JP2751648B2 - Gas laser device - Google Patents
Gas laser deviceInfo
- Publication number
- JP2751648B2 JP2751648B2 JP3062851A JP6285191A JP2751648B2 JP 2751648 B2 JP2751648 B2 JP 2751648B2 JP 3062851 A JP3062851 A JP 3062851A JP 6285191 A JP6285191 A JP 6285191A JP 2751648 B2 JP2751648 B2 JP 2751648B2
- Authority
- JP
- Japan
- Prior art keywords
- aperture
- laser
- mirror
- output
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011358 absorbing material Substances 0.000 claims description 4
- 239000006096 absorbing agent Substances 0.000 description 3
- 239000003566 sealing material Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
Landscapes
- Lasers (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、炭酸ガスレーザ等の気
体レーザ装置において、特に加工品質の向上を図るとと
もに加工装置の小型化を図った気体レーザ装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas laser device such as a carbon dioxide gas laser, and more particularly to a gas laser device for improving the processing quality and reducing the size of the processing device.
【0002】[0002]
【従来の技術】従来の気体レーザ装置の構成例を断面図
として図3に示す。図3において、1はレーザ共振器、
2は出力鏡、3は全反射鏡、4a〜4hは放電電極、5
a〜5dはレーザ共振器1の気体レーザ媒質内の放電
部、6は送風機、7は冷却器、8a〜8dは給気ダク
ト、9a,9bは排気ダクトである。また、10は高電
圧電源、11は出力鏡2のレーザ共振器1内の鏡面に接
して設けられたアパーチャ、12は全反射鏡3のレーザ
共振器1内の鏡面に接して設けられたアパーチャであ
り、13はレーザ共振器1内におけるレーザ光の形状を
示す。2. Description of the Related Art FIG. 3 is a sectional view showing a configuration example of a conventional gas laser device. In FIG. 3, 1 is a laser resonator,
2 is an output mirror, 3 is a total reflection mirror, 4a to 4h are discharge electrodes, 5
Reference numerals a to 5d denote discharge units in the gas laser medium of the laser resonator 1, 6 denotes a blower, 7 denotes a cooler, 8a to 8d denote air supply ducts, and 9a and 9b denote exhaust ducts. Reference numeral 10 denotes a high-voltage power supply, 11 denotes an aperture provided in contact with a mirror surface of the output mirror 2 in the laser resonator 1, and 12 denotes an aperture provided in contact with the mirror surface of the total reflection mirror 3 in the laser resonator 1. Reference numeral 13 denotes the shape of the laser light in the laser resonator 1.
【0003】次に上記従来例の動作について説明する。
気体レーザ媒質は、出力鏡2と全反射鏡3を取付けたレ
ーザ共振器1に送風機6により4本の給気ダクト8a〜
8dを通して供給され、高電圧電源10が発生する高電
圧を印加した放電電極4a〜4hによる放電により励起
されてレーザ光を出力する。放電電極4a〜4hは2個
ずつ一対となって高電圧が印加されて放電しており、レ
ーザ共振器1内に4つの放電部5a〜5dを形成してい
る。各放電部には4本の給気ダクト8a〜8dより気体
レーザ媒質が供給され、放電部5a,5bを出た気体レ
ーザ媒質は排気ダクト9aより、また放電部5c,5d
を出た気体レーザ媒質は排気ダクト9bよりそれぞれ排
気される。出力するレーザ光の大きさは放電部5a〜5
dの断面寸法かまたは出力鏡2の寸法によるが、出力鏡
アパーチャ11または全反射鏡アパーチャ12によって
断面が円形や矩形などの必要な形状に整形される。Next, the operation of the above conventional example will be described.
The gas laser medium is supplied to the laser resonator 1 on which the output mirror 2 and the total reflection mirror 3 are mounted by the blower 6 to supply four air supply ducts 8 a to 8.
The laser beam is excited by the discharges of the discharge electrodes 4a to 4h to which the high voltage generated by the high voltage power supply 10 is applied. The discharge electrodes 4 a to 4 h are paired with each other and discharge when a high voltage is applied, and four discharge portions 5 a to 5 d are formed in the laser resonator 1. The gas laser medium is supplied to each discharge unit from four supply ducts 8a to 8d, and the gas laser medium exiting the discharge units 5a and 5b is supplied from the exhaust duct 9a and the discharge units 5c and 5d.
The gas laser medium that has exited is exhausted from the exhaust duct 9b. The size of the laser light to be output depends on the discharge units 5a to 5a.
Depending on the cross-sectional dimension of d or the size of the output mirror 2, the cross section is shaped into a required shape such as a circle or a rectangle by the output mirror aperture 11 or the total reflection mirror aperture 12.
【0004】[0004]
【発明が解決しようとする課題】一般に、この種の気体
レーザ装置では、アパーチャ11,12の寸法を放電部
5a〜5dおよび出力鏡2の寸法よりも小さくすること
により出力するレーザ光の強度分布をガウス分布の形状
としていた。上記従来例のレーザ共振器1内の各位置に
おけるレーザ強度分布を図4に示す。図4(A)はアパ
ーチャ12を通過した直後電極4h付近の強度分布、図
4(B)は電極4g付近の強度分布、図4(C)は電極
4f付近の強度分布、図4(D)は出力の強度分布であ
る。各々、横軸はレーザ共振器1の中心軸からの距離
を、縦軸はレーザ光強度を示す。参考文献(SPIE
Vol.1276(1990年刊),CO2 Lasers and App
lications II(pp58−67),Boaz Lissak and Shlo
mo Ruschin,″Transverse pattern modifications in
a stable aperturedCO2 laser resonator″)に記述
されるように、アパーチャ12を通過した後のレーザ光
の強度分布図4(A),(B)はフレネル回折によりガ
ウス分布形状より著しく異なる形状となるが、やがて図
4(C)のようにほぼガウス分布形状となるため、一般
に出力鏡2に接したアパーチャ11よりもむしろ全反射
鏡3に接したアパーチャ12の寸法を小さくしてガウス
分布形状を作るようにしている。Generally, in this type of gas laser device, the intensity distribution of the laser light to be output is reduced by making the dimensions of the apertures 11 and 12 smaller than those of the discharge parts 5a to 5d and the output mirror 2. Was in the form of a Gaussian distribution. FIG. 4 shows a laser intensity distribution at each position in the laser resonator 1 of the conventional example. 4A is an intensity distribution near the electrode 4h immediately after passing through the aperture 12, FIG. 4B is an intensity distribution near the electrode 4g, FIG. 4C is an intensity distribution near the electrode 4f, and FIG. Is the output intensity distribution. The horizontal axis represents the distance from the central axis of the laser resonator 1, and the vertical axis represents the laser light intensity. References (SPIE
Vol. 1276 (1990), CO 2 Lasers and App
lications II (pp58-67), Boaz Lissak and Shlo
mo Ruschin, "Transverse pattern modifications in
As described in "a stable apertured CO 2 laser resonator"), the intensity distribution diagrams of the laser beam after passing through the aperture 12 are significantly different from the Gaussian distribution shape due to Fresnel diffraction. Eventually, as shown in FIG. 4 (C), the Gaussian distribution shape is formed by reducing the size of the aperture 12 in contact with the total reflection mirror 3 rather than the aperture 11 in contact with the output mirror 2 in general. Like that.
【0005】従来の気体レーザ装置では全反射鏡3に接
したアパーチャ12によりレーザ強度分布形状を整えて
いるために、出力鏡2を出たレーザ光の強度分布には図
4(D)に示すように、レーザ光中央のガウス分布成分
14の外側に放電部5a〜5dで発生した雑光成分15
が重畳されていた。特に、大出力を得るために高電圧源
10より大電流を取り出した時には、雑光成分15が増
幅されてガウス成分14とほぼ同等の強度となり、切断
などの加工をすると加工面が雑光成分15により荒らさ
れて切断精度が低下する問題点があった。[0005] In the conventional gas laser device, since the laser intensity distribution shape is adjusted by the aperture 12 in contact with the total reflection mirror 3, the intensity distribution of the laser beam emitted from the output mirror 2 is shown in FIG. As described above, outside of the Gaussian distribution component 14 at the center of the laser beam,
Was superimposed. In particular, when a large current is taken out of the high voltage source 10 to obtain a large output, the light component 15 is amplified to have almost the same intensity as the Gaussian component 14. However, there is a problem that the cutting accuracy is deteriorated due to the roughening of the cutting surface.
【0006】また、本発明者らの測定によれば、雑光成
分15はガウス成分14よりもレーザ光の発散角が大き
く、レーザ光の外径寸法が大きくなり易いために、加工
装置においてより大きな寸法のミラーやレンズを必要と
する問題点があった。According to the measurement by the present inventors, the miscellaneous light component 15 has a larger divergence angle of the laser light than the Gaussian component 14 and the outer diameter of the laser light tends to be larger. There is a problem that a mirror or a lens having a large size is required.
【0007】本発明は、このような従来の問題点を解決
するものであり、気体レーザ装置の出力光に雑光成分が
重畳されないようにし、寸法のより小さなミラーやレン
ズを使用して加工装置を小型化できる気体レーザ装置を
提供することを目的とする。SUMMARY OF THE INVENTION The present invention is to solve such a conventional problem, and is intended to prevent a light component from being superimposed on output light of a gas laser device and to use a processing device using a mirror or a lens having a smaller size. It is an object of the present invention to provide a gas laser device capable of reducing the size of a gas laser.
【0008】[0008]
【課題を解決するための手段】本発明は、上記目的を達
成するために、第1のアパーチャを出力鏡から出力鏡と
全反射鏡の間の距離の4分の1から8分の1の距離をお
いて配置し、第2のアパーチャを第1のアパーチャから
全反射鏡の方向に出力鏡と第1のアパーチャの間の距離
の2分の1以下の距離をおいて配置し、第1のアパーチ
ャの取付け位置と第2のアパーチャとの間の距離を調整
可能とし、第1のアパーチャと第2のアパーチャのそれ
ぞれ対向する面にレーザ光を吸収する吸収材を設けたも
のである。SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a method in which a first aperture is moved from an output mirror to a quarter to one-eighth of a distance between the output mirror and the total reflection mirror. A distance between the output aperture and the first aperture in the direction from the first aperture toward the total reflection mirror, and a distance equal to or less than half the distance between the output mirror and the first aperture; The distance between the mounting position of the second aperture and the second aperture is adjustable, and that of the first and second apertures is adjustable.
An absorbing material that absorbs laser light is provided on the surfaces facing each other.
【0009】[0009]
【作用】本発明は前記手段により、レーザ光の強度分布
をガウス分布形状とするとともに雑光成分の発生を抑え
ることができるので、加工品質の低下を無くすことがで
きる。また、出力されるレーザ光に雑光成分が含まれて
いないので出力光の発散角を小さくできるので、加工装
置内でレーザ光を細いまま伝搬させることができ、寸法
の小さなミラーやレンズを使用することにより、加工装
置を小型化することができる。According to the present invention, since the intensity distribution of the laser beam can be made to have a Gaussian distribution shape and the generation of the light component can be suppressed by the above means, the deterioration of the processing quality can be eliminated. In addition, since the output laser beam does not contain any miscellaneous light components, the divergence angle of the output light can be reduced, so that the laser beam can be propagated in the processing device while keeping it thin, and mirrors and lenses with small dimensions are used. By doing so, the processing apparatus can be downsized.
【0010】[0010]
【実施例】以下、本発明の気体レーザ装置について図1
および図2を参照して説明する。図1は本発明の気体レ
ーザ装置の一実施例の全体構成を示しており、図2は同
装置の要部すなわちアパーチャ位置調整部の詳細構造を
示している。FIG. 1 shows a gas laser device according to the present invention.
This will be described with reference to FIG. FIG. 1 shows the overall configuration of an embodiment of the gas laser device according to the present invention, and FIG. 2 shows a detailed structure of a main part of the device, that is, an aperture position adjusting unit.
【0011】図1においては、従来例の構成を示す図3
と同一部分または同一部分については同じ符号を付して
いるので詳細な説明は省略し、図3と異なる点について
説明する。図1において、1aは出力鏡側のレーザ共振
器、1bは全反射鏡側のレーザ共振器、13aはレーザ
共振器内のレーザ光、21は保持金具、22aおよび2
2bはアパーチャである。また、図2において、23a
および23bはアパーチャ22aおよび22bによる散
乱光、24a〜24eはシール材、25は排気ダクトの
固定ねじ、26aおよび26bはアパーチャに塗布され
た吸収材、27aおよび27bはアパーチャ22aおよ
び22bを固定するために保持金具21の内部に設けら
れたねじ、28aおよび28bはアパーチャ22aおよ
び22bに設けられ保持金具21に設けられたねじ27
aおよび27bに螺合するねじ、29は保持金具21に
設けられた排気ダクトへの接続開口部である。FIG. 1 shows a configuration of a conventional example.
The same reference numerals are given to the same parts or the same parts, so that the detailed description is omitted, and the points different from FIG. 3 will be described. In FIG. 1, 1a is a laser resonator on the output mirror side, 1b is a laser resonator on the total reflection mirror side, 13a is laser light in the laser resonator, 21 is a holding bracket, 22a and 2a.
2b is an aperture. In FIG. 2, 23a
And 23b are scattered lights by the apertures 22a and 22b, 24a to 24e are sealing materials, 25 is a fixing screw of an exhaust duct, 26a and 26b are absorbing materials applied to the apertures, and 27a and 27b are for fixing the apertures 22a and 22b. The screws 28a and 28b provided inside the holding fittings 21 are screws 27 provided on the apertures 22a and 22b and provided on the holding fittings 21.
The screws 29 to be screwed into the a and 27b are connection openings to the exhaust duct provided in the holding fitting 21.
【0012】レーザ共振器1aには一端に出力鏡2が取
付けられ、他端にはアパーチャ22aがシール材24a
を挟んで取付けられ、側面に給気ダクト8aおよび高電
圧電源10に接続された放電電極4a,4bが取付けら
れ、放電部5aを内部に形成している。レーザ共振器1
aの長さはレーザ共振器1aと1bを合わせた寸法の約
4分の1に当たる。An output mirror 2 is mounted on one end of the laser resonator 1a, and an aperture 22a is provided with a sealing material 24a on the other end.
The discharge electrodes 4a and 4b connected to the air supply duct 8a and the high-voltage power supply 10 are mounted on the side surface to form a discharge portion 5a inside. Laser resonator 1
The length of “a” is about one-fourth of the total size of the laser resonators 1a and 1b.
【0013】レーザ共振器1bには一端に出力鏡3が取
付けられ、他端にはアパーチャ22bがシール材24b
を挟んで取付けられ、側面に高電圧電源10に接続した
放電電極4c〜4hと給気ダクト8b〜8dおよび排気
ダクト9bが取付けられる。放電電極4c〜4hは2個
で一対となり、各々の放電電極対が放電部5b〜5dを
内部に形成している。An output mirror 3 is attached to one end of the laser resonator 1b, and an aperture 22b is provided with a sealing material 24b at the other end.
The discharge electrodes 4c to 4h connected to the high-voltage power supply 10, the air supply ducts 8b to 8d, and the exhaust duct 9b are mounted on the side surfaces. The two discharge electrodes 4c to 4h form a pair, and each discharge electrode pair forms a discharge portion 5b to 5d inside.
【0014】アパーチャ22a,22bは保持金具21
内の固定ねじ27a,27bに捩込んで固定され、捩込
む回数によりアパーチャ22a,22b間の距離が調整
でき、シール材24c,24dによって気体レーザ媒質
の気密を保っている。アパーチャ22a,22bは対抗
する面がレーザ光13aの光軸に垂直でレーザ光吸収材
26a,26bを塗布している。また、アパーチャ22
a,22bの傾斜した内面は吸収材26a,26bを塗
布した面に対して鋭角をなし、その開口径は出力鏡2と
全反射鏡3の間の距離によって決まるガウス分布形状を
発生させるに適した寸法となる。The apertures 22a and 22b are provided on the holding fitting 21.
The distance between the apertures 22a and 22b can be adjusted by the number of times of screwing, and the airtightness of the gas laser medium is maintained by the seal members 24c and 24d. Opposite surfaces of the apertures 22a and 22b are perpendicular to the optical axis of the laser light 13a, and are coated with laser light absorbing materials 26a and 26b. Also, the aperture 22
The inclined inner surfaces of a and 22b form an acute angle with respect to the surface on which the absorbers 26a and 26b are applied, and the opening diameter thereof is suitable for generating a Gaussian distribution shape determined by the distance between the output mirror 2 and the total reflection mirror 3. Dimensions.
【0015】次に、前記実施例の動作について説明す
る。レーザ共振器1a,1b内へは、気体レーザ媒質が
送風機6により給気ダクト8a〜8dを通じて4等分し
て供給され、高電圧源10の発生する高電圧を印加した
放電電極4a〜4hの各対となる電極間でグロー放電を
起こすことにより励起されてレーザ光13aを発振す
る。発振されたレーザ光13aは、出力鏡2および全反
射鏡3の間を増幅して往復し、最後は出力鏡2から外へ
取り出される。レーザ共振器1aおよび1b内で温度上
昇した気体レーザ媒質は、排気ダクト9a,9bを通じ
て回収され、冷却器7により冷却されて再び送風機6に
より給気ダクト8a〜8dを通じてレーザ共振器1aお
よび1bへ送られる。Next, the operation of the above embodiment will be described. The gas laser medium is supplied into the laser resonators 1a and 1b by the blower 6 through the air supply ducts 8a to 8d in four equal parts, and is supplied to the discharge electrodes 4a to 4h to which the high voltage generated by the high voltage source 10 is applied. The laser light 13a is excited by generating a glow discharge between each pair of electrodes and oscillates. The oscillated laser light 13a amplifies and reciprocates between the output mirror 2 and the total reflection mirror 3, and is finally taken out of the output mirror 2. The gas laser medium whose temperature has risen in the laser resonators 1a and 1b is recovered through the exhaust ducts 9a and 9b, cooled by the cooler 7, and again sent to the laser resonators 1a and 1b by the blower 6 through the air supply ducts 8a to 8d. Sent.
【0016】レーザ光13aは、出力鏡2および全反射
鏡3の間を往復する過程で、出力鏡2および全反射鏡3
の間の距離とアパーチャ22aおよび22bの開口径で
決まる強度分布形状(図1に示す例ではガウス分布形
状)に整えられる。全反射鏡3より出力鏡2へ向かうレ
ーザ光がアパーチャ22bでせぎられる時に発生する高
次雑光23aは吸収材26aに吸収され、出力鏡2より
全反射鏡3へ向かうレーザ光がアパーチャ22aでせぎ
られる時に発生する高次雑光23bは吸収材26bによ
り吸収される。アパーチャ22aおよび22bで発生す
る図4(A)のようなガウス分布形状からのずれは出力
鏡2に至るまでに図4(C)のガウス形状に回復し、雑
光成分は放電部5aによってほとんど増幅されないまま
出力される。The laser beam 13a travels back and forth between the output mirror 2 and the total reflection mirror 3 during the reciprocation.
And an intensity distribution shape (a Gaussian distribution shape in the example shown in FIG. 1) determined by the distance between the apertures and the aperture diameters of the apertures 22a and 22b. Higher-order miscellaneous light 23a generated when the laser light traveling from the total reflection mirror 3 to the output mirror 2 is interrupted by the aperture 22b is absorbed by the absorber 26a, and the laser light traveling from the output mirror 2 to the total reflection mirror 3 is transmitted through the aperture 22a. The high-order miscellaneous light 23b generated at the time of being caught is absorbed by the absorber 26b. The deviation from the Gaussian distribution shape as shown in FIG. 4A generated by the apertures 22a and 22b is restored to the Gaussian shape shown in FIG. 4C before reaching the output mirror 2, and the light component is almost eliminated by the discharge unit 5a. Output without amplification.
【0017】出力されるレーザ光の強度分布形状を本発
明者らが測定した結果、アパーチャ22aを出力鏡2か
ら出力鏡2と全反射鏡3の間の距離の4分の1から8分
の1の距離をおいて配置し、アパーチャ22bを出力鏡
2とアパーチャ22aの間の距離の2分の1以下の距離
で全反射鏡側に配置して調整すると出力鏡2にて図4
(C)に示すような強度分布が常に観測された。また、
放電電流により放電部5a〜5dの大きさが変化すると
き、アパーチャ22aを前後させることによりレーザ光
13aをせぎる位置が変わるので出力されるレーザ光の
強度分布をガウス形状に維持するとともに外径を変化さ
せることができた。As a result of measuring the intensity distribution shape of the output laser light by the present inventors, the aperture 22a is moved from the output mirror 2 to one fourth to eight minutes of the distance between the output mirror 2 and the total reflection mirror 3. 1 and the aperture 22b is arranged on the side of the total reflection mirror at a distance equal to or less than half the distance between the output mirror 2 and the aperture 22a.
An intensity distribution as shown in (C) was always observed. Also,
When the size of the discharge portions 5a to 5d changes due to the discharge current, the position where the laser light 13a is cut off is changed by moving the aperture 22a forward and backward, so that the intensity distribution of the output laser light is maintained in a Gaussian shape and the outer diameter is maintained. Could be changed.
【0018】この結果、レーザ共振器1aおよび1bか
らの出力光の強度分布をガウス形状に保つと同時に雑光
成分の混入を排除でき、かつ出力光の発散角を小さく保
つことができる。As a result, the intensity distribution of the output light from the laser resonators 1a and 1b can be maintained in a Gaussian shape, and at the same time, contamination of the light components can be eliminated, and the divergence angle of the output light can be kept small.
【0019】[0019]
【発明の効果】以上の説明から明らかなように、本発明
の気体レーザ装置によれば、レーザ光の強度分布をガウ
ス分布形状とするとともに雑光成分の発生を抑制するこ
とができるので、加工品質の低下をなくすことができ
る。また、出力されるレーザ光に雑光成分が含まれてい
ないので出力光の発散角を小さくでき、加工装置内でレ
ーザ光を細いまま伝搬させることができるので、寸法の
小さなミラーやレンズを使用して加工装置を小型化する
ことができる。As is clear from the above description, according to the gas laser apparatus of the present invention, the intensity distribution of the laser beam can be made to have a Gaussian distribution shape and the generation of the light component can be suppressed. Quality deterioration can be eliminated. In addition, since the output laser light does not contain any miscellaneous light components, the divergence angle of the output light can be reduced, and the laser light can be propagated in a processing device while keeping it thin. Thus, the processing apparatus can be downsized.
【図1】本発明の気体レーザ装置の一実施例の概略断面
図FIG. 1 is a schematic sectional view of one embodiment of a gas laser device of the present invention.
【図2】同装置におけるアパーチャ位置調整部の拡大断
面図FIG. 2 is an enlarged sectional view of an aperture position adjusting unit in the apparatus.
【図3】従来の気体レーザ装置の一例の概略断面図FIG. 3 is a schematic cross-sectional view of an example of a conventional gas laser device.
【図4】従来のレーザ共振器内各位置でのレーザ光強度
分布形状を示す図FIG. 4 is a diagram showing a laser light intensity distribution shape at each position in a conventional laser resonator.
1a,1b レーザ共振器 2 出力鏡 3 全反射鏡 4a〜4h 放電電極 5a〜5d放電部 10 高電圧電源 13a レーザ共振器内のレーザ光(レーザ光) 22a,22b アパーチャ 1a, 1b Laser resonator 2 Output mirror 3 Total reflection mirror 4a-4h Discharge electrode 5a-5d Discharge unit 10 High voltage power supply 13a Laser light (laser light) 22a, 22b aperture in laser resonator
フロントページの続き (56)参考文献 特開 平2−166782(JP,A) 特開 平2−174177(JP,A) 特開 平2−288281(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01S 3/098 H01S 3/03Continuation of the front page (56) References JP-A-2-1666782 (JP, A) JP-A-2-174177 (JP, A) JP-A-2-288281 (JP, A) (58) Fields investigated (Int) .Cl. 6 , DB name) H01S 3/098 H01S 3/03
Claims (1)
ザ共振器内の気体レーザ媒質を励起してレーザ光を発生
させる気体レーザ装置において、前記レーザ共振器内に
複数個のアパーチャを設けてレーザ光強度分布を整形
し、第1のアパーチャを前記出力鏡より前記出力鏡と前
記全反射鏡の間の距離の4分の1から8分の1の距離を
おいて配置し、第2のアパーチャを前記第1のアパーチ
ャより前記全反射鏡の方向に前記出力鏡と前記第1のア
パーチャの間の距離の2分の1以下の距離をおいて配置
し、第1のアパーチャの取付け位置と第2のアパーチャ
との間の距離を調整可能とし、第1のアパーチャと第2
のアパーチャのそれぞれ対向する面にレーザ光を吸収す
る吸収材を設けた気体レーザ装置。1. A gas laser device for generating a laser beam by exciting a gas laser medium in a laser resonator having an output mirror and a total reflection mirror attached to both ends, wherein a plurality of apertures are provided in the laser resonator. Laser light intensity distribution, and the first aperture is arranged at a distance of 1/4 to 1/8 of the distance between the output mirror and the total reflection mirror from the output mirror. Is disposed at a distance of not more than half of the distance between the output mirror and the first aperture in the direction of the total reflection mirror from the first aperture, and the mounting position of the first aperture The distance between the first aperture and the second aperture is adjustable .
Absorbs laser light on opposite sides of aperture
Gas laser device provided with an absorbing material .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3062851A JP2751648B2 (en) | 1991-03-27 | 1991-03-27 | Gas laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3062851A JP2751648B2 (en) | 1991-03-27 | 1991-03-27 | Gas laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04298087A JPH04298087A (en) | 1992-10-21 |
JP2751648B2 true JP2751648B2 (en) | 1998-05-18 |
Family
ID=13212227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3062851A Expired - Fee Related JP2751648B2 (en) | 1991-03-27 | 1991-03-27 | Gas laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2751648B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02166782A (en) * | 1988-12-21 | 1990-06-27 | Hitachi Cable Ltd | Input coupling structure of hollow waveguide |
JPH02174177A (en) * | 1988-12-26 | 1990-07-05 | Okuma Mach Works Ltd | Laser oscillator and confirming method of optical axis for co2 gas laser |
JPH02288281A (en) * | 1989-04-28 | 1990-11-28 | Amada Co Ltd | Laser oscillator |
-
1991
- 1991-03-27 JP JP3062851A patent/JP2751648B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04298087A (en) | 1992-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5506858A (en) | Laser system with transverse mode selecting output coupler | |
US6654163B1 (en) | Optical amplifier arrangement for a solid state laser | |
US4500998A (en) | Gas laser | |
US20130223468A1 (en) | Excimer laser device | |
JP2751648B2 (en) | Gas laser device | |
US8873599B2 (en) | Gas laser device | |
JPH0530312B2 (en) | ||
US5151916A (en) | Electric discharge tube for gas laser | |
US5268919A (en) | Gas laser oscillating device | |
JP2800593B2 (en) | Laser oscillator | |
US4596016A (en) | Single mode carbon dioxide gas laser oscillator having high output power | |
JPH0126198B2 (en) | ||
JP2833219B2 (en) | Gas laser oscillation device | |
JP2002314175A (en) | Laser device | |
JPS6350082A (en) | Gas laser oscillator | |
JP3475662B2 (en) | Gas laser oscillator | |
RU1809728C (en) | Electric-discharge laser using convective cooling of working medium | |
JPH1168214A (en) | Q switch CO2 laser device | |
JPH04286174A (en) | Laser oscillator | |
JP2002076489A (en) | Fluorine laser device and exposure device using the same | |
RU2111590C1 (en) | Cross-pumped gas laser | |
JPH0582867A (en) | Laser oscillator | |
JPH06204588A (en) | Axial-flow type laser oscillator | |
JPH04335584A (en) | Carbon dioxide laser device | |
JPH01179377A (en) | Laser oscillator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080227 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090227 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090227 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100227 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100227 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110227 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |