JP2755086B2 - Portable heater - Google Patents
Portable heaterInfo
- Publication number
- JP2755086B2 JP2755086B2 JP4354529A JP35452992A JP2755086B2 JP 2755086 B2 JP2755086 B2 JP 2755086B2 JP 4354529 A JP4354529 A JP 4354529A JP 35452992 A JP35452992 A JP 35452992A JP 2755086 B2 JP2755086 B2 JP 2755086B2
- Authority
- JP
- Japan
- Prior art keywords
- heated
- heater
- temperature sensor
- electric signal
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010438 heat treatment Methods 0.000 claims description 18
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 230000005855 radiation Effects 0.000 description 3
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Radiation Pyrometers (AREA)
- Control Of Resistance Heating (AREA)
- Resistance Heating (AREA)
- Drying Of Solid Materials (AREA)
- Coating Apparatus (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば自動車ボデ−等
の塗装膜を部分的に乾燥させる際に使用するポ−タブル
ヒ−タに係り、詳しくは被加熱物の表面温度を正確に測
定する温度補償機能を有するポ−タブルヒ−タに関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a portable heater used for partially drying a coating film of, for example, an automobile body, and more particularly to a method for accurately measuring the surface temperature of an object to be heated. The present invention relates to a portable heater having a temperature compensation function.
【0002】[0002]
【従来の技術】一般に、赤外線を発生するヒ−タを用い
て被加熱物を加熱する際、被加熱物の温度は、ヒ−タの
出力、ヒ−タと被加熱物間の距離、被加熱物の板厚ある
いは大きさ、被加熱物の色などに応じて変化する。2. Description of the Related Art Generally, when an object to be heated is heated using a heater that generates infrared rays, the temperature of the object to be heated is determined by the output of the heater, the distance between the heater and the object to be heated, and the temperature of the object to be heated. It changes according to the thickness or size of the object to be heated, the color of the object to be heated, and the like.
【0003】そのため、被加熱物の温度を自動制御する
ためには温度計測が必要になる。その温度計測に必要な
温度計として、従来、熱電対型温度計、放射温度計など
が用いられている。[0003] Therefore, in order to automatically control the temperature of the object to be heated, temperature measurement is required. As thermometers required for the temperature measurement, thermocouple type thermometers, radiation thermometers and the like have been conventionally used.
【0004】[0004]
【発明が解決しようとする課題】上記熱電対型温度計の
場合、熱電対の部分を被加熱物に接触させる必要がある
ため、接触させることのできない未硬化の塗装膜等が形
成された被加熱物の温度計測には使用できないという問
題がある。また、放射温度計を使用すれば非接触で温度
計測が可能であるが、被加熱物に反射するヒ−タ本体の
温度を計測してしまうことがあるため、被加熱物の正確
な温度を計測することが困難であるという問題がある。
以上のことから、従来の温度計測手段では正確な自動温
度制御、即ちフィ−ドバック制御をすることが極めて困
難であるという問題がある。In the case of the above-mentioned thermocouple type thermometer, it is necessary to bring the thermocouple portion into contact with the object to be heated, so that the uncured coating film or the like which cannot be brought into contact is formed. There is a problem that it cannot be used for measuring the temperature of a heated object. If a radiation thermometer is used, temperature can be measured in a non-contact manner.However, since the temperature of the heater body reflected on the object to be heated may be measured, the accurate temperature of the object to be heated is measured. There is a problem that it is difficult to measure.
As described above, there is a problem that it is extremely difficult to perform accurate automatic temperature control, that is, feedback control, with the conventional temperature measuring means.
【0005】そのため、被加熱物の温度を制御する場
合、予め得られた実験結果等に基づき各加熱条件を手動
で調整したうえ所望の温度にする方法が採用されてい
る。しかしながら、加熱条件セット時のミスや環境条件
の変化等により温度のバラツキが大きく品質不良を誘発
する原因になっている。Therefore, when controlling the temperature of the object to be heated, a method has been adopted in which each heating condition is manually adjusted based on experimental results obtained in advance and the temperature is adjusted to a desired temperature. However, errors in the setting of heating conditions, changes in environmental conditions, and the like cause a large variation in temperature, which causes poor quality.
【0006】そこで本発明では、ヒ−タから発生する赤
外線出力波長と、計測する赤外線入力波長とを区別し、
被加熱物に反射するヒ−タからの赤外線波長を計測せず
に被加熱物の温度対応の波長のみを計測できるようにし
て被加熱物の正確な自動温度制御を可能にすることを解
決すべき課題とするものである。Therefore, in the present invention, an infrared output wavelength generated from a heater is distinguished from an infrared input wavelength to be measured.
To solve the problem that accurate automatic temperature control of a heated object is enabled by measuring only a wavelength corresponding to the temperature of the heated object without measuring an infrared wavelength from a heater reflected on the heated object. Should be an issue to be addressed.
【0007】[0007]
【課題を解決するための手段】上記課題解決のための技
術的手段は、被加熱物を部分的に加熱し、塗装膜の乾燥
などをする際に使用するポ−タブルヒ−タであって、被
加熱物に対向して配置される赤外線照射型のヒ−タと、
前記被加熱物から放射及び反射される赤外線を検知し赤
外線の波長に相応した電気信号を出力する非接触型温度
センサと、その非接触型温度センサが検知した赤外線の
うち短波長領域対応の電気信号を遮断する遮断器と、そ
の遮断器を通過した電気信号を増幅する増幅器と、その
増幅器により増幅された電気信号の最大値が予め設定さ
れた加熱条件値以下であれば前記ヒ−タの通電電流を増
加させる信号を出力する一方、加熱条件値以上であれば
前記ヒ−タの通電電流を減少させる信号を出力するコン
トロ−ラと、そのコントロ−ラからの前記信号に基づい
て前記ヒ−タの通電電流を調整する電流調整器とを備え
た構成にすることである。A technical means for solving the above-mentioned problems is a portable heater which is used for partially heating an object to be heated and drying a coating film. An infrared irradiation type heater arranged to face the object to be heated;
A non-contact type temperature sensor that detects infrared rays radiated and reflected from the object to be heated and outputs an electric signal corresponding to the wavelength of the infrared ray, and an electric power corresponding to a short wavelength region among the infrared rays detected by the non-contact type temperature sensor A circuit breaker for interrupting a signal, an amplifier for amplifying an electric signal passing through the circuit breaker, and the heater if the maximum value of the electric signal amplified by the amplifier is equal to or less than a preset heating condition value. Increase current
While outputs a signal to pressure, if the heating condition value than the heat - a signal for reducing the energization current of motor controller - la and its control - on the basis of the said signal from the La arsenide - a motor And a current adjuster for adjusting the current flow.
【0008】[0008]
【作用】上記構成のポ−タブルヒ−タによれば、非接触
型温度センサにより被加熱物から放射及び反射される赤
外線が検知され、非接触型温度センサから検知赤外線の
波長に相応した電気信号が出力されると、その電気信号
は遮断器において短波長領域の波長、即ちヒ−タからの
赤外線波長に相応する成分が遮断され、遮断器を通過し
た電気信号が増幅器で増幅されたあとコントロ−ラに入
力されると、コントロ−ラは電流調整器に対して、入力
された電気信号の最大値が予め設定された加熱条件値以
下であればヒ−タの通電電流を増加させる信号を出力す
る一方、加熱条件値以上であればヒ−タの通電電流を減
少させる信号を出力するため、電流調整器は、その信号
に基づいてヒ−タの通電電流を調整する。そのため、ヒ
−タからの赤外線の影響を受けることなく、被加熱物か
ら放射される赤外線の波長に基づいて被加熱物の自動温
度制御をすることができる。According to the portable heater having the above structure, infrared rays radiated and reflected from the object to be heated are detected by the non-contact type temperature sensor, and the electric signal corresponding to the wavelength of the detected infrared ray is detected from the non-contact type temperature sensor. Is output, the component of the electric signal corresponding to the wavelength in the short wavelength region, that is, the infrared wavelength from the heater is cut off by the circuit breaker, and after the electric signal passing through the circuit breaker is amplified by the amplifier, it is controlled. When the maximum value of the input electric signal is equal to or less than a preset heating condition value, the controller sends a signal to the current regulator to increase the current supplied to the heater. On the other hand, if the output is higher than the heating condition value, the heater current is reduced.
In order to output a signal to reduce the current, the current regulator adjusts the current supplied to the heater based on the signal. Therefore, the temperature of the object to be heated can be automatically controlled based on the wavelength of the infrared light radiated from the object without being affected by the infrared rays from the heater.
【0009】[0009]
【実施例】次に、本発明の実施例を図面を参照しながら
説明する。図1は本発明の一実施例の全体的な構成を略
体的に示した配置図である。図1に示すように、ポ−タ
ブルヒ−タPHは、被加熱物Eに対向して配置され、被
加熱物Eを加熱する赤外線発生用のヒ−タAと、ヒ−タ
Aから発生された赤外線が被加熱物Eに反射した反射赤
外線α、及び被加熱物Eの温度に対応した波長の放射赤
外線βを検知して光電変換したあと、反射赤外線αに相
応する電気信号を遮断する遮断器を内蔵するか、あるい
は光学式干渉フィルタを前面に配置することにより上記
反射赤外線αを遮断することにより、放射赤外線βに相
応した電気信号のみを増幅して出力する非接触型温度セ
ンサBと、その非接触型温度センサBから出力された電
気信号の最大値が予め設定された加熱条件値以下であれ
ばヒ−タAの通電電流を増加させる信号を出力する一
方、加熱条件値以上であればヒ−タAの通電電流を減少
させる信号を出力するコントロ−ラCと、そのコントロ
−ラCからの前記信号に基づいてヒ−タAに対する電源
からの通電電流を調整する電流調整器Dとを備えたもの
である。Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a layout diagram schematically showing the overall configuration of an embodiment of the present invention. As shown in FIG. 1, the portable heater PH is disposed to face the object to be heated E, and is generated by the heater A for generating infrared rays for heating the object to be heated E and the heater A. After detecting the reflected infrared ray α reflected from the object to be heated E and the infrared ray β having a wavelength corresponding to the temperature of the object to be heated E, and photoelectrically converting the detected infrared ray β, cuts off an electric signal corresponding to the reflected infrared ray α. A non-contact type temperature sensor B that amplifies and outputs only an electric signal corresponding to the emitted infrared ray β by blocking the reflected infrared ray α by incorporating a device or by arranging an optical interference filter on the front side. If the maximum value of the electric signal output from the non-contact type temperature sensor B is equal to or less than a preset heating condition value, a signal for increasing the current supplied to the heater A is output, while if the maximum value is equal to or greater than the heating condition value. If so, reduce the current flowing through heater A That a current regulator to adjust the current supplied from the power source to the motor A D - and La C, the control - - controller for outputting a signal for small <br/> based on the signal from the La C arsenide It is.
【0010】図2の(A),(B)はヒ−タAと非接触
型温度センサBと被加熱物Eとの配置関係を示したもの
であり、(A)は平面図、(B)は正面図である。図2
の(A),(B)に示すように、ヒ−タAは棒状に形成
されており、ヒ−タAの軸線上に非接触型温度センサB
が配置されている。このようにヒ−タAと非接触型温度
センサBが同一軸線上に配置されれば、ヒ−タAと被加
熱物E間の距離x1,x2が変化しても非接触型温度セ
ンサBの検知ポイントは常にヒ−タAの軸線上になるた
め、計測誤差を最小に留めることができる。FIGS. 2A and 2B show the positional relationship between a heater A, a non-contact type temperature sensor B and an object to be heated E. FIG. 2A is a plan view and FIG. ) Is a front view. FIG.
(A) and (B), the heater A is formed in a rod shape, and the non-contact type temperature sensor B is disposed on the axis of the heater A.
Is arranged. If the heater A and the non-contact type temperature sensor B are arranged on the same axis as described above, even if the distances x1 and x2 between the heater A and the object to be heated E change, the non-contact type temperature sensor B Is always on the axis of the heater A, so that the measurement error can be minimized.
【0011】図3は、ヒ−タAから発生された赤外線が
被加熱物Eに反射した反射赤外線α及び被加熱物Eの温
度に対応した波長の放射赤外線βの波長領域をエネルギ
−密度とともに示した波長領域説明図である。図3に示
すようにヒ−タAから発生された赤外線は短波長である
ため、被加熱物Eに反射した反射赤外線αは、被加熱物
Eの温度に対応した波長の放射赤外線βより波長が短く
なっている。尚、図4は、上記反射赤外線α及び放射赤
外線βの受光状態を模式的に示したものである。FIG. 3 shows the wavelength range of the reflected infrared ray α in which the infrared ray generated from the heater A is reflected on the object to be heated E and the radiation infrared ray β having a wavelength corresponding to the temperature of the object to be heated E together with the energy density. FIG. 3 is an explanatory diagram of the wavelength region shown. As shown in FIG. 3, since the infrared ray generated from the heater A has a short wavelength, the reflected infrared ray α reflected by the object to be heated E has a wavelength longer than that of the radiated infrared ray β having a wavelength corresponding to the temperature of the object to be heated E. Has become shorter. FIG. 4 schematically shows a state of receiving the reflected infrared ray α and the emitted infrared ray β.
【0012】次に、本実施例の作用を説明する。図示し
ていない電源スイッチがオンされ、電源から電流調整器
Dを介してヒ−タAに電流が通電されると、ヒ−タAか
ら赤外線αが被加熱物Eに照射され、被加熱物Eが加熱
される。被加熱物Eが加熱され、温度が上昇するに従っ
て被加熱物Eから赤外線βが放射される。Next, the operation of this embodiment will be described. When a power switch (not shown) is turned on and a current is supplied from the power source to the heater A via the current regulator D, infrared rays α are emitted from the heater A to the object E to be heated. E is heated. The object to be heated E is heated, and infrared rays β are emitted from the object to be heated E as the temperature increases.
【0013】この状態で、図5のフロ−チャ−トに示す
ように、非接触型温度センサBで反射赤外線α及び被加
熱物Eの放射赤外線βが検知されると、非接触型温度セ
ンサBにおいて前記遮断器あるいは光学式干渉フィルタ
の作用により反射赤外線αが排除される。そして被加熱
物Eの放射赤外線βに相応した電気信号のみが増幅され
た状態で非接触型温度センサBからコントロ−ラCに増
幅電気信号が出力される。In this state, when the reflected infrared ray α and the radiated infrared ray β of the object to be heated E are detected by the non-contact type temperature sensor B, as shown in the flowchart of FIG. In B, the reflected infrared ray α is eliminated by the action of the circuit breaker or the optical interference filter. Then, the amplified electric signal is output from the non-contact type temperature sensor B to the controller C in a state where only the electric signal corresponding to the radiated infrared ray β of the object E is amplified.
【0014】コントロ−ラCは上記増幅電気信号を入力
すると、その信号最大値が図6に示すような予め入力設
定された加熱条件値以下か以上に相当するかを判断し、
加熱条件値以下であればヒ−タAの通電電流を増加させ
る信号を出力する一方、加熱条件値以上であればヒ−タ
Aの通電電流を減少させる信号を出力することにより電
流調整器Dからヒ−タAに電流を通電させ、被加熱物E
の温度を所望の温度状態に制御し、所定時間後にヒ−タ
Aに対する通電を終了させる。なお、前記コントロ−ラ
Cにおいて、入力した前記増幅電気信号を一定の波長幅
ごとにデジタル信号に分割すれば、そのデジタル信号の
うち任意の信号を選択して、前記加熱条件値と比較判断
することも可能である。When the controller C receives the amplified electric signal, the controller C determines whether the maximum value of the signal is equal to or less than a preset heating condition value as shown in FIG.
If less heating condition value heat - while outputting <br/> Ru signal increases the current supplied data A, if the heating condition value or more heat - to output a signal for reducing the current supplied data A A current is passed from the current regulator D to the heater A by the
Is controlled to a desired temperature state, and after a predetermined time, energization of heater A is terminated. In the controller C, if the input amplified electric signal is divided into digital signals for each predetermined wavelength width, an arbitrary signal is selected from the digital signals and is compared with the heating condition value. It is also possible.
【0015】以上のように、被加熱物Eの温度を常時正
確に計測し、正確なフィ−ドバック制御ができるため、 (1)ヒ−タAと被加熱物E間の距離、被加熱物Eの板
厚、被加熱物Eの色など温度がバラつく要因があっても
所望の温度に制御することができる。 (2)高出力のヒ−タAを用いてもオ−バ−ベイクする
ことなく、被加熱物Eを短時間で所望の温度にすること
ができる。 (3)被加熱物Eの至近距離にヒ−タAをセットしても
オ−バ−ベイクすることなく、被加熱物Eを短時間で所
望の温度にすることができるため、消費エネルギ−を小
さくすることができる。 (4)被加熱物Eを中間温度で保持するなどの段階的な
昇温制御が可能になる。 (5)コントロ−ラにマイクロコンピュ−タを使用すれ
ば、加熱パタ−ンを変えることが容易になるため、様々
な形態の昇温制御が可能になる。As described above, since the temperature of the object to be heated E can be always accurately measured and accurate feedback control can be performed, (1) the distance between the heater A and the object to be heated E, The temperature can be controlled to a desired value even if there are factors such as the thickness of the sheet E and the color of the object to be heated E which vary. (2) The object to be heated E can be brought to a desired temperature in a short time without overbaking even if a high-output heater A is used. (3) Even if the heater A is set at a short distance from the object to be heated E, the object to be heated E can be heated to a desired temperature in a short time without overbaking. Can be reduced. (4) Stepwise temperature rise control such as holding the object E at an intermediate temperature becomes possible. (5) If a microcomputer is used for the controller, it is easy to change the heating pattern, so that various forms of temperature rise control are possible.
【0016】[0016]
【発明の効果】以上のように本発明によれば、ヒ−タか
ら発生する赤外線出力波長と、計測する赤外線入力波長
とを区別し、被加熱物に反射するヒ−タからの赤外線波
長を計測せずに被加熱物の温度対応の波長のみを計測で
きるため、被加熱物の温度を正確に計測することができ
ることから、被加熱物の正確な自動温度制御ができると
いう効果がある。As described above, according to the present invention, the infrared output wavelength generated from the heater and the infrared input wavelength to be measured are distinguished, and the infrared wavelength from the heater reflected on the object to be heated is determined. Since only the wavelength corresponding to the temperature of the object to be heated can be measured without measurement, the temperature of the object to be heated can be accurately measured, and thus there is an effect that accurate automatic temperature control of the object to be heated can be performed.
【図1】本発明の一実施例の全体的な構成を示した系統
図である。FIG. 1 is a system diagram showing an overall configuration of an embodiment of the present invention.
【図2】ヒ−タAと非接触型温度センサBと被加熱物E
との配置関係を示した平面図及び正面図である。FIG. 2 shows a heater A, a non-contact type temperature sensor B, and a heated object E.
3A and 3B are a plan view and a front view showing an arrangement relationship with the first embodiment.
【図3】ヒ−タから発生された赤外線の反射赤外線α及
び被加熱物の放射赤外線βの波長領域をエネルギ−密度
とともに示した波長領域説明図である。FIG. 3 is a wavelength range explanatory diagram showing the wavelength ranges of the reflected infrared ray α of the infrared ray generated from the heater and the radiated infrared ray β of the object to be heated together with the energy density.
【図4】反射赤外線α及び放射赤外線βの受光状態模式
説明図である。FIG. 4 is a schematic explanatory diagram of a light receiving state of reflected infrared light α and emitted infrared light β.
【図5】ポ−タブルヒ−タの温度制御フロ−チャ−ト図
である。FIG. 5 is a temperature control flowchart of a portable heater.
【図6】加熱条件説明図である。FIG. 6 is an explanatory diagram of heating conditions.
PH ポ−タブルヒ−タ A ヒ−タ B 非接触型温度センサ C コントロ−ラ D 電流調整器 E 被加熱物 PH Portable heater A Heater B Non-contact temperature sensor C Controller D Current regulator E Heated object
Claims (2)
燥などをする際に使用するポ−タブルヒ−タであって、 被加熱物に対向して配置される赤外線照射式のヒ−タ
と、前記被加熱物から放射及び反射される赤外線を検知
し赤外線の波長に相応した電気信号を出力する非接触型
温度センサと、その非接触型温度センサが検知した赤外
線のうち短波長領域に相応する電気信号を遮断する遮断
器と、その遮断器を通過した電気信号を増幅する増幅器
と、その増幅器により増幅された電気信号の最大値が予
め設定された加熱条件値以下であれば前記ヒ−タの通電
電流を増加させる信号を出力する一方、加熱条件値以上
であれば前記ヒ−タの通電電流を減少させる信号を出力
するコントロ−ラと、そのコントロ−ラからの前記信号
に基づいて前記ヒ−タの通電電流を調整する電流調整器
とを備えたことを特徴とするポ−タブルヒ−タ。1. A portable heater used for partially heating an object to be heated and for drying a coating film, etc., wherein the infrared irradiation type heat source is arranged to face the object to be heated. A non-contact temperature sensor that detects infrared rays radiated and reflected from the object to be heated and outputs an electric signal corresponding to the wavelength of the infrared ray; and a short wavelength infrared ray detected by the non-contact type temperature sensor. A circuit breaker that blocks an electric signal corresponding to the region, an amplifier that amplifies the electric signal that has passed through the circuit breaker, and if the maximum value of the electric signal amplified by the amplifier is equal to or less than a preset heating condition value. the heat - while outputting a signal for increasing the energization current of motor, the heat if the heat condition value or - outputs a signal for reducing the energization current of motor controller - la and its control - the signal from La Based on Po is characterized in that a current regulator for regulating the electric current - Taburuhi - data.
び反射される赤外線のうち波長の長い領域の赤外線のみ
通過させる光学的干渉フィルタを非接触型温度センサの
前面に取り付けたことを特徴とする請求項1のポ−タブ
ルヒ−タ。2. A non-contact type temperature sensor is provided in front of a non-contact type temperature sensor instead of a circuit breaker, wherein an optical interference filter for passing only infrared rays having a long wavelength region among infrared rays emitted and reflected from an object to be heated is passed. The portable heater according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4354529A JP2755086B2 (en) | 1992-12-15 | 1992-12-15 | Portable heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4354529A JP2755086B2 (en) | 1992-12-15 | 1992-12-15 | Portable heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06178964A JPH06178964A (en) | 1994-06-28 |
JP2755086B2 true JP2755086B2 (en) | 1998-05-20 |
Family
ID=18438169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4354529A Expired - Fee Related JP2755086B2 (en) | 1992-12-15 | 1992-12-15 | Portable heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2755086B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2563851Y2 (en) * | 1993-06-11 | 1998-02-25 | 日産アルティア株式会社 | Drying equipment |
JP4862647B2 (en) * | 2006-12-21 | 2012-01-25 | 澁谷工業株式会社 | A method for adjusting a dry sterilizer and a temperature measuring means provided in the dry sterilizer. |
JP4941373B2 (en) * | 2008-03-24 | 2012-05-30 | パナソニック株式会社 | Solvent drying apparatus and method |
KR101434720B1 (en) * | 2008-12-16 | 2014-08-26 | 사반치 유니버시티 | A 3d scanner |
JP2012186398A (en) * | 2011-03-08 | 2012-09-27 | Nippon Avionics Co Ltd | Joining device |
EP3657903B1 (en) | 2017-08-24 | 2022-01-12 | Mitsubishi Heavy Industries, Ltd. | Infrared heating device |
-
1992
- 1992-12-15 JP JP4354529A patent/JP2755086B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06178964A (en) | 1994-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960013995B1 (en) | Method for measuring surface temperature of semiconductor wafer substrate and heat-treating apparatus | |
US5041714A (en) | Workpiece processing arrangement | |
US4984902A (en) | Apparatus and method for compensating for errors in temperature measurement of semiconductor wafers during rapid thermal processing | |
US4969748A (en) | Apparatus and method for compensating for errors in temperature measurement of semiconductor wafers during rapid thermal processing | |
US4825035A (en) | Control apparatus for energy beam hardening | |
EP2343952B1 (en) | Induction heating cooker | |
KR900002393B1 (en) | Cooker | |
JPH0954619A (en) | Temperature control method | |
JP2755086B2 (en) | Portable heater | |
US4470710A (en) | I. R. Radiation pyrometer | |
US6023053A (en) | Laser output measuring apparatus | |
US4634840A (en) | Method of heating thermoplastic resin sheet or film | |
JP3911071B2 (en) | High speed lamp heat treatment apparatus and high speed lamp heat treatment method | |
KR20000013456U (en) | Automatic Calibration Device of Radiation Thermometer Used in Steel Mill | |
JP3757809B2 (en) | air conditioner | |
JPH033397B2 (en) | ||
US3552645A (en) | Control system for web heat treating apparatus | |
JPH03278524A (en) | Heating apparatus of semiconductor device | |
JPH058062A (en) | Laser beam machine | |
JP2001092501A (en) | Automatic control method | |
JP2000218151A (en) | Vacuum equipment | |
JP2728497B2 (en) | Trimming device for thermal head | |
TW202202262A (en) | Laser soldering device and laser soldering method | |
JPH0634272A (en) | Far infrared heater | |
JPS62266385A (en) | Temperature controller for lamp annealing furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |