[go: up one dir, main page]

JP2751080B2 - Manufacturing method of metal powder molding material - Google Patents

Manufacturing method of metal powder molding material

Info

Publication number
JP2751080B2
JP2751080B2 JP2166456A JP16645690A JP2751080B2 JP 2751080 B2 JP2751080 B2 JP 2751080B2 JP 2166456 A JP2166456 A JP 2166456A JP 16645690 A JP16645690 A JP 16645690A JP 2751080 B2 JP2751080 B2 JP 2751080B2
Authority
JP
Japan
Prior art keywords
powder
metal powder
container
metal
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2166456A
Other languages
Japanese (ja)
Other versions
JPH03130301A (en
Inventor
充 安達
昭男 岡本
英樹 岩井
芳春 和久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Publication of JPH03130301A publication Critical patent/JPH03130301A/en
Application granted granted Critical
Publication of JP2751080B2 publication Critical patent/JP2751080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属粉末成形材の製造方法に係り、特に金属
粉末に前処理を施した後、熱間成形加工して金属部材を
製造する方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a metal powder molded material, and particularly to a method for producing a metal member by subjecting a metal powder to a pretreatment and then hot-forming. It is about.

[従来の技術] 近年、自動車、航空機等の分野における構成部材の軽
量化、高性能化、高負荷化が活発に検討されている。中
でも、合金組成、熱処理及び加工を組み合わせた従来の
方法では、耐熱性、耐摩耗性、強度、耐応力腐食割れな
どの特性を向上させることが難しいため、急冷凝固粉を
用いた粉末合金材の研究がさかんに行なわれている。
[Related Art] In recent years, in the fields of automobiles, aircrafts, and the like, weight reduction, high performance, and high load of components have been actively studied. Above all, it is difficult to improve properties such as heat resistance, abrasion resistance, strength, and stress corrosion cracking by the conventional method combining the alloy composition, heat treatment and processing. Research is being actively conducted.

ただし、急冷凝固粉粒子の表面には酸化物、吸着水、
結晶水が存在し、これらは熱間成形に当り、粉末同志の
圧着を妨げるために、粉末の成形材の機械的性質、とり
わけ靭性、成形方向と直角方向の機械的性質は十分満足
できるものではない。このため、これらの付着物を急冷
凝固粉の成形、固化に際し、予め取り除く必要がある。
However, oxide, adsorbed water,
Crystallized water is present, which is hot-forming and hinders the compaction of powders, so that the mechanical properties of the powder molding material, especially toughness, the mechanical properties in the direction perpendicular to the molding direction are not sufficiently satisfactory. Absent. For this reason, it is necessary to remove these deposits before molding and solidifying the rapidly solidified powder.

例えば、急冷凝固させたアルミニウム合金粉末では、
一般に第3図に模式的に示す如く、アルミニウム合金粒
子20の表面にAl2O3・3H2O等の含水酸化物層21及びAl2O3
等の酸化物層22が形成され、しかも吸着水が付着してい
る。このため、成形前には水分や結晶水の除去を目的と
して、加熱真空脱気処理を通常、次のような要領で行な
う。即ち、急冷凝固粉を予備成形した後、予備成形体を
アルミニウム等の金属缶に封入して、高温(例えば350
〜500℃)において10-2〜10-5Torrの真空中で真空脱ガ
ス処理し、その後封缶をする。さらに粉末表面の酸化物
を破砕し粉末同志の接合を図るために、比較的高い押出
比で加工が行なわれている。
For example, in rapidly solidified aluminum alloy powder,
Generally, as schematically shown in FIG. 3 , a hydrated oxide layer 21 such as Al 2 O 3 .3H 2 O and an Al 2 O 3
Is formed, and adsorbed water adheres. For this reason, before forming, a heating vacuum degassing process is usually performed in the following manner for the purpose of removing water and crystal water. That is, after the quenched and solidified powder is preformed, the preformed body is sealed in a metal can made of aluminum or the like, and heated at a high temperature (for example, 350
(−500 ° C.) at a vacuum of 10 −2 to 10 −5 Torr, and then sealed. Further, in order to crush the oxide on the powder surface and join the powders together, the processing is performed at a relatively high extrusion ratio.

[発明が解決しようとする課題] このような急冷凝固粉を用いた成形材の従来の製造法
においては、次のような問題があった。
[Problems to be Solved by the Invention] In the conventional method for producing a molded material using such rapidly solidified powder, there are the following problems.

脱気処理中の熱影響により過剰焼鈍を受け軟化す
るため、急冷凝固粉末としての性質が失われる。このた
め、脱気温度を十分に高くすることができず、その結
果、成形材中の水素ガス量が高くなる。
Due to the thermal influence during the degassing treatment, the steel is softened due to excessive annealing, and thus loses its properties as a rapidly solidified powder. For this reason, the degassing temperature cannot be sufficiently increased, and as a result, the amount of hydrogen gas in the molding material increases.

熱間成形、例えば高押出比で熱間成形しても、粉
末表面の酸化物の破砕が十分でないために、粉末界面の
接合が不十分なものになることがある。この結果、得ら
れる金属粉末成形材の破壊靭性が低くなる。また、成形
材の機械的性質に異方性が生じる。(押出成形方向に比
べて、それと直角方向は機械的性質が劣る。) [課題を解決するための手段] 請求項(1)の発明は、内部が減圧雰囲気又は不活性
ガス雰囲気とされた容器内において、容器を振動させる
ことにより金属粉末に振動を与え、粉末同志の接触によ
り粉末表面を改質する工程;及び、その後前記金属粉末
を加熱真空脱気処理した後、熱間成形加工して成形材を
得る工程;を有するものである。
Even when hot forming, for example, hot forming at a high extrusion ratio, bonding of the powder interface may be insufficient due to insufficient crushing of the oxide on the powder surface. As a result, the fracture toughness of the obtained metal powder molding material decreases. In addition, anisotropy occurs in the mechanical properties of the molding material. (Mechanical properties are inferior in the direction perpendicular to the extrusion direction.) [Means for Solving the Problems] According to the invention of claim (1), the inside of the container has a reduced-pressure atmosphere or an inert gas atmosphere. In the step, the metal powder is vibrated by vibrating the container to modify the powder surface by contact between the powders; and then, the metal powder is heated and vacuum degassed and then hot-formed. Obtaining a molding material.

請求項(2)の発明は、請求項(1)において、前記
金属粉末をその融点以下の温度に加熱した状態において
振動を与えることを特徴とするものである。
The invention of claim (2) is characterized in that, in claim (1), vibration is applied in a state where the metal powder is heated to a temperature lower than its melting point.

請求項(3)の発明は、請求項(1)又は(2)にお
いて、前記金属粉末に振動を与える前に該金属粉末を10
0〜300℃に加熱することを特徴とするものである。
The invention according to claim (3) is the method according to claim (1) or (2), wherein the metal powder is vibrated before the metal powder is vibrated.
It is characterized by heating to 0 to 300 ° C.

本発明方法の処理対象となる金属粉末は、主として、
急冷凝固して得られたAl、Mg、Ti、Fe、Ni、W、Mo等の
金属あるいは合金である。この場合、金属粉末として利
用できる粉末の凝固時の冷却速度は、各金属、合金によ
って異なるが、50〜106℃/secが好ましい。なぜなら、
例えばアルミニウム合金の場合、冷却速度が50℃/sec未
満であるとアルミニウム合金中に含まれるSi、Fe等の金
属間化合物が粗大に晶出し、得られる部材の機械的性質
が低下する。このため冷却速度は50℃/sec以上とする。
一方、冷却速度が過度に高くても効果に差異はなく、急
冷技術が困難となり、コストアップを招くこととなる。
このため、冷却速度は50〜106℃/secの範囲とするのが
好ましい。
The metal powder to be treated by the method of the present invention is mainly
It is a metal or alloy such as Al, Mg, Ti, Fe, Ni, W, and Mo obtained by rapid solidification. In this case, the cooling rate during powder solidification which can be used as metal powder, the metal may vary depending alloy, preferably 50~10 6 ℃ / sec. Because
For example, in the case of an aluminum alloy, if the cooling rate is less than 50 ° C./sec, the intermetallic compounds such as Si and Fe contained in the aluminum alloy are coarsely crystallized, and the mechanical properties of the obtained member deteriorate. Therefore, the cooling rate is set to 50 ° C./sec or more.
On the other hand, even if the cooling rate is excessively high, there is no difference in the effect, the quenching technique becomes difficult, and the cost is increased.
Therefore, the cooling rate is preferably in the range of 50~10 6 ℃ / sec.

このようにして得られる金属粉末は、製造条件により
一般には球状、フレーク状、糸状等の様々な形状を取り
得る微細粉末である。
The metal powder obtained in this manner is a fine powder that can generally take various shapes such as a sphere, a flake, and a thread depending on the manufacturing conditions.

本発明に好適な粉末合金としては、例えばアルミニウ
ム合金、具体的にはAl−Si系、Al−Si−Cu系、Al−Zn系
の合金、Al−Fe系の合金などが挙げられる。また、これ
らの合金はMgを含んでいても良く、さらにNi、Fe等の遷
移金属を含んでいても良い。これらのアルミニウム合金
に含有される他の金属構成成分の含有量は、一般には次
のような範囲とされる。
As a powder alloy suitable for the present invention, for example, an aluminum alloy, specifically, an Al-Si-based alloy, an Al-Si-Cu-based alloy, an Al-Zn-based alloy, an Al-Fe-based alloy and the like can be mentioned. Further, these alloys may contain Mg, and may further contain transition metals such as Ni and Fe. The content of other metal components contained in these aluminum alloys is generally in the following range.

Si:10〜30重量% Mg:0.2〜10.0重量% Cu:0.5〜8.0重量% Fe:0.5〜10.0重量% Zn:0.01〜10.0重量% もちろん、本発明は上記以外の各種のアルミニウム合
金粉末を始めとして、各種金属及び合金の前処理に適用
できる。
Si: 10 to 30 wt% Mg: 0.2 to 10.0 wt% Cu: 0.5 to 8.0 wt% Fe: 0.5 to 10.0 wt% Zn: 0.01 to 10.0 wt% Of course, the present invention starts with various aluminum alloy powders other than the above. It can be applied to pretreatment of various metals and alloys.

本発明において、金属粉末に振動を付与するには、例
えば、急冷凝固して得られた金属粉末を充填した容器を
振動装置上に載置し、容器内を大気に晒すことなく減圧
雰囲気又は不活性ガス雰囲気下では、例えば1〜2時間
程度振動させる。
In the present invention, in order to impart vibration to the metal powder, for example, a container filled with the metal powder obtained by rapid cooling and solidification is placed on a vibrating device, and the container is exposed to a reduced-pressure atmosphere or In an active gas atmosphere, for example, vibration is performed for about 1 to 2 hours.

本発明における熱間成形加工としては、押出成形、な
いしは、鍛造、HIP、ホットプレス、圧延等の加工を行
なう。
As the hot forming process in the present invention, processes such as extrusion forming, forging, HIP, hot pressing, and rolling are performed.

[作用] 本発明の処理方法によると、金属粉末の表面層が改質
されることから、 水素ガス量が低減し易く、かつ、ブリスターの発生
も少ないために、高温、長時間の脱気処理を施す必要が
なく、過剰の焼鈍を避けることができる。この結果、急
冷凝固で得られた金属組織の粗大化が抑えられ、破壊靭
性が向上する。
[Action] According to the treatment method of the present invention, since the surface layer of the metal powder is modified, the amount of hydrogen gas is easily reduced, and the generation of blisters is small. Need not be performed, and excessive annealing can be avoided. As a result, coarsening of the metal structure obtained by rapid solidification is suppressed, and fracture toughness is improved.

粉末表面の酸化物層が破砕され活性な面が出るため
に、熱間成形時に粉末同志の接合が効果的に進む。この
結果、破壊靭性が向上し、しかも熱間成形した材料の機
械的性質の異方性が小さい。
Since the oxide layer on the surface of the powder is crushed to form an active surface, bonding between the powders proceeds effectively during hot compaction. As a result, the fracture toughness is improved, and the anisotropy of the mechanical properties of the hot-formed material is small.

Mgを含むAl合金粉末の場合、表面のAl酸化物がMg酸
化物の共存により、酸化物層が効果的に除去される。そ
の結果、、の効果がより顕著になる。
In the case of Al alloy powder containing Mg, the oxide layer is effectively removed by the coexistence of Mg oxide in the Al oxide on the surface. As a result, the effect becomes more prominent.

ところで、本発明の前処理方法は、あくまでも粒子同
志の接触による粒子表面層の破壊ないし剥離を行なうも
のであり、改質媒体(例えば金属やセラミックボール)
を用いたアトリッションミル、ボールミルによる撹拌、
メカニカルアロイング等とは異なる。即ち、アトリッシ
ョンミル、ボールミル等によっても粉末の表面の改質は
ある程度可能であるが、改質媒体が粉末の表面に衝突し
たときの衝撃により、粉末表面の結晶水等の水分や、酸
化物、水酸化物、あるいは改質媒体の微小破片、容器に
付着していた水分や不純物などが合金粒子の内部に取り
込まれる可能性がある。これに対し、本発明において
は、粒子同志の接触のみにより表面層を破壊ないし剥離
するので、水酸化物や水分等が合金粒子の内部に取り込
まれることがない。
By the way, the pretreatment method of the present invention is intended to destroy or peel off the particle surface layer by the contact of the particles only, and to use a modified medium (for example, metal or ceramic ball).
Stirring with an attrition mill using a ball mill,
Different from mechanical alloying. That is, although the surface of the powder can be modified to some extent by an attrition mill, a ball mill, or the like, moisture such as crystallization water on the powder surface or oxidation due to the impact when the reforming medium collides with the surface of the powder. There is a possibility that substances, hydroxides, minute fragments of the reforming medium, moisture or impurities attached to the container may be taken into the alloy particles. On the other hand, in the present invention, the surface layer is destroyed or peeled off only by the contact between the particles, so that hydroxides, moisture and the like are not taken into the alloy particles.

さらに、振動を与えるに当り、予備加熱や加熱処理を
組み合わせれば、粉末表面、容器の吸着水分の影響の除
去、粉末表面の改質促進が期待される。
Further, when the vibration is applied, a combination of preheating and heat treatment is expected to remove the influence of the moisture adsorbed on the powder surface and the container and promote the modification of the powder surface.

なお、通常、金属粉末の表面に生成した酸化物等は10
0〜200Å厚であるが、上記の振動付与処理により殆ど0
Åになる。また、成形前に加熱真空脱気することにより
付着水分はほぼ完全に除去される。
Incidentally, usually, oxides and the like generated on the surface of the metal powder are 10
Although it is 0 to 200 mm thick, almost 0
Becomes Å. Further, by performing vacuum degassing under heating before molding, the adhered moisture is almost completely removed.

この振動付与処理を行なった後、そのまま押出成形等
の成形を行なう場合には、新たな酸化物の生成は生じな
い。振動付与処理を行なった後、30分〜1時間程度大気
に晒し、その後に金属粉末の表面の酸化物層の厚さを測
定したところ、その厚さは10〜20Å程度にすぎなかっ
た。このため、上記の機械的エネルギー付与処理を行な
った後、できるだけ早くそのまま成形すれば、一時的に
大気中に晒しても、良い効果が得られる。なお、乾燥状
態をそのまま持続して成形すれば、水分は0に保てる。
When molding such as extrusion molding is performed as it is after the vibration imparting process, no new oxide is generated. After performing the vibration imparting treatment, it was exposed to the air for about 30 minutes to 1 hour, and then the thickness of the oxide layer on the surface of the metal powder was measured. The thickness was only about 10 to 20 °. For this reason, if the molding is performed as soon as possible after performing the above-described mechanical energy applying treatment, a good effect can be obtained even if the molding is temporarily exposed to the atmosphere. It should be noted that the moisture can be kept at zero if the dry state is continuously formed.

[実施例] 以下に図面を参照して本発明をさらに詳細に説明す
る。
EXAMPLES The present invention will be described below in more detail with reference to the drawings.

第1図及び第2図は本発明を実施するために好適な振
動装置を示し、第1図は真空脱気完了まで大気に全く触
れることがないように密閉容器の中で金属粉末に振動を
与え粉末改質を行なうための振動処理装置の一部縦断面
図、第2図は脱気処理用の容器に金属粉末を移し替える
時に一度は大気に触れることがあるようにした振動処理
装置の一部縦断面図をそれぞれ示す。
FIGS. 1 and 2 show a vibration device suitable for carrying out the present invention, and FIG. 1 shows that a metal powder is vibrated in a closed container so as not to come into contact with the atmosphere at all until the completion of vacuum degassing. FIG. 2 is a partial vertical sectional view of a vibration processing apparatus for performing powder reforming, and FIG. 2 shows a vibration processing apparatus which is once exposed to the atmosphere when transferring metal powder to a container for deaeration processing. Partial longitudinal sectional views are shown.

第1図において、金属粉末4の入ったアルミニウム缶
密閉容器2を、振動モータ5を有した振動装置6上に載
置して移動不可能に固定し、さらに、アルミニウム缶密
閉容器2上部にコック7を設け、コック7から真空ポン
プ1に至る配管を配設してあり、また、図示しない不活
性ガス導入用配管がアルミニウム缶密閉容器2に接続し
てある。
In FIG. 1, an aluminum can closed container 2 containing a metal powder 4 is mounted on a vibrating device 6 having a vibration motor 5 so as to be immovably fixed. 7, a pipe from the cock 7 to the vacuum pump 1 is provided, and a pipe (not shown) for introducing an inert gas is connected to the aluminum can sealed container 2.

このように構成された装置において、振動装置6と真
空ポンプ1を起動し、コック7を開いて減圧雰囲気下又
は不活性ガス雰囲気下で、アルミニウム缶密閉容器2に
装填された金属粉末4に、例えば0.2〜20時間、好まし
くは0.5〜5時間、特に好ましくは1〜2時間程度振動
を加える。
In the device configured as described above, the vibrating device 6 and the vacuum pump 1 are started, the cock 7 is opened, and the metal powder 4 loaded in the aluminum can closed container 2 is opened under a reduced pressure atmosphere or an inert gas atmosphere. For example, vibration is applied for about 0.2 to 20 hours, preferably about 0.5 to 5 hours, particularly preferably about 1 to 2 hours.

第2図において、金属粉末4の入った上部開放型容器
11を、振動モータ5を内蔵した振動装置6上に載置して
移動不可能に固定した後、これら全体を蓋12を有した密
閉箱8に入れ、さらに、蓋12に挿通されて接続された配
管が2本配設されている。2本の配管のうち、一方はバ
ルブ10に接続されており、密閉箱8内に導入された不活
性ガスを放出して大気圧に戻す役目を有している。ま
た、他方の配管は、三方バルブ9を介して、一方を不活
性ガス供給源7と接続され、不活性ガスを導入しないと
きは、他方を真空ポンプ1にそれぞれ接続されるように
なっている。
In FIG. 2, an open top container containing a metal powder 4 is shown.
11 is placed on a vibration device 6 having a built-in vibration motor 5 and fixed so as not to be movable. Then, the whole is put into a closed box 8 having a lid 12, and further inserted and connected to the lid 12. Two pipes are provided. One of the two pipes is connected to the valve 10 and has a function of releasing the inert gas introduced into the closed box 8 and returning the gas to the atmospheric pressure. One of the other pipes is connected to the inert gas supply source 7 via the three-way valve 9, and the other is connected to the vacuum pump 1 when no inert gas is introduced. .

こうして構成された装置において、振動装置6と真空
ポンプ1を起動し、三方バルブ9を切換えて密閉箱8内
を減圧雰囲気下又は不活性ガス雰囲気下にし、上部開放
型容器11内に装填された金属粉末4に振動を与える。
In the apparatus thus configured, the vibrating device 6 and the vacuum pump 1 were started, and the three-way valve 9 was switched to make the inside of the closed box 8 under a reduced-pressure atmosphere or an inert gas atmosphere. Vibration is applied to the metal powder 4.

この場合、第1図及び第2図において、振動の強さの
程度は、振動数や振幅が小さ過ぎると十分な効果が得ら
れないから、粉末の種類や粒度等に応じて適切に選定す
る。
In this case, in FIG. 1 and FIG. 2, the degree of the vibration intensity is appropriately selected according to the type and particle size of the powder, since a sufficient effect cannot be obtained if the frequency or amplitude is too small. .

このような本発明の方法により前処理を施した金属粉
末は、常法に従って真空脱気処理した後、熱間押出成形
して金属部材とされる。
The metal powder pretreated by the method of the present invention is subjected to vacuum degassing according to a conventional method, and is then subjected to hot extrusion to form a metal member.

ただし、第1図の方法によれば、真空脱気完了まで大
気に全く触れることがないが、第2図の方法によれば、
脱気処理用の容器に粉末を移し替える時に一度大気に触
れるため、速やかに処理する必要がある。
However, according to the method of FIG. 1, there is no exposure to the atmosphere until the completion of vacuum degassing, but according to the method of FIG.
When the powder is transferred to a degassing container, the powder must be exposed to the atmosphere once, so it must be processed promptly.

なお、粉末表面の水分の除去を目的とした脱気処理は
100torr以下の高真空で行なうことが望ましい。
In addition, the deaeration process for the purpose of removing water from the powder surface is
It is desirable to perform the process in a high vacuum of 100 torr or less.

また、本発明においては、振動を粉末に付与する工程
において、SiC等の補強繊維を混合して複合材を得るこ
ともできる。
In the present invention, in the step of applying vibration to the powder, a composite material can be obtained by mixing reinforcing fibers such as SiC.

以下に実施例と比較例を挙げて本発明をより具体的に
説明する。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1〜3、比較例1,2 103〜104℃/secの冷却速度で急冷凝固して得た、粒径
149〜44μmの窒素ガスアトマイズ法によるアルミニウ
ム合金粉末(Al−17%Si−4.5%Cu−0.6%Mg−6%Fe)
を第1表に示す条件にて真空脱気処理を行ない、得られ
た予備成形体を押出比5.7、押出速度2.8mm/sec、温度40
0℃にて熱間押出成形を行なった。
Examples 1-3 were obtained by rapid solidification at a cooling rate of Comparative Example 1,2 10 3 ~10 4 ℃ / sec , the particle size
Aluminum alloy powder (Al-17% Si-4.5% Cu-0.6% Mg-6% Fe) by nitrogen gas atomization method of 149-44μm
Was subjected to vacuum degassing under the conditions shown in Table 1, and the obtained preform was extruded at an extrusion ratio of 5.7, an extrusion speed of 2.8 mm / sec, and a temperature of 40.
Hot extrusion was performed at 0 ° C.

得られた押出成形体について、ブリスターの有無、水
素ガス量及び衝撃値を調べ、結果を第1表に示した。
The obtained extruded product was examined for the presence or absence of blisters, the amount of hydrogen gas, and the impact value. The results are shown in Table 1.

第1表より明らかなように、本発明の方法により製造
された金属粉末の成形体は、ブリスターが全く無く、高
い衝撃値を示す。
As is clear from Table 1, the molded body of the metal powder produced by the method of the present invention has no blister and shows a high impact value.

実施例4、比較例3 103〜104℃/secの冷却速度で急冷凝固して得た粒径14
9〜44μmの窒素ガスアトマイズ法によるアルミニウム
合金粉末(7091合金;Al−6.7%Zn−2.6%Mg−1.7%Cu−
0.4%Co)を、第2図の装置を用いて第2表の実施例4
の欄に示す条件にて前処理を施した後、脱気処理(520
℃,60分)、押出成形(押出比10,押出速度3mm/sec,温度
420℃)を行なった。比較例として、この前処理を行な
わずに、第2表の比較例3の条件で脱気処理し、次いで
押出成形した。
Example 4, Comparative Example 3 Particle size obtained by rapid solidification at a cooling rate of 10 3 to 10 4 ° C./sec.
Aluminum alloy powder (7091 alloy; Al-6.7% Zn-2.6% Mg-1.7% Cu-
0.4% Co) by using the apparatus shown in FIG.
After performing the pretreatment under the conditions shown in the column, degassing treatment (520
Extrusion (extrusion ratio 10, extrusion speed 3mm / sec, temperature)
420 ° C.). As a comparative example, deaeration treatment was performed under the conditions of Comparative Example 3 in Table 2 without performing this pretreatment, and then extrusion molding was performed.

得られた成形体について水素ガス量、引張強さ、衝撃
値を調べ、第2表に示す結果を得た。
The amount of hydrogen gas, tensile strength, and impact value of the obtained molded body were examined, and the results shown in Table 2 were obtained.

第2表から明らかなように、本発明の方法によれば、
材料内の機械的性質の異方性が殆どなく、しかも衝撃値
が高い成形体が得られる。7091合金の衝撃試験の破面観
察を行なった結果、第4A図の如く粉末に機械的処理を施
して粉末表面の改質処理を施した場合は、第4B図のよう
に改質処理を施さなかった場合に比べ粉末界面からの破
壊が著しく少なくなり、延性破壊を示すディンプル破面
が認められることが確認された。
As is apparent from Table 2, according to the method of the present invention,
A molded article having almost no anisotropy of mechanical properties in the material and having a high impact value can be obtained. As a result of observing the fracture surface of the 7091 alloy in the impact test, when the powder was mechanically treated and the powder surface was modified as shown in FIG. 4A, the powder was modified as shown in FIG. 4B. It was confirmed that the fracture from the powder interface was significantly reduced as compared with the case where no dimple was present, and that a dimple fracture surface showing ductile fracture was observed.

実施例5、比較例4,5 103〜104℃/secの冷却速度で急冷凝固して得た、粒径
149〜44μmの窒素ガスアトマイズ法によるアルミニウ
ム合金粉末(Al−8%Fe−1.5%Zr−1.5%Cr−(0.1
%)Mg(ただし、Mg含有量は第3表に示す通り))を、
第1図の装置で、第3表に示す条件にて前処理を施した
後(ただし、比較例4,5では前処理なし)、10-5torrの
真空度で、400℃×1h、真空脱気処理を行ない、得られ
た予備成形体を押出比7、押出速度2.8mm/sec、温度440
℃にて熱間押出成形を行なった。
Example 5, Comparative Example 4,5 Particle size obtained by rapid solidification at a cooling rate of 10 3 to 10 4 ° C./sec.
Aluminum alloy powder (Al-8% Fe-1.5% Zr-1.5% Cr- (0.1
%) Mg (however, Mg content is as shown in Table 3))
After pre-treatment was performed with the apparatus shown in FIG. 1 under the conditions shown in Table 3 (however, no pre-treatment was performed in Comparative Examples 4 and 5), at a degree of vacuum of 10 -5 torr, 400 ° C. × 1 h, vacuum After degassing, the obtained preform was extruded at an extrusion ratio of 7, an extrusion speed of 2.8 mm / sec, and a temperature of 440.
Hot extrusion molding was carried out at ℃.

得られた成形体について引張試験を行ない、結果を第
3表に示した。
A tensile test was performed on the obtained molded body, and the results are shown in Table 3.

第3表より、次のことが明らかである。 From Table 3, the following is clear.

比較例4、5は、押出方向の引張強さ(L方向)と押
出直角方向の引張強さ(T方向)の差が大きく、かつ衝
撃値も低い。これに対し実施例5、L方向、T方向の引
張強さに大きな差がなく、かつ衝撃値も高い。さらにブ
リスターの発生も殆ど無い。
In Comparative Examples 4 and 5, the difference between the tensile strength in the extrusion direction (L direction) and the tensile strength in the direction perpendicular to the extrusion (T direction) is large, and the impact value is low. On the other hand, in Example 5, there was no large difference in the tensile strength between the L direction and the T direction, and the impact value was high. Furthermore, there is almost no generation of blisters.

[発明の効果] 以上詳述した通り、本発明の金属粉末成形材の製造方
法によれば、次の効果が奏される。
[Effects of the Invention] As described in detail above, according to the method for manufacturing a metal powder molded material of the present invention, the following effects are exerted.

水素ガス量が低減し易く、かつ、ブリスターの発生
も少ないために、高温、長時間の脱気処理を施す必要が
なく、過剰の焼鈍を避けることができる。この結果、急
冷凝固で得られた金属組織の粗大化が抑えられ、破壊靭
性が向上する。
Since the amount of hydrogen gas is easily reduced and the generation of blisters is small, it is not necessary to perform a high-temperature and long-time degassing treatment, and excessive annealing can be avoided. As a result, coarsening of the metal structure obtained by rapid solidification is suppressed, and fracture toughness is improved.

粉末表面の酸化物層が破砕され活性な面が出るため
に、熱間成形時に粉末同志の接合が効果的に進む。この
結果、破壊靭性が向上し、しかも熱間成形した材料の機
械的性質の異方性が小さい。
Since the oxide layer on the surface of the powder is crushed to form an active surface, bonding between the powders proceeds effectively during hot compaction. As a result, the fracture toughness is improved, and the anisotropy of the mechanical properties of the hot-formed material is small.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図の各図は、本発明を実施するためのそ
れぞれ異なる実施例を示す縦断面図、第3図はアルミニ
ウム合金粒子部の模式的断面図である。第4A図及び第4B
図は、合金の破断面の顕微鏡写真の模式図である。 1……真空ポンプ、2……缶密閉容器、 4……合金粉末、6……振動装置、 8……密閉箱、11……上部開放型容器。
1 and 2 are longitudinal sectional views showing different embodiments for carrying out the present invention, and FIG. 3 is a schematic sectional view of an aluminum alloy particle portion. Figures 4A and 4B
The figure is a schematic view of a micrograph of a fracture surface of the alloy. DESCRIPTION OF SYMBOLS 1 ... Vacuum pump, 2 ... Can closed container, 4 ... Alloy powder, 6 ... Vibration device, 8 ... Closed box, 11 ... Open top type container.

───────────────────────────────────────────────────── フロントページの続き 合議体 審判長 小野 秀幸 審判官 山岸 勝喜 審判官 小川 進 (56)参考文献 特開 平2−243701(JP,A) ────────────────────────────────────────────────── ─── Continuing from the front page Judge Hideyuki Ono Judge Katsuyoshi Yamagishi Judge Susumu Ogawa (56) References JP-A-2-243701 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内部が減圧雰囲気又は不活性ガス雰囲気と
された容器内において、容器を振動させることにより金
属粉末に振動を与え、粉末同志の接触により粉末表面を
改質する工程;及び、 その後前記金属粉末を加熱真空脱気処理した後、熱間成
形加工して成形材を得る工程; を有する金属粉末成形材の製造方法。
1. A process in which a metal powder is vibrated by vibrating a container in a container having a reduced-pressure atmosphere or an inert gas atmosphere inside, and the powder surface is modified by contact between the powders; and A step of subjecting the metal powder to heat vacuum degassing and then hot forming to obtain a formed material.
【請求項2】前記金属粉末をその融点以下の温度に加熱
した状態において振動を与えることを特徴とする請求項
(1)に記載の金属粉末成形材の製造方法。
2. The method according to claim 1, wherein the metal powder is vibrated while being heated to a temperature equal to or lower than its melting point.
【請求項3】前記金属粉末に振動を与える前に該金属粉
末を100〜300℃に加熱することを特徴とする請求項
(1)又は(2)に記載の金属粉末成形材の製造方法。
3. The method according to claim 1, wherein the metal powder is heated to 100 to 300 ° C. before applying vibration to the metal powder.
JP2166456A 1989-07-28 1990-06-25 Manufacturing method of metal powder molding material Expired - Lifetime JP2751080B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19391889 1989-07-28
JP1-193918 1989-07-28

Publications (2)

Publication Number Publication Date
JPH03130301A JPH03130301A (en) 1991-06-04
JP2751080B2 true JP2751080B2 (en) 1998-05-18

Family

ID=16315909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2166456A Expired - Lifetime JP2751080B2 (en) 1989-07-28 1990-06-25 Manufacturing method of metal powder molding material

Country Status (1)

Country Link
JP (1) JP2751080B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009024120A1 (en) * 2009-06-06 2010-12-09 Arno Friedrichs Process for processing metal powder
CN102398028B (en) * 2011-11-15 2013-06-05 中国航空工业集团公司北京航空材料研究院 Vacuum thermal dynamic metal powder degassing and canning method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754680B2 (en) * 1989-03-17 1998-05-20 大同特殊鋼株式会社 Processing method of metal powder

Also Published As

Publication number Publication date
JPH03130301A (en) 1991-06-04

Similar Documents

Publication Publication Date Title
Sato et al. Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys
Pandey et al. Study of fabrication, testing and characterization of Al/TiC metal matrix composites through different processing techniques
RU2456361C1 (en) Metal-matrix composite
US5039476A (en) Method for production of powder metallurgy alloy
CN103154289B (en) High-strength magnesium alloy wire rod and manufacture method, high-strength magnesium alloy part and high-strength magnesium alloy spring
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JP2012132100A (en) Method for fabricating metallic article without any melting
EP2325343B1 (en) Forging deformation of L12 aluminum alloys
Luangvaranunt et al. Aluminum-4 mass% copper/alumina composites produced from aluminum copper and rice husk ash silica powders by powder forging
KR101071722B1 (en) Alloy matrix composite using powders and the method thereof
Kawamura et al. High-strength crystalline aluminum alloys produced from amorphous powder by a closed P/M processing
JP2751080B2 (en) Manufacturing method of metal powder molding material
JP2596205B2 (en) Manufacturing method of Al alloy powder compact
US4655855A (en) Method for refining microstructures of prealloyed titanium powder compacted articles
JP2569920B2 (en) Manufacturing method of metal powder molding material
JP3336645B2 (en) Method for degassing and solidifying aluminum alloy powder
JP2757928B2 (en) Manufacturing method of metal powder molding material
Webster et al. Mechanical properties and microstructure of argon atomized aluminum-lithium powder metallurgy alloys
Cheng et al. Microstructures and mechanical properties of mechanically alloyed Al-Al3Ti alloys
JPH0149765B2 (en)
JPS63303017A (en) Production of w-ti alloy target
JPH02267201A (en) Pretreatment method for aluminum alloy powder
Mola et al. Characterization of the Bonding Zone in AZ91/AlSi12 Bimetals Fabricated by Liquid-Solid Compound Casting Using Unmodified and Thermally Modified AlSi12 Alloy.
German et al. Effect of hot isostatic pressing temperature on the properties of inert gas atomized maraging steel
JPS59157201A (en) Manufacture of molded body of zinc-aluminum alloy powder