an active thin film made of a crosslinkable silicone resin on a dense layer of a porous film. Obtained. The nitrogen gas permeation rate at 30 ° C. of such a composite membrane is 0.031 Nm 3 / m 2 · h
・ It was atm. The amount of water vapor measured in the same manner as in Example 1 was 0.32 g / m 2 · h.

このようにして得られた中空糸複合膜を束ねて中空糸
膜モジュールとした。膜の本数は3600本、モジュールの
径は90mm、長さは1m、膜面積は6.2m2であった。
The hollow fiber composite membrane thus obtained was bundled to form a hollow fiber membrane module. The number of membranes was 3,600, the module diameter was 90 mm, the length was 1 m, and the membrane area was 6.2 m 2 .

かかるモジュールの供給側(中空糸上膜の内径側)
に、大気圧の空気で飽和した蒸留水(25℃で溶存酸素ガ
ス濃度が8.11ppm)を流し、透過側(外径側)を40mmHg
の圧力に保持した。
Supply side of such module (inner diameter side of hollow fiber upper membrane)
Pour distilled water (dissolved oxygen gas concentration: 8.11 ppm at 25 ° C) saturated with air at atmospheric pressure through to the permeate side (outer diameter side) of 40 mmHg
Pressure.

その脱気結果、即ち処理液の流量と非透過液中の溶存
酸素濃度との関係を図に示す。
The result of the deaeration, that is, the relationship between the flow rate of the treatment liquid and the concentration of dissolved oxygen in the non-permeate liquid is shown in the figure.

比較例2 比較例1と同様にして、内径0.3mm、外径0.45mmの芳
香族ポリスルホンの中空糸状多孔質膜を得、これを170
℃で乾燥して乾燥膜とした。かかる多孔質膜の30℃にお
ける窒素ガス透過速度は、5Nm3/m2・h・atmであった。
また実施例1と同様にして測定した水蒸気量は、0.3g/g
2・hであった。
Comparative Example 2 In the same manner as in Comparative Example 1, a hollow fiber porous membrane of an aromatic polysulfone having an inner diameter of 0.3 mm and an outer diameter of 0.45 mm was obtained.
Drying at 0 ° C. gave a dried film. The nitrogen gas permeation rate at 30 ° C. of the porous membrane was 5 Nm 3 / m 2 · h · atm.
The amount of water vapor measured in the same manner as in Example 1 was 0.3 g / g
2 · h.

このようにして得られた膜を束ねて中空糸膜モジュー
ルとした。ここで膜の本数は16,000本、モジュールの径
は90mm、長さは1m、膜面積は15.1m2であった。
The membranes thus obtained were bundled to form a hollow fiber membrane module. Here, the number of membranes was 16,000, the diameter of the module was 90 mm, the length was 1 m, and the membrane area was 15.1 m 2 .

かかるモジュールを用いた以外は比較例1と同様にし
て得た脱気結果を図に示す。
The drawing shows the degassing results obtained in the same manner as in Comparative Example 1 except that such a module was used.

【図面の簡単な説明】[Brief description of the drawings]

図は、実施例及び比較例で得た脱気結果を示すグラフで
ある。
The figure is a graph showing the degassing results obtained in Examples and Comparative Examples.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】透過膜に溶存ガスを含む液体を接触させ、
該溶存ガスを選択的に透過させてこれを分離する膜モジ
ュールであって、上記透過膜がシート状であって、該シ
ート状膜がスパイラル状に巻回されてなることを特徴と
するスパイラル型脱気膜モジュール。
1. A liquid containing a dissolved gas is brought into contact with a permeable membrane,
A spiral module, wherein the dissolved gas is selectively permeated and separated therefrom, wherein the permeable membrane is sheet-shaped, and the sheet-shaped membrane is wound in a spiral shape. Degassing membrane module.
【請求項2】透過膜が、多孔質支持膜上に合成樹脂の非
多孔質活性薄膜が形成されてなる選択透過性複合膜であ
る請求項(1)記載のスパイラル型脱気膜モジュール。
2. The spiral degassing membrane module according to claim 1, wherein the permeable membrane is a permselective composite membrane formed by forming a non-porous active thin film of a synthetic resin on a porous support membrane.
【請求項3】透過膜が、膜の物性値として、30℃におけ
る窒素ガス透過速度7×10-4〜2×102Nm3/m2・h・atm
であり、かつ膜の透過側圧力を40mmHgとし大気圧20℃の
水を膜に供給した場合に膜を透過してくる水蒸気量が10
0g/m2・h以下である請求項(1)記載のスパイラル型
脱気膜モジュール。
3. The permeable membrane has a nitrogen gas permeation rate of 7 × 10 -4 to 2 × 10 2 Nm 3 / m 2 · h · atm at 30 ° C. as a physical property value of the membrane.
When the pressure on the permeate side of the membrane is 40 mmHg and water at an atmospheric pressure of 20 ° C. is supplied to the membrane, the amount of water vapor permeating the membrane is 10
The spiral-type degassing membrane module according to claim 1, wherein the density is 0 g / m 2 · h or less.
JP1308065A 1989-11-28 1989-11-28 Spiral type degassing module Expired - Fee Related JP2774843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1308065A JP2774843B2 (en) 1989-11-28 1989-11-28 Spiral type degassing module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308065A JP2774843B2 (en) 1989-11-28 1989-11-28 Spiral type degassing module

Publications (2)

Publication Number Publication Date
JPH03169304A JPH03169304A (en) 1991-07-23
JP2774843B2 true JP2774843B2 (en) 1998-07-09

Family

ID=17976461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308065A Expired - Fee Related JP2774843B2 (en) 1989-11-28 1989-11-28 Spiral type degassing module

Country Status (1)

Country Link
JP (1) JP2774843B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2969075B2 (en) * 1996-02-26 1999-11-02 ジャパンゴアテックス株式会社 Degassing device
JP3340444B2 (en) * 1997-09-19 2002-11-05 株式会社日立製作所 Manufacturing method of degassing module
US7393388B2 (en) 2005-05-13 2008-07-01 United Technologies Corporation Spiral wound fuel stabilization unit for fuel de-oxygenation
US7435283B2 (en) 2005-05-18 2008-10-14 United Technologies Corporation Modular fuel stabilization system
JP4736534B2 (en) * 2005-05-19 2011-07-27 株式会社島津製作所 Gas permeation filter, gas exchange chip, and total organic carbon measuring device
US7465336B2 (en) 2005-06-09 2008-12-16 United Technologies Corporation Fuel deoxygenation system with non-planar plate members
US7377112B2 (en) 2005-06-22 2008-05-27 United Technologies Corporation Fuel deoxygenation for improved combustion performance
US7615104B2 (en) 2005-11-03 2009-11-10 United Technologies Corporation Fuel deoxygenation system with multi-layer oxygen permeable membrane
US7824470B2 (en) 2006-01-18 2010-11-02 United Technologies Corporation Method for enhancing mass transport in fuel deoxygenation systems
US7569099B2 (en) 2006-01-18 2009-08-04 United Technologies Corporation Fuel deoxygenation system with non-metallic fuel plate assembly
US7582137B2 (en) 2006-01-18 2009-09-01 United Technologies Corporation Fuel deoxygenator with non-planar fuel channel and oxygen permeable membrane
JP6451724B2 (en) * 2016-12-01 2019-01-16 栗田工業株式会社 Biological activated carbon treatment equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155910A (en) * 1987-12-15 1989-06-19 Fuji Photo Film Co Ltd Deairing and debubbling device
JP2521494B2 (en) * 1987-09-03 1996-08-07 ジャパンゴアテックス株式会社 Degassing mechanism
JPH01199607A (en) * 1988-02-02 1989-08-11 Fuji Photo Film Co Ltd Treatment of photosensitive coating solution

Also Published As

Publication number Publication date
JPH03169304A (en) 1991-07-23

Similar Documents

Publication Publication Date Title
US5078755A (en) Method of removing dissolved gas from liquid
US4268279A (en) Gas transfer process with hollow fiber membrane
US4055696A (en) Porous polypropylene hollow filaments and method making the same
JP2774843B2 (en) Spiral type degassing module
US7556677B2 (en) Solvent resistant asymmetric integrally skinned membranes
KR20050093018A (en) Efficient 3-d nanostructured membranes
US20170173536A1 (en) Membrane Distillation Apparatus and Hydrophobic Porous Membrane
JP7214858B2 (en) Forward osmosis membrane, forward osmosis membrane module, and manufacturing method thereof
Fujii et al. Selectivity and characteristics of direct contact membrane distillation type experiment. I. Permeability and selectivity through dried hydrophobic fine porous membranes
CN112426894B (en) Preparation method of polyamide composite reverse osmosis membrane and obtained reverse osmosis membrane
JP2512937B2 (en) Membrane type gas-liquid contactor
JP2725312B2 (en) Porous hollow fiber membrane type gas-liquid contactor
CN112657343A (en) Polyamide hollow fiber composite separation membrane and preparation method thereof
CN110662598A (en) Gas separation membrane, gas separation membrane element, gas separation device, and gas separation method
US6913696B1 (en) Separation of components of organic liquids
JPS588516A (en) Preparation of polysulfone separation membrane
JPH05177111A (en) Dehydration of water-organic matter solution
Olaru et al. Polymers in membrane science
Kostyanaya et al. CO2 Absorption/Desorption on Gas-Liquid Membrane Contactors Using Monoethanolamine Solvent: Comparison of Porous and Composite Hollow Fibers
JP2584011B2 (en) Degassing method of dissolved gas in liquid
JPH0761411B2 (en) Concentration method of organic matter aqueous solution
JP2781012B2 (en) Degassing of dissolved gas from liquid
Ahmadpour et al. Hydrophobic Modification of Polyetherimide Hollow Fiber Membrane Contactor by 2-(Perfluoroalkyl) Ethanol Coating for Carbon Dioxide Absorption
JPH03118A (en) Membrane for concentrating aqueous solution of volatile organic liquid and its production
JPH0729034B2 (en) Hollow fiber composite membrane for organic matter separation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees