[go: up one dir, main page]

JP2756540B2 - Lighting circuit for fluorescent lamp - Google Patents

Lighting circuit for fluorescent lamp

Info

Publication number
JP2756540B2
JP2756540B2 JP2134897A JP13489790A JP2756540B2 JP 2756540 B2 JP2756540 B2 JP 2756540B2 JP 2134897 A JP2134897 A JP 2134897A JP 13489790 A JP13489790 A JP 13489790A JP 2756540 B2 JP2756540 B2 JP 2756540B2
Authority
JP
Japan
Prior art keywords
power supply
circuit
frequency
output
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2134897A
Other languages
Japanese (ja)
Other versions
JPH0432198A (en
Inventor
清 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TORAI ENJINIARINGU KK
Original Assignee
TORAI ENJINIARINGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15139083&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2756540(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by TORAI ENJINIARINGU KK filed Critical TORAI ENJINIARINGU KK
Priority to JP2134897A priority Critical patent/JP2756540B2/en
Publication of JPH0432198A publication Critical patent/JPH0432198A/en
Application granted granted Critical
Publication of JP2756540B2 publication Critical patent/JP2756540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蛍光管を利用した蛍光灯器具用の点灯回路
の改良に関し、特にインバータ方式点灯回路の改良に関
する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a lighting circuit for a fluorescent lamp apparatus using a fluorescent tube, and more particularly to an improvement of an inverter type lighting circuit.

〔従来技術〕(Prior art)

蛍光管の点灯には、使用時のチラツキが少ない、地域
によって異なる電源周波数に影響されない、電力効率が
良い等の理由でインバータ方式の点灯回路が用いられて
いる。このような従来の蛍光灯用のインバータ回路は交
流電源を整流平滑して得た直流電源を半導体素子を用い
てスイッチングし高周波交流電源を得るもので、スイッ
チング素子を発振回路の一部として利用する自励方式の
ものであった。このような従来の自励方式の点灯回路の
一例を図に沿って説明する。
In order to light the fluorescent tube, an inverter-type lighting circuit is used because flicker during use is small, the power supply frequency is not affected by a region, and power efficiency is good. Such a conventional inverter circuit for fluorescent lamps uses a semiconductor element to switch a DC power obtained by rectifying and smoothing an AC power to obtain a high-frequency AC power, and uses the switching element as a part of an oscillation circuit. It was self-excited. An example of such a conventional self-excited lighting circuit will be described with reference to the drawings.

第4図は、この種の蛍光管31を点灯させるための自励
方式の点灯回路30の構成を示す回路図である。これは整
流平滑回路2、発振動作をするNPNトランジスタQ1、Q
2、軽流や電力変換を行う巻線L31〜L34を持つトランスT
31、前記トランジスタQ1、Q2に対するバイアス用の抵抗
器R31、R32、蛍光管3及び前記トランスT31の直列接続
された巻線L31、L32に並列接続されたコンデンサC4から
成る。この点灯回路30は、トランジスタQ1、Q2の定数と
巻線L31〜L33の電気的定数等により決まる周波数で発振
しインバータ動作を行う。
FIG. 4 is a circuit diagram showing a configuration of a self-excited lighting circuit 30 for lighting this kind of fluorescent tube 31. This is a rectifying and smoothing circuit 2, NPN transistors Q1 and Q
2.Transformer T with windings L31-L34 for light current and power conversion
31. It comprises resistors R31 and R32 for biasing the transistors Q1 and Q2, the fluorescent tube 3, and a capacitor C4 connected in parallel to the series-connected windings L31 and L32 of the transformer T31. The lighting circuit 30 oscillates at a frequency determined by the constants of the transistors Q1 and Q2 and the electrical constants of the windings L31 to L33 and performs an inverter operation.

こうした自励発振方式の点灯回路にあっては、高周波
化(小型化に通じる)が困難な事、また大電力化も困難
であるという問題点があった。さらには、発振周波数が
使用部品、蛍光管の個々の特性に影響さればらつくため
バラツキが大きくこれにともない回路電流(蛍光管電
流)がバラツクため消費電力ひいては明るさが異なり製
品の均一性に欠けるという難点がある。また発振周波数
は電源電圧にも依存して変化するので電源電圧の脈動分
に応じて発振周波数が時々刻々と変化し、このため発生
する電磁ノイズのスペクトラムも一様でないためノイズ
対策が取り難いという難点もある。さらに、電源投入時
等の過渡時においては異常発振の可能性もあり最悪の場
合にはこのため回路が破損する虞もある。また、部品の
制約から目的とする発振周波数を自由に選定することが
できない、またトランス等の回路定数の設計が難しい等
の難点もあった。
Such a self-oscillation type lighting circuit has a problem that it is difficult to increase the frequency (which leads to downsizing) and to increase the power. Furthermore, the oscillation frequency varies depending on the individual characteristics of the components used and the fluorescent tube, causing a large variation. The circuit current (fluorescent tube current) varies accordingly, resulting in a difference in power consumption and brightness, resulting in a lack of uniformity of the product. There are difficulties. In addition, the oscillation frequency changes depending on the power supply voltage, so the oscillation frequency changes every moment according to the pulsation of the power supply voltage, and the spectrum of the generated electromagnetic noise is not uniform, so it is difficult to take noise countermeasures. There are drawbacks. Furthermore, during a transition such as when the power is turned on, there is a possibility of abnormal oscillation. In the worst case, the circuit may be damaged. In addition, there are also disadvantages in that a target oscillation frequency cannot be freely selected due to the restriction of parts, and that it is difficult to design circuit constants such as a transformer.

第1図は、上述問題点を解消した他励インバータ方式
の蛍光灯器具用点灯回路1の一例を示す回路図である。
この回路は、励振回路を別途備えるとともにその駆動電
源を商用電源とインバータの出力の双方を併用する構成
となっている。図中、2は入力交流電源ACに接続され交
流を整流し直流電源DCを得る整流平滑回路である。TR
1、TR2はこの直流電源DCにチャンネルが直列に接続され
た2個のFETトランジスタTR1、TR2である。同じく直流
電源DCには直列接続された2個のコンデンサC2、C3が接
続されている。前記2個のFETトランジスタTR1、TR2の
中間の接続点P1と2個のコンデンサC2、C3の中間の接続
点P2とは、出力トランスT2の巻線L4を介して接続されて
いる。このトランスT2には後述する内部電源を構成する
巻線L6及び蛍光管3の両端電極に接続される巻線L5も備
わっている。前記巻線L5の両端部分の巻線の両端(すな
わち巻線L5の端部と中間タップ)は夫々前記蛍光管3の
フィラメントに接続されている。また、2つの中間タッ
プ間(従ってフィラメント間)にはコンデンサC4が接続
されている。
FIG. 1 is a circuit diagram showing an example of a separately-excited inverter-type lighting circuit 1 for a fluorescent lamp appliance which has solved the above-mentioned problems.
This circuit has a configuration in which an excitation circuit is separately provided and the driving power supply is used both for the commercial power supply and for the output of the inverter. In the figure, reference numeral 2 denotes a rectifying and smoothing circuit which is connected to an input AC power supply AC and rectifies the AC to obtain a DC power supply DC. TR
Reference numerals 1 and TR2 denote two FET transistors TR1 and TR2 whose channels are connected in series to the DC power supply DC. Similarly, two capacitors C2 and C3 connected in series are connected to the DC power supply DC. An intermediate connection point P1 between the two FET transistors TR1 and TR2 and an intermediate connection point P2 between the two capacitors C2 and C3 are connected via a winding L4 of an output transformer T2. The transformer T2 is also provided with a winding L6 constituting an internal power supply to be described later and a winding L5 connected to both end electrodes of the fluorescent tube 3. Both ends of the winding at both ends of the winding L5 (that is, the end of the winding L5 and the intermediate tap) are respectively connected to the filament of the fluorescent tube 3. A capacitor C4 is connected between the two intermediate taps (and thus between the filaments).

また、前記FETトランジスタTR1、TR2のゲート端子は
各々励振回路4の逆位相の2つの出力に接続されてい
る。この励振回路4は、IC回路IC1、このIC1からの2つ
の出力が巻線L1に接続されたトランスT1、前記IC1の発
振周波数を決定するための外付け調整抵抗R1及びC1から
なる。前記トランスT1の他の2つの巻線L2、L3からの出
力が前述した励振回路4の位相が逆の2つの出力として
前記FETトランジスタTR1、TR2のゲート端子に接続され
ている。この励振回路4には後述する低電圧の電源より
電力が供給される。
Further, the gate terminals of the FET transistors TR1 and TR2 are connected to two outputs of the excitation circuit 4 having opposite phases. The excitation circuit 4 includes an IC circuit IC1, a transformer T1 having two outputs from the IC1 connected to a winding L1, and external adjustment resistors R1 and C1 for determining the oscillation frequency of the IC1. The outputs from the other two windings L2 and L3 of the transformer T1 are connected to the gate terminals of the FET transistors TR1 and TR2 as two outputs whose phases of the excitation circuit 4 are opposite to each other. Power is supplied to the excitation circuit 4 from a low-voltage power supply described later.

上記蛍光灯器具用点灯回路はスイッチング用のトラン
ジスタTR1、TR2を駆動するための励振回路4を他の部分
と独立して具備しているため、この励振回路4の励振周
波数(発振周波数)を単独で任意に設定できるため、全
体の設計が簡易となるし、また使用部品選択の自由度も
拡がる。
Since the fluorescent lamp lighting circuit includes the excitation circuit 4 for driving the switching transistors TR1 and TR2 independently of the other parts, the excitation frequency (oscillation frequency) of the excitation circuit 4 is independent. Can be set arbitrarily, so that the overall design is simplified and the degree of freedom in selecting the parts to be used is expanded.

ところで、前記励振回路4が必要とする電源の電圧は
他の部分に供給されている電圧より格段に低電圧であ
り、前述した直流電源DCはそのまま利用することはでき
ず、別途電源が必要となる。勿論専用の電源回路を用意
してもよいが全体の構成が複雑となり好ましくないため
本実施例においては前記直流電源DCより作り出した低電
圧電源と、前述したトランスT2の巻線L6により作り出し
た低電圧電源との双方を巧みに切り換えて使う構成と成
っている。以下、本願他の発明である前記励振回路4用
の電源部分について詳述する。第1図において5は蛍光
灯器具用点灯回路が通電された初期(起動時)において
のみ動作する起動電源であり、前記直流電源DCにコレク
タ端子が接続されたトランジスタTR3と、このエミッタ
端子にアノード端子が接続されたダイオードD2、直流電
源DCに接続された抵抗R2と定電圧ダイオードD1の直列回
路とからなり、前記抵抗2とダイオードD1の中間接続点
は前記トランジスタTR3のベース端子に接続されてい
る。なお、前記ダイオードD2のカソード側が出力であり
前記励振回路4に電源として接続されている。この電源
回路の出力電圧は前記定電圧ダイオードD1の特性に依存
して決まり例えばD1にツェナー電圧12Vの定電圧ダイオ
ードを使用すると12V弱の出力電圧となる。この起動電
源5は蛍光灯器具用点灯回路1がまだ動作していない時
でも前記励振回路4に電源を供給できるため起動時には
不可欠のものであるが、一方一般的に高電圧である直流
電源DCより電圧降下させて低い電圧を作り出すためこの
部分での破損は大きく従って大量に発熱を伴う。従って
小型の小容量の部品を使って長い時間動作を続けること
はできないが、この回路では次に述べる内部電源6とあ
いまって小形の部品を使用し得る。
By the way, the voltage of the power supply required by the excitation circuit 4 is much lower than the voltage supplied to other parts, and the above-described DC power supply DC cannot be used as it is, and requires a separate power supply. Become. Of course, a dedicated power supply circuit may be prepared, but since the entire configuration is complicated and not preferable, in this embodiment, the low-voltage power supply generated from the DC power supply DC and the low-voltage power supply generated by the winding L6 of the transformer T2 are used. The configuration is such that both the power supply and the voltage power supply are skillfully switched. Hereinafter, a power supply portion for the excitation circuit 4 according to another invention of the present application will be described in detail. In FIG. 1, reference numeral 5 denotes a start-up power supply which operates only at the initial stage (at the start-up) when the lighting circuit for a fluorescent lamp is energized. The transistor TR3 has a collector terminal connected to the DC power supply DC, and an anode is connected to the emitter terminal. A terminal D is connected, and a series circuit of a resistor R2 and a constant voltage diode D1 connected to a DC power supply DC, and an intermediate connection point between the resistor 2 and the diode D1 is connected to a base terminal of the transistor TR3. I have. The cathode side of the diode D2 is an output and is connected to the excitation circuit 4 as a power supply. The output voltage of this power supply circuit depends on the characteristics of the constant voltage diode D1. For example, if a constant voltage diode having a Zener voltage of 12V is used for D1, the output voltage will be slightly less than 12V. The starting power supply 5 is indispensable at the time of starting because it can supply power to the excitation circuit 4 even when the lighting circuit 1 for a fluorescent lamp apparatus is not operating yet. The breakage in this area is large and is accompanied by a large amount of heat generation, because a lower voltage is generated by lowering the voltage. Therefore, the operation cannot be continued for a long time using small and small-capacity components. However, in this circuit, small components can be used in combination with the internal power supply 6 described below.

前記内部電源6も同じく励振回路4用の電源であるが
こちらは蛍光灯器具用点灯回路1が動作中に継続して使
用される電源である。この内部電源6は、前記トランス
T2の巻線L6にインバータ動作に伴い誘起された交流電圧
を利用しており、この交流電圧を整流するD4、D5、これ
らの出力に接続されたコイルL7及びコンデンサC5からな
る平滑回路、この平滑回路の出力を所定の電圧にするIC
レギュレータIC2とこの出力にアノード端子を接続した
ダイオードD3とからなる。このダイオードD3のカソード
回路は前述したダイオードD2のカソード端子に接続され
ていて前記励振回路4の電源として用いられる。すなわ
ち、2つのダイオードD2とD3はカソード端子同士が接続
されておりこの接続点から前記励振回路4に電源が供給
される。
The internal power supply 6 is also a power supply for the excitation circuit 4, but is a power supply that is continuously used while the lighting circuit for fluorescent lamp fixture 1 is operating. This internal power supply 6
The AC voltage induced by the inverter operation is used in the winding L6 of T2, and a smoothing circuit composed of D4 and D5 for rectifying the AC voltage, a coil L7 and a capacitor C5 connected to these outputs, IC that sets the output of a circuit to a specified voltage
It consists of a regulator IC2 and a diode D3 whose anode is connected to this output. The cathode circuit of the diode D3 is connected to the cathode terminal of the diode D2 and used as a power source of the excitation circuit 4. That is, the cathode terminals of the two diodes D2 and D3 are connected to each other, and power is supplied to the excitation circuit 4 from this connection point.

例示蛍光灯器具用点灯回路1の動作を簡略に説明する
と、整流平滑回路2が通電されると直流電源DCが得られ
前記直列のトランジスタTR1、TR2及び前記起動電源5に
電圧が印加される。従って、前記起動電源5より前記励
振回路4に例えば約12Vの電源が供給される。ゆえに励
振回路4は発振動作を開始しトランジスタTR1とTR2を交
互に駆動する従ってトランスT2の巻線L4には前記励振回
路4の発振周波数と等しい交流電流が流れて巻線L5に高
周波交流が得られ結局蛍光管3が点灯する。同時に巻線
L6にも交流電圧が得られるので結局前記ダイオードD3よ
り前記起動電源5の出力電圧(12V)より僅かに高い電
源電圧が得られる。このようになると、前記ダイオード
D2が逆バイアスされるので起動電源回路5からは電力は
供給されなくなり従ってこの回路部分での電力消費やこ
れに伴う発熱は極端に減少しこの結果前記起動電源5の
熱破壊が未然に防止される。
The operation of the lighting circuit 1 for a fluorescent lamp apparatus will be briefly described. When the rectifying and smoothing circuit 2 is energized, a DC power supply DC is obtained, and a voltage is applied to the series transistors TR1 and TR2 and the starting power supply 5. Therefore, a power of, for example, about 12 V is supplied from the starting power supply 5 to the excitation circuit 4. Therefore, the exciting circuit 4 starts the oscillating operation and alternately drives the transistors TR1 and TR2. Therefore, an alternating current equal to the oscillating frequency of the exciting circuit 4 flows through the winding L4 of the transformer T2, and a high-frequency AC is obtained through the winding L5. As a result, the fluorescent tube 3 is turned on. Winding at the same time
Since an AC voltage is also obtained at L6, a power supply voltage slightly higher than the output voltage (12V) of the starting power supply 5 is obtained from the diode D3. When this happens, the diode
Since D2 is reverse-biased, no power is supplied from the start-up power supply circuit 5, so that the power consumption and the accompanying heat generation in this circuit portion are extremely reduced, thereby preventing the start-up power supply 5 from being thermally destroyed. You.

このように起動電源回路5の出力電圧より内部電源回
路6の出力電圧のほうを多少高めに設定してあるためダ
イオードのスイッチにより、回路が簡単で小形であるが
損失が大きいため長時間の使用に耐えない起動電源回路
5が、内部電源回路6が動作すれば直ちに動作が自動的
に停止し、損失の少ない内部電源回路6により動作中は
継続的に励振回路4の電源が供給される。
Since the output voltage of the internal power supply circuit 6 is set to be slightly higher than the output voltage of the start-up power supply circuit 5, the diode switch is simple and small, but has a large loss due to the diode switch. When the internal power supply circuit 6 operates, the operation of the start-up power supply circuit 5 which does not withstand the operation automatically stops immediately, and the power of the excitation circuit 4 is continuously supplied during operation by the internal power supply circuit 6 having a small loss.

なお、前記励振回路4はMOSトランジスタのゲートを
駆動する電力のみを供給できればよく、100kHz前後のス
イッチング周波数の場合30mW程度でよく、励振回路も簡
単なCR・IC発振回路で構成されている。
The excitation circuit 4 only needs to be able to supply power for driving the gate of the MOS transistor. A switching frequency of about 100 kHz requires only about 30 mW, and the excitation circuit is also composed of a simple CR / IC oscillation circuit.

なお、上述したと同種の回路は、例えば実開昭63−85
99号(実願昭61−100849号;既提案1)にても提案され
ており、励振回路を別途備えるとともにその駆動電源を
インバータの主電源と負荷の商用周波数出力からの帰還
により生成した構成の放電灯安定器が開示されている。
Circuits similar to those described above are described in, for example,
No. 99 (Japanese Utility Model Application No. 61-1000084; already proposed 1), a configuration in which an excitation circuit is separately provided and its driving power supply is generated by feedback from the main power supply of the inverter and the commercial frequency output of the load. Discharge lamp ballast is disclosed.

ところで、一般のインバータ方式の蛍光灯器具用点灯
回路においては、出力電圧V(蛍光管の両端電圧)は、
スイッチング周波数fと出力トランス及びこれに接続さ
れたコンデンサにより決まる共振周波数との関係さらに
は負荷状態に応じて変わりその関係は第3図に示すグラ
フのようになる。
By the way, in a general inverter type lighting circuit for a fluorescent lamp fixture, the output voltage V (the voltage across the fluorescent tube) is
The relationship between the switching frequency f and the resonance frequency determined by the output transformer and the capacitor connected to the output transformer, and furthermore, the relationship changes according to the load condition, and the relationship is as shown in the graph of FIG.

すなわち、蛍光管がきちんと点灯した状態(曲線A)
では蛍光管の両端にかかるインバータ回路の出力電圧V
はインバータ回路の発振周波数fに依らず略一定(V2
V3程度)であり出力部の共振周波数f2においてインバー
タ回路の出力は極少値V2を示している。しかし、この時
は出力部が共振状態で最大電力が蛍光管に供給されてお
り、効率が良いためこの周波数f2での動作が望ましい。
That is, the state where the fluorescent tube is properly lit (curve A)
Then, the output voltage V of the inverter circuit applied to both ends of the fluorescent tube
Is substantially constant regardless of the oscillation frequency f of the inverter circuit (V 2
The output of the inverter circuit at the resonant frequency f 2 of are output section a V about 3) shows a very small value V 2. However, this time is supplied maximum power to the fluorescent tube at the output resonant state, the operation for efficient at this frequency f 2 is desirable.

〔従来技術の問題点〕[Problems of the prior art]

ところで如上のような従来のインバータ式の蛍光灯用
点灯回路にあっては、通電時には一貫して放電現象を起
こさせるのに充分な一定の高電圧が蛍光管の両端に加わ
り、フィラメントに余熱電流が流れるようになってい
る。即ち、電源投入直後でフィラメントが充分に熱せら
れておらず熱電子が蛍光管内に供給されない時点から上
記放電用高電圧が印加されていて、フィラメントが熱せ
られて発生する熱電子が放電臨界量に達するとこの時点
で即座に放電が開始される。これは、通電後直ちに点灯
するインバータ式蛍光灯の利点とも受け取られている
が、充分とは言えない熱電子量の雰囲気下にて電極(フ
ィラメント)間で強制的に放電を開始させていることに
なり、結果としてフィラメントの表面を劣化させフィラ
メントが痩せていくのを加速する結果、フィラメントの
寿命を縮め、また黒化現象を促進して結局蛍光管の寿命
を縮める結果となり同一規格の蛍光管の耐用時間を短く
してしまっている。なお、フィラメントの断線に至らな
くともフィラメントの熱電子供給能力が劣化する結果、
上述した一定の規定高電圧では放電開始ができなくなり
点灯しないためその蛍光管は使用できなくなる。このよ
うに一般的なインバータ式の蛍光灯用点灯回路において
は周波数が固定であることに起因した蛍光管を劣化させ
やすいという第1の難点があった。
By the way, in the conventional inverter-type fluorescent lamp lighting circuit as described above, a constant high voltage sufficient to cause a discharge phenomenon consistently when energized is applied to both ends of the fluorescent tube, and the residual heat current is applied to the filament. Is flowing. That is, immediately after the power is turned on, the filament is not sufficiently heated, and the high voltage for discharge is applied from the time when the thermoelectrons are not supplied into the fluorescent tube, and the thermoelectrons generated by heating the filament are reduced to the discharge critical amount. Upon reaching, discharge is started immediately at this point. This is considered to be an advantage of the inverter type fluorescent lamp that lights immediately after energization, but the discharge is forcibly started between the electrodes (filaments) in the atmosphere of the amount of thermionic electrons which is not enough. As a result, the filament surface deteriorates and accelerates the thinning of the filament.As a result, the life of the filament is shortened, and the blackening phenomenon is promoted.As a result, the life of the fluorescent tube is shortened. Has shortened the service life. In addition, even if the filament does not break, the thermoelectron supply capacity of the filament deteriorates,
At the above-mentioned fixed high voltage, discharge cannot be started and the lamp is not lit, so that the fluorescent tube cannot be used. As described above, in the general inverter-type fluorescent lamp lighting circuit, there is a first problem that the fluorescent tube is easily deteriorated due to the fixed frequency.

この点に対応した構成として、例えば、特開昭63−17
5389号(以下、既提案2とも記す)には、蛍光管の余熱
を開始させ、一定時間後に高周波交流電源の出力周波数
を出力を高くする周波数に移行させた構成が開示されて
いる。当該提案では特に、余熱完了後に時間の経過と共
に発振周波数が点灯周波数まで滑らかに変化させる技術
が開示されており、このようにすれば余熱時間中には十
分な余熱電流を得られる。なお、同提案では特に、始動
時においてインバータ回路のスイッチング素子に大きな
ストレスが加わらないようにすることを提起したもので
ある。即ち、この既提案ではタイマー回路を有すること
で電源投入後の一定時間を駆動回路の共振点より低い一
定周波数で十分な余熱を行う。そして一定時間経過後
は、発振周波数はCR回路によって意図どおりに徐々に変
わりこの間の周波数の変化の途中で放電灯が点灯する。
そして、点灯後も周波数は移行を続けて最終的には定ま
った抵抗により決まる駆動回路の共振点より高い1つの
定まった発振周波数にて動作が継続されるようになって
いる。このようにして周波数の急変を排してスイッチ素
子に過大なストレスが加わらないようにするとの目的を
達成している。
As a configuration corresponding to this point, for example, JP-A-63-17
No. 5389 (hereinafter also referred to as Proposal 2) discloses a configuration in which the residual heat of a fluorescent tube is started, and after a certain period of time, the output frequency of a high-frequency AC power supply is shifted to a frequency that increases the output. In particular, the proposal discloses a technique in which the oscillation frequency smoothly changes to the lighting frequency with the lapse of time after the completion of the preheating, whereby a sufficient preheating current can be obtained during the preheating time. In particular, the proposal proposes that a large stress is not applied to the switching element of the inverter circuit at the time of starting. That is, in the existing proposal, by having the timer circuit, sufficient preheating is performed at a constant frequency lower than the resonance point of the drive circuit for a fixed time after the power is turned on. After a certain period of time, the oscillation frequency gradually changes as intended by the CR circuit, and the discharge lamp is turned on during the change of the frequency during this period.
Then, even after lighting, the frequency continues to shift, and operation is continued at one fixed oscillation frequency that is higher than the resonance point of the drive circuit finally determined by the fixed resistance. In this way, the purpose of eliminating a sudden change in frequency and preventing an excessive stress from being applied to the switch element is achieved.

従来の回路の第2の難点として、例えば最初に挙げた
図4の従来の回路等においては、点灯回路が無負荷すな
わち蛍光管をはずした状態(曲線B)では前記の共振周
波数f2においてインバータ回路の出力が出力部の共振の
ためV1まで上昇する。このためこの時の共振電流により
インバータ回路が破壊してしまうという現象がある。な
お、前述した既提案2(特開昭63−175389号)において
もこの点では同じであって、電源投入後の一定時間を駆
動回路の共振点より低い一定周波数でタイマ回路に依存
して一定時間十分な余熱を行った後には滑らかに変化す
るとは言え、駆動回路の共振点周波数を経て最終的には
共振点より高い発振周波数まで移行し点灯動作が継続さ
れる。即ち、出力も必ず共振点を通過することになり、
もしもこの点灯回路が無負荷であれば共振電流によりイ
ンバータ回路に過大負荷・損傷を与えてしまう虞があ
る。
As a second drawback of the conventional circuit, for example, in the conventional circuit and the like in FIG. 4 the first-mentioned, the in state lighting circuit is off a no-load or fluorescent tubes (curve B) of the resonance frequency f 2 inverter the output of the circuit rises to V 1 for the resonance of the output unit. Therefore, there is a phenomenon that the inverter circuit is broken by the resonance current at this time. This point is the same in the above-mentioned proposal 2 (Japanese Patent Application Laid-Open No. 63-175389). The fixed time after power-on is fixed at a constant frequency lower than the resonance point of the drive circuit depending on the timer circuit. Although the temperature changes smoothly after sufficient heat is applied for a long time, the light-emitting device continues the lighting operation by shifting to the oscillation frequency higher than the resonance point through the resonance point frequency of the drive circuit. In other words, the output always passes through the resonance point,
If the lighting circuit has no load, the resonance current may cause an excessive load or damage to the inverter circuit.

この第2の難点回避のためには、無負荷時の出力を制
限することが有効である。例えば、特開昭63−175394号
(以下、既提案3とも記す)には、他励式電流共振型の
インバータ回路による放電灯点灯装置において、無負荷
検出回路及び寿命末期検出回路と、これら両検出回路か
らの信号によりインバータ回路の発振出力を低減させる
発振制御回路とを備え、更に出力低減時に過電流が流れ
たときにインバータ回路の動作を停止させるインバータ
停止回路を備えることが提案されており、これにより、
正常時には全く機能しない従前用いていた放電灯灯の非
電源側のスイッチを用いることなしに無負荷時あるいは
放電灯の寿命末期後の放電灯の接続・交換を検出し、イ
ンバータ回路の出力を制限或いは解除することが開示さ
れている。なお、上記提案におけるインバータ回路の出
力制限は、別個の発振周波数を2つ設定しこれらを完全
に切換えることにより行われている。
To avoid the second difficulty, it is effective to limit the output when no load is applied. For example, Japanese Unexamined Patent Publication No. 63-175394 (hereinafter also referred to as "proposed 3") discloses a non-load detecting circuit and an end-of-life detecting circuit for a discharge lamp lighting device using a separately excited current resonance type inverter circuit. An oscillation control circuit that reduces the oscillation output of the inverter circuit by a signal from the circuit, and an inverter stop circuit that stops the operation of the inverter circuit when an overcurrent flows when the output is reduced. This allows
It does not function at all under normal conditions.It detects the connection / replacement of the discharge lamp at no load or at the end of the life of the discharge lamp without using the switch on the non-power supply side of the discharge lamp used before, and limits the output of the inverter circuit. Alternatively, it is disclosed to cancel. The output limitation of the inverter circuit in the above proposal is performed by setting two separate oscillation frequencies and completely switching between them.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は、上述した如き従来のインバータ式の蛍光灯
用点灯回路に於ける実情を考慮して創案されたものであ
って、簡易な構成でありながら既述した従来回路に於け
る既述した第1の難点並びに第2の難点を同時に解消し
た、すなわち、蛍光管フィラメントを傷め易く耐用時間
を短くしてしまうという問題点を解決し合わせて無負荷
時保護機能も備えた、蛍光管及び点灯回路自身の保護性
能に優れ信頼性を一段と高めた蛍光灯用点灯回路を新規
に提案することを目的としている。
The present invention has been made in consideration of the actual situation of the conventional inverter-type fluorescent lamp lighting circuit as described above, and has a simple configuration, but has been described in the aforementioned conventional circuit. A fluorescent tube and a lighting device that simultaneously solves the first and second difficulties, that is, the problem that the fluorescent tube filament is easily damaged and the service life is shortened, and also has a no-load protection function. It is an object of the present invention to newly propose a lighting circuit for a fluorescent lamp which has excellent protection performance of the circuit itself and further improved reliability.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的達成のため、本発明では、交流電源を整流平
滑して得た直流電源を励振回路により駆動される半導体
素子によりスイッチングし高周波交流電源を得て、この
高周波交流電源で蛍光管を点灯せしめる他励インバータ
方式の蛍光灯器具用点灯回路において、 前記蛍光管の両端に印加されている電圧値に対応した
アナログ信号を出力する電圧検出手段と、前記励振回路
の発振周波数を前記電圧検出手段の出力に応じて制御し
変化させ、電源投入時で蛍光管点灯以前には電圧検出手
段の出力に対応して高周波交流電源の出力電圧を低く抑
制する周波数に設定して蛍光管の余熱を開始し、一定時
間経過後に高周波交流電源の出力電圧を高くする周波数
に移行させ、電圧検出手段からの蛍光管点灯に対応した
出力変化を待って更に高周波交流電源の出力電圧を規定
電圧に対応する周波数にまで変化させる発振周波数制御
回路とを具備した構成とする。
In order to achieve the above object, according to the present invention, a DC power supply obtained by rectifying and smoothing an AC power supply is switched by a semiconductor element driven by an excitation circuit to obtain a high-frequency AC power supply, and the fluorescent tube is lit by the high-frequency AC power supply. In a lighting circuit for a fluorescent lamp appliance of a separately excited inverter type, a voltage detection unit that outputs an analog signal corresponding to a voltage value applied to both ends of the fluorescent tube; and an oscillation frequency of the excitation circuit, Controlling and changing according to the output, before powering on the fluorescent tube and before turning on the fluorescent tube, set the frequency to suppress the output voltage of the high-frequency AC power supply low according to the output of the voltage detection means, and start the preheating of the fluorescent tube. After a lapse of a certain period of time, the output voltage of the high-frequency AC power supply is shifted to a higher frequency, and the output of the voltage detector is changed in response to lighting of the fluorescent tube. And an oscillating frequency control circuit for changing the output voltage to a frequency corresponding to the specified voltage.

また、前記励振回路が、起動時まず前記直流電源に基
づく起動電源により発振動作を開始し、この結果得られ
る前記高周波交流電源の出力に基づく内部電源により専
らその後の発振動作を継続するようにしても良い。
Further, at the time of startup, the excitation circuit starts an oscillating operation by a starting power supply based on the DC power supply, and the subsequent oscillating operation is continued exclusively by an internal power supply based on an output of the high-frequency AC power supply obtained as a result. Is also good.

前記電圧検出手段7の好適な構成例としては、出力部
のトランスT2に新たに設けられた巻線L8と、この巻線L8
の出力に抵抗R6を介して直列に並列接続された夫々抵抗
R7及びカソード端子を抵抗R6に接続しアノード端子側を
接地したダイオードD6並びにベース端子を抵抗R6にエミ
ッタ端子を前記ダイオードD6のアノード端子に接続した
NPNトランジスタTR4とから構成されて前記トランジスタ
TR4のコレクタ端子を出力(P3)となし、前記発振周波
数制御手段8が、前記励振回路4を構成し発振周波数を
決定するための抵抗R1のグランド側端子に直列に接続さ
れた抵抗R3と、この抵抗R1にチャンネルが並列接続され
たFETトランジスタTR5、このトランジスタTR5のゲート
端子と電源間に接続された抵抗R4、トランジスタTR5の
ゲート端子とグランド間に接続されたコンデンサC6、ト
ランジスタTR5のゲート端子に一端が接続され他端が前
記電圧検出手段7の出力に接続された抵抗R5とから構成
すると良い。
As a preferred configuration example of the voltage detecting means 7, a winding L8 newly provided in the transformer T2 of the output section, and a winding L8
Each resistor connected in parallel with the output of the
R7 and the cathode terminal were connected to the resistor R6, the anode terminal side was grounded to the diode D6, the base terminal was connected to the resistor R6, and the emitter terminal was connected to the anode terminal of the diode D6.
NPN transistor TR4 and said transistor
The collector terminal of TR4 is set as an output (P3), and the oscillation frequency control means 8 includes a resistor R3 connected in series to a ground terminal of a resistor R1 for configuring the excitation circuit 4 and determining an oscillation frequency; FET transistor TR5 whose channel is connected in parallel with this resistor R1, resistor R4 connected between the gate terminal of this transistor TR5 and the power supply, capacitor C6 connected between the gate terminal of transistor TR5 and ground, and the gate terminal of transistor TR5 And a resistor R5 connected at one end to the output of the voltage detecting means 7 at the other end.

〔発明の実施例〕(Example of the invention)

以下、添付図面に沿って本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第2図はこの発明を適用した蛍光灯器具用点灯回路10
の一実施例を示す回路図である。第1図と同一部分につ
いては説明を省略する。この回路では、蛍光管の劣化を
抑止することに加えてインバータ方式の蛍光灯器具用点
灯回路に見られる共振周波数f2においてインバータ回路
の出力が出力部の共振のためV1まで上昇しこの時の共振
電流によりインバータ回路が破壊してしまうことを防止
するようにもなっている。
FIG. 2 shows a lighting circuit 10 for a fluorescent lamp apparatus to which the present invention is applied.
FIG. 3 is a circuit diagram showing one embodiment. The description of the same parts as in FIG. 1 is omitted. In this circuit, elevated at this time at the resonant frequency f 2 as seen in the fluorescent lamp fixture for lighting circuit of the inverter system in addition to suppressing the degradation of the fluorescent tube and V 1 for the resonance of the output the output of the inverter circuit This prevents the inverter circuit from being destroyed by the resonance current.

第1図で示した部分に加えて実施例では電圧検出手段
7及び発振周波数制御手段8が付加されている。電圧検
出手段7は出力部のトランスT2に新たに設けられた巻線
L8と、この巻線L8の出力に接続された電気部品すなわ
ち、並列接続された抵抗R7とダイオードD6及びベース端
子−エミッタ端子が接続されたNPNトランジスタTR4とこ
れらに直列接続された抵抗R6とから成る。前記ダイオー
ドD6のアノード端子は前記トランジスタTR4のエミッタ
端子と接続されると共に巻線L8のグランド側端子に接続
されている。また前記トランジスタTR4のコレクタ端子
は電圧検出手段7の出力(P3)となる。このような構成
の電圧検出手段7により、蛍光管の両端に印加されてい
る電圧値に対応したアナログ信号が出力を得ることがで
きる(電圧検出)。
In the embodiment, in addition to the parts shown in FIG. 1, a voltage detecting means 7 and an oscillation frequency controlling means 8 are added. The voltage detecting means 7 is a winding newly provided in the transformer T2 of the output section.
L8 and electrical components connected to the output of the winding L8, namely, a resistor R7 and a diode D6 connected in parallel, an NPN transistor TR4 connected to a base terminal-emitter terminal, and a resistor R6 connected in series to these. Become. The anode terminal of the diode D6 is connected to the emitter terminal of the transistor TR4 and to the ground terminal of the winding L8. The collector terminal of the transistor TR4 becomes the output (P3) of the voltage detecting means 7. With the voltage detecting means 7 having such a configuration, an analog signal corresponding to the voltage value applied to both ends of the fluorescent tube can be obtained (voltage detection).

発振周波数制御手段8は、既述した励振回路4を構成
し発振周波数を決定するための抵抗R1のグランド側端子
に直列に接続された抵抗R3と、この抵抗R1にチャンネル
が並列接続されたFETトランジスタTR5、このトランジス
タTR5のゲート端子と電源間に接続された抵抗R4、トラ
ンジスタTR5のゲート端子とグランド間に接続されたコ
ンデンサC6、トランジスタTR5のゲート端子に一端が接
続され他端が入力端(P4)となる抵抗R5から構成されて
いる。
The oscillating frequency control means 8 comprises a resistor R3 connected to the ground terminal of the resistor R1 for determining the oscillation frequency, which constitutes the excitation circuit 4 described above, and an FET having a channel connected in parallel to the resistor R1. One end is connected to the transistor TR5, the resistor R4 connected between the gate terminal of the transistor TR5 and the power supply, the capacitor C6 connected between the gate terminal of the transistor TR5 and the ground, and the other end is connected to the input terminal ( P4).

回路は電圧検出手段7から得られるアナログ信号(検
出電圧)が充分に高ければトランジスタTR5がOFFする方
向に、低ければONする方向に駆動されるように構成され
ている。すなわち、検出電圧が高ければ発振周波数はf1
へと向かい、低ければf2へと向かう動作となり出力電圧
一定の動作点(出力電圧VX:周波数fX)で平衡するこ
とになる。なお、検出電圧が充分低い場合にはトランジ
スタTR4が動作せず殆ど機能しない。電圧検出手段7の
作用を補足説明すれば、コンデンサC6の蓄積電荷を出力
の半サイクル毎に抵抗R5を介して放電させトランジスタ
TR5のゲート端子の電位を下げるように動作する。
The circuit is configured to be driven in a direction in which the transistor TR5 is turned off when the analog signal (detection voltage) obtained from the voltage detection means 7 is sufficiently high, and in a direction in which the transistor TR5 is turned on when the analog signal is low. That is, if the detection voltage is high, the oscillation frequency is f1
If the output voltage is low, the operation is directed to f2, and the operation is balanced at an operating point where the output voltage is constant (output voltage VX: frequency fx). When the detection voltage is sufficiently low, the transistor TR4 does not operate and hardly functions. Supplementary explanation of the operation of the voltage detecting means 7 is as follows. The charge stored in the capacitor C6 is discharged via the resistor R5 every half cycle of the output to make the transistor
It operates to lower the potential of the gate terminal of TR5.

この蛍光灯器具用点灯回路10では、電源投入時にはTR
5がOFF状態のため発振周波数は(R1+R3)及びC1によっ
て決定される。この周波数f1は出力部分の共振周波数f2
と異なる値で出力電圧が低くなるように設定されてい
る。蛍光灯器具用点灯回路10はこの周波数f1でインバー
タ動作を開始し余熱が開始される。蛍光管3に加わる電
圧はトランスT2の巻線L8から検出されて対応する出力は
発振周波数制御回路8のトランジスタTR5に接続されて
いるが、この時の電圧検出手段7の検出電圧は低く出力
端は発振周波数には影響を与えない。結局、当初の出力
は第3図グラフのf1の周波数、V3の電圧となる。動作開
始後は高抵抗R4とC6の時定数にて決まる速度でトランジ
スタTR5がON方向へ向かい一定時間経過後に出力電圧がV
X(周波数fX)へと上昇を開始し所定時間を経過した後
に出力電圧が放電開始電圧のVYとなるとフィラメントが
充分熱せられた蛍光管3が点灯する。対応して出力電圧
はV4から(曲線Aまで)低下する。蛍光管3に加わる電
圧変化は更に低下する方向であり電圧検出手段7は発振
周波数には影響を与えない。なお、もし点灯が無ければ
後述するように発振周波数はf2に比べ充分低い(出力電
圧も低い)一定動作点(fX:VX)にて平衡する(保護動
作)。通常は蛍光管が点灯するから発振周波数の上昇は
続きトランジスタTR5は完全にON状態(飽和)となり、
励振回路4はR1及びC1により決定される周波数で動作す
ることになる。この時の周波数が共振周波数f2となるよ
うにR1及びC1の値を設定しておく。従ってこの状態では
充分な電力が蛍光管3に供給される。
In the lighting circuit 10 for a fluorescent lamp device, when the power is turned on, the TR
Since 5 is in the OFF state, the oscillation frequency is determined by (R1 + R3) and C1. This frequency f1 is the resonance frequency f2 of the output part.
The output voltage is set to be lower at a value different from. Fluorescent lighting fixtures for lighting circuit 10 is preheated starts inverter operating at this frequency f 1 is started. The voltage applied to the fluorescent tube 3 is detected from the winding L8 of the transformer T2, and the corresponding output is connected to the transistor TR5 of the oscillation frequency control circuit 8. At this time, the detection voltage of the voltage detection means 7 is low and the output terminal is low. Does not affect the oscillation frequency. After all, the initial output is f 1 frequency, voltage V 3 in Figure 3 graph. After the operation starts, the transistor TR5 turns on at a speed determined by the time constant of the high resistance R4 and C6, and the output voltage becomes V
X If the output voltage after starting to rise to (frequency f X) elapses a predetermined time is V Y discharge firing voltage filament is sufficiently fluorescent tube 3 which is heated is turned. Corresponding to the output voltage from V 4 (up curve A) decreases. The change in the voltage applied to the fluorescent tube 3 is in a further decreasing direction, and the voltage detecting means 7 does not affect the oscillation frequency. Note that if there is no lighting, the oscillation frequency is balanced at a constant operating point (f X : V X ) that is sufficiently lower than f 2 (the output voltage is low) as described later (protection operation). Normally, since the fluorescent tube is lit, the oscillation frequency continues to rise, and the transistor TR5 is completely turned on (saturated).
The excitation circuit 4 will operate at the frequency determined by R1 and C1. Setting the values of R1 and C1, as the frequency at this time is the resonance frequency f 2. Therefore, in this state, sufficient power is supplied to the fluorescent tube 3.

この様に電圧検出手段7の検出電圧をV3とV1の中間の
VX(周波数fX)に設定しておけば、常態ではトランジス
タTR5をR4・C6の定数で決まる速度でV3からV1へと移行
させる途中のVYにて蛍光管3の放電を開始させ、蛍光管
3が点灯している事によって(電圧検出手段からの蛍光
管点灯に対応した出力変化を待って)、R1・C1により決
まる周波数f2で励振を行い(動作点をグラフのf2に移行
させ)、正規の電力にて蛍光管3を継続点灯する事がで
きる。第2図中の矢印線は点灯への動作点の軌跡を示し
ている。
The detection voltage of the voltage detecting means 7 in this manner in the V 3 and V 1 of the intermediate
If it is set to V X (frequency f X ), the discharge of the fluorescent tube 3 is started at V Y during the transition of the transistor TR5 from V 3 to V 1 at a speed determined by the constants of R4 and C6. is allowed, (waiting for output change corresponding to the fluorescent tube lighting from the voltage detecting means) by which the fluorescent tube 3 is lit, perform excitation at frequency f 2 determined by R1 · C1 (the operating point of the graph f 2 ), and the fluorescent tube 3 can be continuously lit with normal power. The arrow line in FIG. 2 indicates the locus of the operating point for lighting.

一方、蛍光管の不点灯や無装着で出力がVYを越えても
放電が起こらない場合等には出力が検出電圧VXを越えて
高くなろうとしても電圧検出手段7の出力が交流電源出
力を抑制する方向に変化し(トランジスタTR5のコレク
タ電位が変わり)発振周波数をf2に比べ充分低い、従っ
て出力電圧も低い動作点(fX:VX)にて平衡させるよう
に作用して交流電源出力は高出力電圧のf2へは移行せず
回路の破壊等を防止する。
On the other hand, the output AC power supply voltage detecting means 7 even if such output unlighted or dismounted of the fluorescent tube does not occur discharge even beyond the V Y would increase output exceeds the detection voltage V X changes in the direction of suppressing the output (collector potential of the transistor TR5 turns) sufficiently lower than the oscillation frequency f 2, so that the output voltage is low operating point: acting to balance at (f X V X) AC power supply output is to f 2 of the high output voltage to prevent destruction of the circuit without shifting.

上述したように、電源投入時に蛍光管3の予熱が一定
時間行われて充分に余熱が完了してから点灯するためフ
ィラメントを傷めずこの結果、黒化現象も最小限となり
蛍光管3の寿命を飛躍的に延ばすという効果が得られ
る。点灯回数にて10倍を越える使用が可能であることが
確認されている。
As described above, when the power is turned on, the fluorescent tube 3 is preheated for a certain period of time and is turned on after sufficient preheating is completed, so that the filament is not damaged. As a result, the blackening phenomenon is minimized and the life of the fluorescent tube 3 is shortened. The effect of dramatically extending is obtained. It has been confirmed that it can be used more than 10 times by the number of times of lighting.

同時に、発振周波数制御回路は前記励振回路の発振周
波数を蛍光管の両端に印加されている電圧に応じて制御
し変化させるので、常態の蛍光管点灯時には最大電力を
供給することができる一方、無負荷あるいは軽負荷時に
は発振周波数を変化させ出力電圧を低下させて蛍光灯器
具用点灯回路の破壊を防止することができる。即ち、蛍
光管3が取付けられていない場合、あるいは交換のため
蛍光管3を電源を切らずに取外した場合等無負荷状態が
生じても動作周波数がfX(VX)に移行し、出力電圧を抑
えることでインバータ回路に負担がかからない様にする
既知機能も同時に実現している。また、蛍光管3が使用
中徐々に劣化し無負荷状態に近くなった場合においても
動作点がfXに移動しインバータ回路が保護される事にな
る。工事の際の誤配線があってもインバータ回路を破壊
する虞が全くなくなる利点もある。
At the same time, the oscillation frequency control circuit controls and changes the oscillation frequency of the excitation circuit according to the voltage applied to both ends of the fluorescent tube. At the time of load or light load, the oscillation frequency is changed to lower the output voltage, thereby preventing the lighting circuit for the fluorescent lamp device from being broken. That is, the operating frequency shifts to f X (V X ) even when a no-load condition occurs, such as when the fluorescent tube 3 is not attached or when the fluorescent tube 3 is removed without turning off the power for replacement. A known function that suppresses the load on the inverter circuit by suppressing the voltage is also realized at the same time. Further, it becomes possible operating point is protected moved inverter circuit f X when the fluorescent tube 3 is close gradually deteriorated unloaded condition during use. There is also an advantage that there is no danger of breaking the inverter circuit even if there is erroneous wiring during construction.

なお、共振周波数f2より低いf1側を出力抑制動作領域
とした例で説明したが、共振周波数を越えたやはり無負
荷時出力が低電圧となる周波数領域を出力抑止動作領域
側として全く同等な回路を構成することができる。
The resonance frequency f has been described an example in which an output suppression operation region lower f 1 side 2, any frequency range which is also unloaded output is low voltage exceeding the resonance frequency as the output suppression operation area side equivalent Circuit can be configured.

付言すれば、上述の蛍光灯器具用点灯回路はスイッチ
ング用のトランジスタTR1、TR2を駆動するための励振回
路4を他の部分と独立して具備しているため、この励振
回路4の励振周波数(発振周波数)を単独で任意に設定
できるため、全体の設計が簡易となるし、また使用部品
選択の自由度も拡がる。
In addition, since the above-described lighting circuit for a fluorescent lamp apparatus includes the excitation circuit 4 for driving the switching transistors TR1 and TR2 independently of other parts, the excitation frequency of the excitation circuit 4 ( Since the oscillation frequency can be set arbitrarily by itself, the overall design is simplified and the degree of freedom in selecting the parts to be used is increased.

さらに、前記励振回路が、起動時まず前記直流電源に
基づく起動電源により発振動作を開始し、この結果得ら
れる前記高周波交流電源の出力に基づく内部電源により
専らその後の発振動作を継続するため、常態では起動電
源回路部分での電力消費やこれに伴う発熱を伴わず小容
量の部品で前記起動電源を構成しても熱破壊が未然に防
止されるので蛍光灯器具用点灯回路全体が小形になって
いる。
Further, at the time of start-up, the excitation circuit starts an oscillating operation by a starting power supply based on the DC power supply, and continues a subsequent oscillating operation exclusively by an internal power supply based on an output of the high-frequency AC power supply obtained as a result. In this case, even if the starting power supply is composed of small-capacity components without causing power consumption and heat generation in the starting power supply circuit portion, thermal destruction is prevented beforehand, so that the entire lighting circuit for a fluorescent lamp apparatus is reduced in size. ing.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の蛍光灯器具用点灯回路
は、交流電源を整流平滑して得た直流電源を励振回路に
より駆動される半導体素子によりスイッチングし高周波
交流電源を得て、この高周波交流電源で蛍光管を点灯せ
しめる他励インバータ方式であって、特に、前記蛍光管
の両端に印加されている電圧値に対応したアナログ信号
を出力する電圧検出手段と、前記励振回路の発振周波数
を前記電圧検出手段の出力に応じて制御し変化させ、電
源投入時で蛍光管点灯以前には電圧検出手段の出力に対
応して高周波交流電源の主力電圧を低く抑制する周波数
に設定して蛍光管の余熱を開始し、一定時間経過後に高
周波交流電源の出力電圧を高くする周波数に移行させ、
電圧検出手段からの蛍光管点灯に対応した出力変化を待
って更に高周波交流電源の出力電圧を規定電圧に対応す
る周波数にまで変化させる発振周波数制御回路とを具備
し構成したことにより、 主として電圧検出手段と発振周波数制御回路の動作に
起因して、従来のインバータ式の蛍光灯用点灯回路に於
いては点灯時(放電開始時)にフィラメントを劣化させ
蛍光管の耐用時間が短かくなってしまうとの難点を解消
して同じ蛍光管をより長い時間使用することができると
の実用的な効果を得ると同時に構成の大部分を共用して
既知の無負荷時での回路保護機能を合わせて実現してお
り、簡単な構成にて高機能・高信頼性の点灯回路を実現
できその有用性は極めて高い。
As described above, the lighting circuit for a fluorescent lamp apparatus of the present invention is configured such that a DC power supply obtained by rectifying and smoothing an AC power supply is switched by a semiconductor element driven by an excitation circuit to obtain a high-frequency AC power supply. A separately-excited inverter system for lighting a fluorescent tube with a power supply, in particular, a voltage detecting unit that outputs an analog signal corresponding to a voltage value applied to both ends of the fluorescent tube, and an oscillation frequency of the excitation circuit. It is controlled and changed in accordance with the output of the voltage detecting means, and at the time of power-on and before the fluorescent lamp is turned on, the frequency is set to a frequency which suppresses the main voltage of the high-frequency AC power supply in accordance with the output of the voltage detecting means, and the fluorescent lamp Start preheating, and after a certain period of time, shift to a frequency that increases the output voltage of the high-frequency AC power supply,
Oscillation frequency control circuit for changing the output voltage of the high-frequency AC power supply to the frequency corresponding to the specified voltage after waiting for the output change corresponding to the fluorescent tube lighting from the voltage detection means. In the conventional inverter-type fluorescent lamp lighting circuit, the filament is deteriorated at the time of lighting (at the start of discharge) due to the means and the operation of the oscillation frequency control circuit, and the useful life of the fluorescent tube is shortened. With the practical effect that the same fluorescent tube can be used for a longer period of time by solving the difficulties and at the same time, most of the configuration is shared and the known no-load circuit protection function is combined As a result, a highly functional and highly reliable lighting circuit can be realized with a simple configuration, and its usefulness is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

第1図は既知蛍光灯器具用点灯回路(他励式)の一例を
示す回路図を、 第2図は本発明による蛍光灯器具用点灯回路の一実施例
を示す回路図を、 第3図は本願発明に係る蛍光灯器具用点灯回路における
発振周波数と出力電圧の関係を示す図を、 第4図は従来の蛍光灯器具用点灯回路(自励式)の回路
図を各々示す。 10……蛍光灯器具用点灯回路、 3……蛍光管、4……励振回路、 5……起動回路、6……内部電源、 8……発振周波数制御回路。
FIG. 1 is a circuit diagram showing an example of a known fluorescent lamp lighting circuit (separately excited type), FIG. 2 is a circuit diagram showing an embodiment of a fluorescent lamp lighting circuit according to the present invention, and FIG. FIG. 4 is a diagram showing a relationship between an oscillation frequency and an output voltage in a fluorescent lamp lighting circuit according to the present invention, and FIG. 4 is a circuit diagram of a conventional fluorescent lamp lighting circuit (self-excited type). 10: lighting circuit for fluorescent lamp equipment, 3: fluorescent tube, 4: excitation circuit, 5: starting circuit, 6, internal power supply, 8: oscillation frequency control circuit.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】交流電源を整流平滑して得た直流電源を励
振回路により駆動される半導体素子によりスイッチング
し高周波交流電源を得て、この高周波交流電源で蛍光管
を点灯せしめる他励インバータ方式の蛍光灯器具用点灯
回路において、 前記蛍光管の両端に印加されている電圧値に対応したア
ナログ信号を出力する電圧検出手段と、 前記励振回路の発振周波数を前記電圧検出手段の出力に
応じて制御し変化させ、電源投入時で蛍光管点灯以前に
は電圧検出手段の出力に対応して高周波交流電源の出力
電圧を低く抑制する周波数に設定して蛍光管の余熱を開
始し、一定時間経過後に高周波交流電源の出力電圧を高
くする周波数に移行させ、電圧検出手段からの蛍光管点
灯に対応した出力変化を待って更に高周波交流電源の出
力電圧を規定電圧に対応する周波数にまで変化させる発
振周波数制御回路とを具備したことを特徴とする蛍光灯
器具用点灯回路。
1. A separately excited inverter system in which a DC power supply obtained by rectifying and smoothing an AC power supply is switched by a semiconductor element driven by an excitation circuit to obtain a high-frequency AC power supply, and a fluorescent tube is lit by the high-frequency AC power supply. In a lighting circuit for a fluorescent lamp device, a voltage detection unit that outputs an analog signal corresponding to a voltage value applied to both ends of the fluorescent tube, and an oscillation frequency of the excitation circuit is controlled according to an output of the voltage detection unit. Before powering on the fluorescent tube at power-on, set the frequency to suppress the output voltage of the high-frequency AC power supply low to correspond to the output of the voltage detecting means, start the residual heat of the fluorescent tube, and after a certain time elapses The output voltage of the high-frequency AC power supply is shifted to a higher frequency, and the output voltage of the high-frequency AC power supply is further regulated to the specified voltage after the output change corresponding to the fluorescent tube lighting from the voltage detection means. Fluorescent lighting fixtures for lighting circuit, characterized by comprising an oscillation frequency control circuit for changing to a frequency corresponding to the.
【請求項2】前記励振回路が、起動時まず前記直流電源
に基づく起動電源により発振動作を開始し、この結果得
られる前記高周波交流電源の出力に基づく内部電源によ
り専らその後の発振動作を継続することを特徴とする請
求項1に記載の蛍光灯器具用点灯回路。
2. An excitation circuit according to claim 1, wherein said excitation circuit starts an oscillating operation by a starting power supply based on said DC power supply at the time of starting, and continues an oscillating operation exclusively by an internal power supply based on an output of said high-frequency AC power supply obtained as a result. The lighting circuit for a fluorescent lamp device according to claim 1, wherein:
【請求項3】前記電圧検出手段7が、出力部のトランス
T2に新たに設けられた巻線L8と、この巻線L8の出力に抵
抗R6を介して直列に並列接続された夫々抵抗R7及びカソ
ード端子を抵抗R6に接続しアノード端子側を接地したダ
イオードD6並びにベース端子を抵抗R6にエミッタ端子を
前記ダイオードD6のアノード端子に接続したNPNトラン
ジスタTR4とから構成されて前記トランジスタTR4のコレ
クタ端子を出力(P3)となし、 前記発振周波数制御手段8が、前記励振回路4を構成し
発振周波数を決定するための抵抗R1のグランド側端子に
直列に接続された抵抗R3と、この抵抗R1にチャンネルが
並列接続されたFETトランジスタTR5、このトランジスタ
TR5のゲート端子と電源間に接続された抵抗R4、トラン
ジスタTR5のゲート端子とグランド間に接続されたコン
デンサC6、トランジスタTR5のゲート端子に一端が接続
され他端が前記電圧検出手段7の出力に接続された抵抗
R5とから構成されている請求項1または請求項2に記載
の蛍光灯器具用点灯回路。
3. The power supply according to claim 1, wherein said voltage detecting means comprises a transformer in an output section.
A winding L8 newly provided in T2, and a diode D6 in which the output of the winding L8 is connected in series and in parallel via a resistor R6 to a resistor R7 and a cathode terminal connected to the resistor R6 and the anode terminal side is grounded. An NPN transistor TR4 having a base terminal connected to a resistor R6 and an emitter terminal connected to the anode terminal of the diode D6, and the collector terminal of the transistor TR4 serving as an output (P3). A resistor R3 connected in series to the ground terminal of the resistor R1 for forming the excitation circuit 4 and determining the oscillation frequency, an FET transistor TR5 having a channel connected in parallel to the resistor R1,
A resistor R4 connected between the gate terminal of TR5 and the power supply, a capacitor C6 connected between the gate terminal of the transistor TR5 and ground, and one end connected to the gate terminal of the transistor TR5 and the other end connected to the output of the voltage detecting means 7. Connected resistor
The lighting circuit for a fluorescent lamp device according to claim 1, wherein the lighting circuit comprises R5.
JP2134897A 1990-05-24 1990-05-24 Lighting circuit for fluorescent lamp Expired - Lifetime JP2756540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2134897A JP2756540B2 (en) 1990-05-24 1990-05-24 Lighting circuit for fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2134897A JP2756540B2 (en) 1990-05-24 1990-05-24 Lighting circuit for fluorescent lamp

Publications (2)

Publication Number Publication Date
JPH0432198A JPH0432198A (en) 1992-02-04
JP2756540B2 true JP2756540B2 (en) 1998-05-25

Family

ID=15139083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2134897A Expired - Lifetime JP2756540B2 (en) 1990-05-24 1990-05-24 Lighting circuit for fluorescent lamp

Country Status (1)

Country Link
JP (1) JP2756540B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002093984A1 (en) * 2001-05-16 2002-11-21 Matsushita Electric Industrial Co., Ltd. Discharge lamp lighting device and system comprising it
CN103619115A (en) * 2013-11-27 2014-03-05 苏州贝克微电子有限公司 Fluorescent lamp exciting circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638599U (en) * 1986-07-02 1988-01-20
JPS63175394A (en) * 1987-01-14 1988-07-19 松下電工株式会社 Discharge lamp lighter
JP2617459B2 (en) * 1987-01-14 1997-06-04 松下電工株式会社 Discharge lamp lighting device

Also Published As

Publication number Publication date
JPH0432198A (en) 1992-02-04

Similar Documents

Publication Publication Date Title
US5321337A (en) Ballast having starting current restraint circuitry for preventing a large in-rush current and protection circuitry for preventing damage due to a start-up failure
US20070152598A1 (en) Method for increasing profit in a business to maintain lighting operations in an office building or other place of business
US5959408A (en) Symmetry control circuit for pre-heating in electronic ballasts
US6657401B2 (en) Ballast for discharge lamp
US5027033A (en) High-efficiency fluorescent lamp operating circuit
EP0877537A1 (en) Ballast system for dimmable lamps
US5138235A (en) Starting and operating circuit for arc discharge lamp
US6157142A (en) Hid ballast circuit with arc stabilization
JP2003257688A (en) Discharge lamp lighting device and lighting equipment
JP2756540B2 (en) Lighting circuit for fluorescent lamp
US6936970B2 (en) Method and apparatus for a unidirectional switching, current limited cutoff circuit for an electronic ballast
JP3521687B2 (en) Discharge lamp lighting device
JP2658042B2 (en) Discharge lamp lighting device
JP2001351790A (en) Discharge lamp lighting device
JP3777718B2 (en) Discharge lamp lighting device
JP4283348B2 (en) Discharge lamp lighting device
KR0140820B1 (en) Inverter circuit for stand
JP4920241B2 (en) Discharge lamp lighting device
JP2002231483A (en) Discharge lamp lighting device
JP3713129B2 (en) Discharge lamp lighting device
JP2697881B2 (en) Discharge lamp lighting device
JP3728880B2 (en) Discharge lamp lighting device
JP3726644B2 (en) Power supply
JP3829342B2 (en) Discharge lamp lighting device
JPH0244698A (en) Discharge lamp lighting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110313

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110313

Year of fee payment: 13