JP2753011B2 - High breakdown voltage planar semiconductor device and method of manufacturing the same - Google Patents
High breakdown voltage planar semiconductor device and method of manufacturing the sameInfo
- Publication number
- JP2753011B2 JP2753011B2 JP1006211A JP621189A JP2753011B2 JP 2753011 B2 JP2753011 B2 JP 2753011B2 JP 1006211 A JP1006211 A JP 1006211A JP 621189 A JP621189 A JP 621189A JP 2753011 B2 JP2753011 B2 JP 2753011B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- breakdown voltage
- type
- impurity
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000015556 catabolic process Effects 0.000 title claims description 26
- 239000004065 semiconductor Substances 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000012535 impurity Substances 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 7
- 238000009792 diffusion process Methods 0.000 description 24
- 230000005684 electric field Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/411—PN diodes having planar bodies
Landscapes
- Thyristors (AREA)
Description
【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、pn接合構造を有する高耐圧プレーナ型半導
体素子とその製造方法に関する。The present invention relates to a high breakdown voltage planar semiconductor device having a pn junction structure and a method for manufacturing the same.
(従来の技術) 高耐圧プレーナ型pn接合ダイオードとして従来、第7
図に示す構造が知られている。これは、n-型層21の表面
に選択的に拡散形成されたp+型層22、このp+型層にコン
タクトするアノード電極23、およびn-型層21の裏面に低
抵抗のn+型層24を介して配設されたカソード電極25を基
本構造とする。この様なダイオードのp+型層22の周囲
に、これと連続するように第1の低不純物濃度層として
p-型層26が拡散形成され、更にその周囲にこれと連続す
るように第2の低不純物濃度層としてp--型層27が拡散
形成されている。p--型層27から更に所定距離離れた位
置にはn-型層21の表面電位を固定するためのn+型層29と
これにコンタクトする電極30が形成されている。p-型層
26およびp--型層27によってp+型層22のエッジ部に集中
する電界が緩和され、高い逆耐圧が得られる。(Prior art) Conventionally, as a high breakdown voltage planar type pn junction diode,
The structure shown in the figure is known. This, n - -type layer 21 p + -type layer 22 which is selectively formed by diffusion on the surface of the anode electrode 23, and the n contact to the p + -type layer - the low-resistance on the back surface of the mold layer 21 n + The cathode electrode 25 disposed via the mold layer 24 has a basic structure. Around the p + type layer 22 of such a diode, as a first low impurity concentration layer so as to be continuous therewith,
A p − -type layer 26 is formed by diffusion, and a p − -type layer 27 is formed as a second low-impurity-concentration layer around the diffusion so as to be continuous therewith. An n + -type layer 29 for fixing the surface potential of the n − -type layer 21 and an electrode 30 contacting the n − -type layer 21 are formed at a position further away from the p − -type layer 27 by a predetermined distance. p - type layer
The electric field concentrated on the edge of the p + -type layer 22 is reduced by the 26 and p − -type layers 27, and a high reverse breakdown voltage is obtained.
この第7図の構造は高い耐圧が得られるものの、高耐
圧化のためのプロセスとして、第1のマスクを用いて低
不純物濃度のp-型層26を形成し、更に第2のマスクを用
いてより低不純物濃度のp--型層27を形成する、という
2枚のマスク工程を必要とする。従って製造工程が複雑
であるという問題があった。Although the structure shown in FIG. 7 can obtain a high withstand voltage, as a process for achieving a high withstand voltage, a p - type layer 26 having a low impurity concentration is formed using a first mask, and further a second mask is used. Therefore, two mask steps of forming the p − -type layer 27 having a lower impurity concentration are required. Therefore, there is a problem that the manufacturing process is complicated.
同様の問題は、同様のpn接合ダイオード構造を含む他
の素子、例えばMOSトランジスタ,導電変調型MOSトラン
ジスタ,サイリスタ等にもある。A similar problem also exists in other devices including a similar pn junction diode structure, for example, a MOS transistor, a conductive modulation type MOS transistor, a thyristor, and the like.
(発明が解決しようとする課題) 以上のように従来の高耐圧プレーナ型半導体素子で
は、高耐圧化のために不純物濃度の異なる複数の低不純
物濃度層を形成するための複数のマスク工程を必要とす
るという問題があった。(Problems to be Solved by the Invention) As described above, in the conventional high breakdown voltage planar type semiconductor element, a plurality of mask processes for forming a plurality of low impurity concentration layers having different impurity concentrations are required to increase the breakdown voltage. There was a problem that.
本発明は上記の点に鑑みなされたもので、簡単な工程
で従来と同程度の耐圧を得ることを可能とした高耐圧プ
レーナ型半導体素子とその製造方法を提供することを目
的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a high breakdown voltage planar type semiconductor element capable of obtaining a breakdown voltage of the same level as a conventional semiconductor device through a simple process, and a method of manufacturing the same.
[発明の構成] (課題を解決するための手段) 本発明は、第1導電型の高抵抗半導体層表面に選択的
に第2導電型の高不純物濃度層が形成されたpn接合構造
を有する高耐圧プレーナ型半導体素子において、前記高
不純物濃度層の周囲にこれと連続するように拡散形成さ
れた第2導電型の第1の低不純物濃度層を有し、前記第
1の低不純物濃度層の周囲にこれと連続するように、か
つ同じ不純物濃度をもって相互に一部重なるように拡散
形成された前記第1の低不純物拡散層と同じ深さの複数
の第2の低不純物濃度層を有することを特徴とする。[Structure of the Invention] (Means for Solving the Problems) The present invention has a pn junction structure in which a second conductive type high impurity concentration layer is selectively formed on the surface of a first conductive type high resistance semiconductor layer. A high withstand voltage planar type semiconductor device, comprising a first low impurity concentration layer of a second conductivity type formed by diffusion around the high impurity concentration layer so as to be continuous with the high impurity concentration layer; And a plurality of second low impurity concentration layers having the same depth as the first low impurity diffusion layers formed so as to be continuous with and overlap with each other at the same impurity concentration. It is characterized by the following.
本発明はまたこの様な半導体素子を製造するに際し、
第1の低不純物濃度層と複数の第2の低不純物濃度層と
を、幅の異なる開口を持つ一つのマスクを用いた一回の
不純物導入工程により形成することを特徴とする。The invention also relates to the manufacture of such a semiconductor device,
The first low-impurity-concentration layer and the plurality of second low-impurity-concentration layers are formed by a single impurity introduction step using one mask having openings having different widths.
(作用) 本発明によれば、多重に拡散形成された第2の低不純
物濃度層が、個々には第1の低不純物濃度層と同じ不純
物濃度でありながら、全体として見た時に単位面積当り
の不純物濃度は第1の低不純物濃度層のそれより低いも
のとなる。従って、従来のように不純物濃度の異なる第
1,第2の低不純物濃度層をpn接合部周囲に連続的に形成
した場合と等価になり、高い逆耐圧が得られる。しかも
本発明によれば、第1,第2の低不純物濃度層を一枚のマ
スクを用いた一回の不純物導入工程により形成すること
ができ、製造工程が簡単になる。(Function) According to the present invention, the second low impurity concentration layers formed by multiple diffusion have the same impurity concentration as the first low impurity concentration layers, but have the same per unit area when viewed as a whole. Is lower than that of the first low impurity concentration layer. Therefore, unlike the conventional case, the impurity concentration is different.
1. This is equivalent to the case where the second low impurity concentration layer is continuously formed around the pn junction, and a high reverse breakdown voltage can be obtained. Moreover, according to the present invention, the first and second low impurity concentration layers can be formed by one impurity introduction step using one mask, and the manufacturing process is simplified.
(実施例) 以下、本発明の実施例を説明する。(Example) Hereinafter, an example of the present invention will be described.
第1図は、一実施例のp+n接合ダイオードの要部構造
を示す。n-型シリコン層1の表面にアノードとなる高不
純物濃度のp+型層2が選択的に形成されている。p+型層
2の拡散深さは約10μmである。p+型層2の周囲にはこ
れと連続して第1の低不純物濃度層としてp-型層6が形
成され、このp-型層6の周囲には更にこれと連続して第
2の低不純物濃度層として4重のp-型層7(71〜74)が
形成されている。これらp-型層6および7は、一枚のマ
スクを用いた一回の不純物拡散により形成されたもので
ある。複数のp-型層7の相互間は、不純物の横方向拡散
により一部重なる状態となっている。FIG. 1 shows a main structure of a p + n junction diode according to one embodiment. A high impurity concentration p + type layer 2 serving as an anode is selectively formed on the surface of the n − type silicon layer 1. The diffusion depth of the p + type layer 2 is about 10 μm. p + -type layer 2 of p as the first low-impurity concentration layer continuously with this around - -type layer 6 is formed, the p - -type layer 6 and the second further continuous with this around the fourfold as low impurity concentration layer p - type layer 7 (7 1 to 7 4) is formed. These p − -type layers 6 and 7 are formed by one-time impurity diffusion using one mask. The p - type layers 7 partially overlap each other due to the lateral diffusion of impurities.
p+型層2およびp-型層6,7が形成されたウェハ表面は
酸化膜8で覆われ、これにコンタクト孔が開けられてp+
型層2にコンタクトするアノード電極3が形成されてい
る。p-型層7から更に所定距離離れたウェハ表面には、
その表面電位を固定するためにn+型層9とこれにコンタ
クトする電極10が形成されている。n-型シリコン層1の
裏面には、n+型層4を介してカソード電極5が形成され
ている。p + -type layer 2 and the p - wafer surface -type layer 6 is formed is covered with an oxide film 8, to which are opened the contact hole p +
An anode electrode 3 that contacts the mold layer 2 is formed. On the wafer surface further away from the p - type layer 7 by a predetermined distance,
In order to fix the surface potential, an n + -type layer 9 and an electrode 10 in contact therewith are formed. On the back surface of the n − type silicon layer 1, a cathode electrode 5 is formed via an n + type layer 4.
第2図は、第1図における4重のp-型層7の隣接する
もの同士が一部重なる状態を拡大して示している。図の
Wはp-型層7を形成する際のマスク幅である。幅Wの距
離をおいて形成されたマスク開口からp型不純物が導入
され、その後の熱拡散工程で横方向の不純物拡散により
その幅Wの範囲内で相互に拡散層が一部重なる状態が得
られる。場合によっては、拡散層の重なる範囲がマスク
幅Wより大きくなることもある。FIG. 2 is an enlarged view showing a state where adjacent ones of the four p - type layers 7 in FIG. 1 partially overlap each other. W in the figure is the mask width when forming the p − -type layer 7. A p-type impurity is introduced from a mask opening formed at a distance of width W, and diffusion layers in a lateral direction are diffused in a subsequent thermal diffusion step so that diffusion layers partially overlap each other within the range of width W. Can be In some cases, the overlapping range of the diffusion layers may be larger than the mask width W.
第3図は、この実施例によるダイオードのp-型層6お
よび7の部分の形成工程を示す。第3図(a)に示すよ
うにp+型層2が形成されたウェハ表面に酸化膜マスク11
を形成する。酸化膜マスク11の開口12は、第1の低不純
物濃度層であるp-型層6を得るためのものであり、その
外側に設けられた複数の開口13は第2の低不純物濃度層
であるp-型層7を得るためのものである。このようにパ
ターン形成された酸化膜マスク11を用いてp型不純物イ
オン注入する。その後熱拡散を行うことにより、第3図
(b)に示すように互いに一部重なるp-型層6および7
を得る。なお、p+型層2のイオン注入後の拡散をp-型層
6および7の拡散と同時に行うこともできる。酸化膜マ
スク11の開口12および13により挟まれた領域のマスク幅
の熱拡散による拡散深さがほぼ同程度となるように条件
を設定することにより、多重に拡散形成されたp-型層7
の領域は全体として単位面積当りの不純物濃度がp-型層
6より低く、しかも拡散層としては連続した状態とな
る。FIG. 3 shows the steps of forming the p - type layers 6 and 7 of the diode according to this embodiment. As shown in FIG. 3A, an oxide film mask 11 is formed on the wafer surface on which the p + -type layer 2 is formed.
To form The openings 12 in the oxide film mask 11 are for obtaining the p − -type layer 6 which is the first low impurity concentration layer, and the plurality of openings 13 provided outside thereof are for the second low impurity concentration layer. This is for obtaining a certain p - type layer 7. Using the oxide film mask 11 thus patterned, p-type impurity ions are implanted. Thereafter, by performing thermal diffusion, the p − -type layers 6 and 7 partially overlapping each other as shown in FIG.
Get. The diffusion of the p + -type layer 2 after the ion implantation can be performed simultaneously with the diffusion of the p -- type layers 6 and 7. By setting conditions such that the diffusion width of the mask width in the region sandwiched by the openings 12 and 13 of the oxide film mask 11 by thermal diffusion is substantially the same, the p - type layer 7 formed by multiple diffusion is formed.
The region as a whole has an impurity concentration per unit area lower than that of the p - type layer 6, and is in a continuous state as a diffusion layer.
第4図は、この実施例によるp+n接合ダイオードにつ
いて、p-型層6および7の表面から見た単位面積当りの
不純物総量と耐圧の関係を数値解析により求めた結果で
ある。このデータは、p-型6および複数のp-型層7の相
互間を分離するマスク幅を5μmに設定した場合のもの
である。不純物総量が1.87×1012/cm2以上になると耐圧
は急激に低下する。この不純物総量はn+型層2のそれと
等しくなる点であり、これ以上では、p+型層2に対して
低不純物濃度層を設けて電界集中を緩和するという効果
がなくなるのである。p-型層6および7の不純物総量が
1.87×1012/cm2の点では、p+型層2とn-型層1間の接合
のうちエッジ部を除く平坦接合部の耐圧に対して約85%
の耐圧が得られている。FIG. 4 shows the result of numerical analysis of the relationship between the total amount of impurities per unit area and the breakdown voltage of the p + n junction diode according to this embodiment as viewed from the surfaces of the p − -type layers 6 and 7. This data is obtained when the mask width for separating the p − type 6 and the plurality of p − type layers 7 is set to 5 μm. When the total amount of impurities is 1.87 × 10 12 / cm 2 or more, the breakdown voltage sharply decreases. This total impurity amount is equal to that of the n + -type layer 2. Above this point, the effect of reducing the electric field concentration by providing a low impurity concentration layer for the p + -type layer 2 is lost. The total amount of impurities in p - type layers 6 and 7 is
At the point of 1.87 × 10 12 / cm 2 , about 85% of the breakdown voltage of the flat junction except the edge of the junction between the p + type layer 2 and the n − type layer 1
Withstand pressure is obtained.
第5図は、この実施例のダイオードの、p-型層6およ
び7相互間を分離するマスク幅と耐圧の関係をやはり数
値解析により求めた結果である。マスク幅/拡散深さが
1より僅かに小さい点(0.8〜1.0の点)に耐圧のピーク
が認められる。マスク幅がこれより小さいと、多重に形
成したp-型層7の重なりが大きくなり過ぎてその単位面
積当りの不純物濃度がp-型層6のそれと変わらなくな
り、不純物濃度が順次低くなる低不純物濃度層を高不純
物濃度層範囲に形成することによる効果がなくなるた
め、急激に耐圧は低くなる。マスク幅/拡散深さが0.92
の点で平坦接合部の耐圧に対して約85%の耐圧が得られ
る。マスク幅/拡散深さが約1.6以上になると、多重に
形成したp-型層7は相互の重なりがなくなって分離され
てしまう。例えば、マスク幅/拡散深さが1.9の場合、
耐圧は平坦接合部の約72%まで下がる。FIG. 5 shows the results of the relationship between the mask width separating the p − -type layers 6 and 7 from the breakdown voltage and the breakdown voltage of the diode of this embodiment also obtained by numerical analysis. A peak in the breakdown voltage is observed at a point where the mask width / diffusion depth is slightly smaller than 1 (point of 0.8 to 1.0). If the mask width is smaller than this, the overlap of the p - type layers 7 formed in a multiplex manner becomes too large and the impurity concentration per unit area does not change from that of the p - type layer 6, and the impurity concentration decreases gradually. Since the effect of forming the concentration layer in the high impurity concentration layer range is lost, the withstand voltage rapidly decreases. 0.92 mask width / diffusion depth
In this respect, a withstand voltage of about 85% with respect to the withstand voltage of the flat junction is obtained. When the mask width / diffusion depth is about 1.6 or more, the p - type layers 7 formed in a multiplexed manner are separated from each other without overlapping each other. For example, if the mask width / diffusion depth is 1.9,
The breakdown voltage drops to about 72% of the flat joint.
第6図は、本発明の他の実施例のp+n接合ダイオード
の要部構造を示す。第1図と対応する部分には第1図と
同一符号を付して詳細な説明は省略する。第1図の実施
例と異なる点は、p+型層2からp-型層6および7、更に
その外側のn-型層1にまたがって、ウェハ表面の酸化膜
8上に半絶縁性多結晶シリコン等からなる高抵抗膜14を
配設していることである。高抵抗膜14の一端はアノード
電極3に接続され、他端は電極10に接続されている。p-
型層6および7は先の実施例と同様、一枚のマスクを用
いた一回の不純物導入工程により形成される。FIG. 6 shows a main structure of a p + n junction diode according to another embodiment of the present invention. Parts corresponding to those in FIG. 1 are denoted by the same reference numerals as in FIG. 1, and detailed description is omitted. The difference from the embodiment of FIG. 1 is that the semi-insulating layer is formed on the oxide film 8 on the wafer surface, extending from the p + -type layer 2 to the p − -type layers 6 and 7 and the outer n − -type layer 1. That is, the high resistance film 14 made of crystalline silicon or the like is provided. One end of the high resistance film 14 is connected to the anode electrode 3, and the other end is connected to the electrode 10. p -
The mold layers 6 and 7 are formed by a single impurity introduction step using a single mask, as in the previous embodiment.
この実施例によれば、pn接合に逆バイアスを印加した
時、高抵抗膜14内に一様な電位勾配が形成され、これに
より電界の局部的な集中が防止される結果、先の実施例
に比べてより高い逆耐圧が得られる。According to this embodiment, when a reverse bias is applied to the pn junction, a uniform potential gradient is formed in the high resistance film 14, thereby preventing local concentration of the electric field. Higher reverse breakdown voltage can be obtained.
以上の実施例では、第2の低不純物濃度層であるp-型
層7を4重に形成したが、これは2重あるいは3重でも
よく、また5重以上としてもよい。また実施例ではp+n
接合ダイオードを説明したが、本発明は同様のダイオー
ド構造を含むMOSトランジスタやサイリスタ、導電変調
型MOSトランジスタ等の各種高耐圧プレーナ型半導体素
子に適用することができる。In the above embodiment, the p - type layer 7 as the second low-impurity-concentration layer is formed in four layers. However, the number of layers may be two or three, or five or more. In the embodiment, p + n
Although the junction diode has been described, the present invention can be applied to various high breakdown voltage planar semiconductor devices such as MOS transistors, thyristors, and conduction modulation type MOS transistors having the same diode structure.
[発明の効果] 以上述べたように本発明によれば、電界集中を緩和す
るための複数の低不純物濃度層を形成する不純物導入工
程を一枚のマスクで行なってしかも、従来と同程度の逆
耐圧を得ることのできる高耐圧プレーナ型半導体素子を
得ることができる。[Effects of the Invention] As described above, according to the present invention, the impurity introduction step of forming a plurality of low impurity concentration layers for alleviating the electric field concentration can be performed with one mask, and at the same time as the conventional one. It is possible to obtain a high breakdown voltage planar type semiconductor element capable of obtaining a reverse breakdown voltage.
第1図は本発明の一実施例p+n接合ダイオードの要部構
造を示す図、第2図はそのp-型層7の重なりの様子を拡
大して示す図、第3図(a)(b)は同じくp-型層6お
よび7の形成工程を説明するための図、第4図は上記実
施例の構造においてp-型層6および7の不純物総量と耐
圧の関係を数値解析により求めた結果を示す図、第5図
は同じくp-型層7を分離するマスク幅と耐圧の関係を数
値解析により求めた結果を示す図、第6図は本発明の他
の実施例のp+n接合ダイオードの要部構造を示す図、第
7図は従来の高耐圧p+n接合ダイオードの構造を示す図
である。 1……n-型シリコン層、2……p+型層、3……アノード
電極、4……n+型層、5……カソード電極、6……p-型
層(第1の低不純物濃度層)、7(71〜74)……p-型層
(第2の低不純物濃度層)、8……酸化膜、9……n+型
層、10……電極、11……酸化膜マスク、12,13……開
口、14……高抵抗膜。FIG. 1 is a view showing the structure of a principal part of a p + n junction diode according to an embodiment of the present invention, FIG. 2 is an enlarged view showing an overlapping state of the p − type layer 7, and FIG. FIG. 4B is a view for explaining the steps of forming the p − -type layers 6 and 7, and FIG. 4 is a numerical analysis of the relationship between the total amount of impurities in the p − -type layers 6 and 7 and the breakdown voltage in the structure of the above embodiment. FIG. 5 is a view showing the obtained results, FIG. 5 is a view showing the results obtained by numerical analysis of the relationship between the mask width separating the p − -type layer 7 and the breakdown voltage, and FIG. 6 is a view showing p of another embodiment of the present invention. FIG. 7 is a diagram showing a main structure of a + n junction diode, and FIG. 7 is a diagram showing a structure of a conventional high voltage p + n junction diode. 1 ...... n - -type silicon layer, 2 ...... p + -type layer, 3 ...... anode electrode, 4 ...... n + -type layer, 5 ...... cathode electrode, 6 ...... p - -type layer (a first low impurity concentration layer), 7 (7 1 ~7 4 ) ...... p - -type layer (a second low impurity concentration layer), 8 ...... oxide film, 9 ...... n + -type layer, 10 ...... electrodes, 11 ...... Oxide film mask, 12, 13 ... Opening, 14 ... High resistance film.
Claims (3)
に第2導電型の高不純物濃度層が形成されたpn接合構造
を有する高耐圧プレーナ型半導体素子において、 前記高不純物濃度層の周囲にこれと連続するように拡散
形成された第2導電型の第1の低不純物濃度層を有し、 前記第1の低不純物濃度層の周囲にこれと連続するよう
に、かつ前記第1の低不純物濃度層と同じ不純物濃度を
もって相互に一部重なり、各々の最大の深さがほぼ同程
度となるように形成された複数の第2の低不純物濃度層
を有する、 ことを特徴とする高耐圧プレーナ型半導体素子。1. A high breakdown voltage planar type semiconductor device having a pn junction structure in which a second conductive type high impurity concentration layer is selectively formed on a surface of a first conductive type high resistance semiconductor layer. A first low-impurity-concentration layer of the second conductivity type diffused and formed so as to be continuous therewith, around the first low-impurity-concentration layer so as to be continuous therewith, and A plurality of second low-impurity-concentration layers formed so as to partially overlap each other with the same impurity concentration as that of the first low-impurity-concentration layer and to have substantially the same maximum depth. High breakdown voltage planar semiconductor device.
位面積当りの不純物総量が1.87×1012/cm2未満に設定さ
れていることを特徴とする請求項1記載の高耐圧プレー
ナ型半導体素子。2. The high breakdown voltage planar according to claim 1, wherein the total amount of impurities per unit area of said first and second low impurity concentration layers is set to less than 1.87 × 10 12 / cm 2. Type semiconductor element.
ーナ型半導体素子を製造するに際し、前記第1の低不純
物濃度層および第2の低不純物濃度層を、幅の異なる開
口を持つ一つのマスクを用いた一回の不純物導入工程に
より形成することを特徴とする高耐圧プレーナ型半導体
素子の製造方法。3. The method according to claim 1, wherein the first low impurity concentration layer and the second low impurity concentration layer have openings having different widths. A method for manufacturing a high breakdown voltage planar type semiconductor element, wherein the method is formed by a single impurity introduction step using one mask.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1006211A JP2753011B2 (en) | 1989-01-13 | 1989-01-13 | High breakdown voltage planar semiconductor device and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1006211A JP2753011B2 (en) | 1989-01-13 | 1989-01-13 | High breakdown voltage planar semiconductor device and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02186675A JPH02186675A (en) | 1990-07-20 |
JP2753011B2 true JP2753011B2 (en) | 1998-05-18 |
Family
ID=11632193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1006211A Expired - Fee Related JP2753011B2 (en) | 1989-01-13 | 1989-01-13 | High breakdown voltage planar semiconductor device and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2753011B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6110763A (en) * | 1997-05-22 | 2000-08-29 | Intersil Corporation | One mask, power semiconductor device fabrication process |
US5932894A (en) * | 1997-06-26 | 1999-08-03 | Abb Research Ltd. | SiC semiconductor device comprising a pn junction |
JP3708057B2 (en) | 2001-07-17 | 2005-10-19 | 株式会社東芝 | High voltage semiconductor device |
JP3931138B2 (en) * | 2002-12-25 | 2007-06-13 | 三菱電機株式会社 | Power semiconductor device and method for manufacturing power semiconductor device |
JP2007134421A (en) * | 2005-11-09 | 2007-05-31 | Sansha Electric Mfg Co Ltd | Vertical semiconductor device such as power mosfet and igbt, and its manufacturing method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01270346A (en) * | 1988-04-22 | 1989-10-27 | Fuji Electric Co Ltd | semiconductor equipment |
-
1989
- 1989-01-13 JP JP1006211A patent/JP2753011B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02186675A (en) | 1990-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0091686B1 (en) | Semiconductor device having a diffused region of reduced length and method of fabricating the same | |
US4707720A (en) | Semiconductor memory device | |
EP0451286B1 (en) | Integrated circuit device | |
JP2753011B2 (en) | High breakdown voltage planar semiconductor device and method of manufacturing the same | |
JP2001060685A (en) | High voltage transistor | |
US5508545A (en) | Semiconductor device including a pair of transistors having a common channel region, and method of making the same | |
US5304838A (en) | Vertical resistive element for integrated circuit miniaturization | |
US5246877A (en) | Method of manufacturing a semiconductor device having a polycrystalline electrode region | |
US6040219A (en) | Method of fabricating power semiconductor device using semi-insulating polycrystalline silicon (SIPOS) film | |
JP3738127B2 (en) | High voltage semiconductor device | |
JP3307481B2 (en) | Semiconductor device | |
JP2000299457A (en) | Semiconductor device and manufacturing method thereof | |
JPH0371673A (en) | Vertical mosfet | |
JPS6394667A (en) | semiconductor integrated circuit | |
JPH0282534A (en) | Vertical MOSFET and its manufacturing method | |
JPH11135783A (en) | MOS transistor and method of manufacturing the same | |
JPH0464458B2 (en) | ||
EP0557705A2 (en) | Fabrication of lateral bipolar transistor | |
JP2692292B2 (en) | Vertical bipolar transistor for integrated circuit devices | |
JP2686125B2 (en) | Static induction type switching element and method of manufacturing the same | |
JPS63142867A (en) | Mis transistor and manufacture thereof | |
JP2002246595A (en) | Transistor | |
JPS61129868A (en) | semiconductor equipment | |
JPH11162993A (en) | Semiconductor device and its manufacture | |
JPH04127570A (en) | Insulated gate field effect transistor and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |