JP2749945B2 - Solid phase crystal growth method - Google Patents
Solid phase crystal growth methodInfo
- Publication number
- JP2749945B2 JP2749945B2 JP2094778A JP9477890A JP2749945B2 JP 2749945 B2 JP2749945 B2 JP 2749945B2 JP 2094778 A JP2094778 A JP 2094778A JP 9477890 A JP9477890 A JP 9477890A JP 2749945 B2 JP2749945 B2 JP 2749945B2
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- amorphous
- solid phase
- thin film
- amorphous thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000007790 solid phase Substances 0.000 title claims description 14
- 238000002109 crystal growth method Methods 0.000 title claims description 6
- 239000013078 crystal Substances 0.000 claims description 43
- 239000010409 thin film Substances 0.000 claims description 28
- 238000010438 heat treatment Methods 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 13
- 230000007547 defect Effects 0.000 claims description 7
- 239000012212 insulator Substances 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims 1
- 150000002500 ions Chemical class 0.000 description 13
- 230000006911 nucleation Effects 0.000 description 11
- 238000010899 nucleation Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 229910021417 amorphous silicon Inorganic materials 0.000 description 8
- 238000005468 ion implantation Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000010408 film Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- 239000000470 constituent Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Recrystallisation Techniques (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は固相結晶成長法に係り、より詳細には三次元
集積回路、或いは大面積電子装置の構成電子素子に適用
される非晶質絶縁物基板上の半導体薄膜の形成方法に関
するものである。Description: FIELD OF THE INVENTION The present invention relates to a solid phase crystal growth method, and more particularly, to an amorphous material applied to a three-dimensional integrated circuit or a constituent electronic element of a large-area electronic device. The present invention relates to a method for forming a semiconductor thin film on an insulator substrate.
[従来技術及び発明が解決しようとする課題] 非晶質基板上に結晶薄膜を成長させる分野に於いて、
非晶質Si層(薄膜)を非晶質絶縁物基板(SiO2)上に低
温に於ける熱処理によって、固相成長させる方法が提案
された。(T.Noguchi,H.Hayashi&H.Ohshima,1987,Mat.
Res.Soc.Symp.Proc.,106,“Polysilicon and Interface
s,"P293,(Elsevier Science Publishing,New York 198
8))。[Problems to be solved by the prior art and the invention] In the field of growing a crystalline thin film on an amorphous substrate,
A method has been proposed in which an amorphous Si layer (thin film) is solid-phase grown on an amorphous insulating substrate (SiO 2 ) by heat treatment at a low temperature. (T. Noguchi, H. Hayashi & H. Ohshima, 1987, Mat.
Res. Soc. Symp. Proc., 106, “Polysilicon and Interface
s, "P293, (Elsevier Science Publishing, New York 198
8)).
この方法はSiO2上にLPCVD法により多結晶Siを堆積
し、これにSi+イオンを注入して非晶質化する。次いで6
00℃程度の温度で熱処理を行うことにより、結晶を成長
させるものである。In this method, polycrystalline Si is deposited on SiO 2 by LPCVD, and Si + ions are implanted into the polycrystalline Si to make it amorphous. Then 6
The crystal is grown by performing a heat treatment at a temperature of about 00 ° C.
しかしながら、この方法では、最大10μmを越える大
粒径の樹枝状結晶粒が得られるが、その半面、1μm以
下の粒径のものは、単位平方センチメートルあたり106
個もあり、核発生位置が制御されていないため、その粒
径分布は極めて広範に渡る。その結果、その連続膜に作
製されたトランジスターには、しきい値や易動度の分布
に影響を与え、集積化された回路を構成する上で極めて
重大な隘路となっている。本発明者は、長年に渡る研究
の結果、多結晶膜の粒径分布のよって来たる所は、薄膜
形成の極初期過程で核形成サイト(発生起点)が無秩序
に存在することにあると結論し、核形成サイトの制御に
絞って鋭意追求した結果、CVD(化学気相法)に於い
て、或いは、固相中に於ける核形成サイトの位置制御に
成功した。However, in this method, but dendritic large crystal grains exceeding the maximum 10μm is obtained, is the other hand, the following particle size 1 [mu] m, per square centimeter 106
Because the number of nuclei is not controlled, the particle size distribution is extremely wide. As a result, the transistors formed on the continuous film affect the distribution of the threshold value and the mobility, which is a very serious bottleneck in forming an integrated circuit. The present inventor has concluded from the results of many years of research that the origin of the grain size distribution of the polycrystalline film lies in the disordered existence of nucleation sites (origins) in the very early stage of thin film formation. However, as a result of intensive research focusing on the control of nucleation sites, we succeeded in controlling the position of nucleation sites in CVD (chemical vapor deposition) or in a solid phase.
(T.Yonehara,Y.Nishigaki,H.Mizutani,S.Kondoh,K.Tam
agata,T.Noma and T.Ichikawa,Applied Physics Letter
s,52,1231,1988年.) (H,Kumomi and T.Yonera.,Applied Physics Letters,5
4,2648,1989年.) (米原隆夫、雲見日出也、佐藤信彦、特願平1−110386
号) 特願平1−110386号に示されている結晶成長方法は、
非晶質薄膜を固相成長によって結晶化させて薄膜結晶と
する結晶成長方法において、非晶質薄膜内に、他の領域
よりも注入損傷の程度が小さな微小領域が、非晶質薄膜
と下地基体との界面近傍に形成されるように、該非晶質
薄膜の構成物質のイオンを注入し、次いで、該非晶質薄
膜融点以下の温度において熱処理を行うことにより、該
微小領域から優先的に核形成させることを1つの特徴と
するものである。(T.Yonehara, Y.Nishigaki, H.Mizutani, S.Kondoh, K.Tam
agata, T.Noma and T.Ichikawa, Applied Physics Letter
s, 52, 1231, 1988. (H, Kumomi and T. Yonera., Applied Physics Letters, 5
4,2648,1989. (Takao Yonehara, Hideya Kumomi, Nobuhiko Sato, Japanese Patent Application No. 1-110386)
No. 1) The crystal growth method disclosed in Japanese Patent Application No.
In a crystal growth method in which an amorphous thin film is crystallized by solid phase growth to form a thin film crystal, in the amorphous thin film, a small region having a smaller degree of implantation damage than other regions is formed by the amorphous thin film and the underlying film. Ions of the constituent material of the amorphous thin film are implanted so as to be formed near the interface with the substrate, and then heat treatment is performed at a temperature equal to or lower than the melting point of the amorphous thin film. One of the features is to form.
該方法においては特に固相成長に於ける核形成サイト
の制御に際し、非核成形領域を、非晶質Si相と下地基板
界面に構成物質Siのイオン注入により損傷を与えること
により形成したが、低温の熱処理であるがために、樹枝
状結晶が成長し、大むね粒界はイオンの注入損傷の程度
が小さい微少領域を中心として制御されるものの、該結
晶粒同士の結晶端面の接触により形成される粒界は、第
2図に示される様に直線状とはなり得ず、正確な粒界位
置制御には至らない場合があった。ここで言う樹枝状結
晶は双晶粒界を内部にもち、四方に側枝を伸ばして成長
する結晶を指す。同図において8は粒界を示し、各結晶
粒の中央部にはイオンの注入損傷の程度の小さい領域が
形成されている。In this method, particularly in controlling nucleation sites in solid-phase growth, the non-nucleus formed region was formed by damaging the interface between the amorphous Si phase and the underlying substrate by ion implantation of the constituent material Si. Because of the heat treatment, dendritic crystals grow, and the rough grain boundaries are formed by the contact of the crystal end faces between the crystal grains, although the grain boundaries are controlled mainly in the small area where the degree of ion implantation damage is small. In some cases, the grain boundaries cannot be linear as shown in FIG. 2, and accurate grain boundary position control may not be achieved. The dendritic crystal mentioned here refers to a crystal having twin grain boundaries therein and growing by extending side branches in all directions. In the figure, reference numeral 8 denotes a grain boundary, and a region having a small degree of ion implantation damage is formed at the center of each crystal grain.
この粒径の揃った結晶薄膜に作成したトランジスター
特性のバラツキはランダムに成長させた従来の固相成長
膜のそれに比較して格段に狭少化が実現されるが、より
高性能の素子を得るためには更なる向上が望ましい。The variation in transistor characteristics made on the crystal thin film with the uniform grain size can be remarkably narrowed compared to that of the conventional solid phase growth film grown at random, but a higher performance device is obtained. Therefore, further improvement is desirable.
[課題を解決するための手段及び作用] 本発明は、上記の課題を解決するために成されたもの
であり、結晶領域の位置と形状と面積を精密に制御して
配することが本質的に重要であるとの認識によって発明
されたものである。[Means and Actions for Solving the Problems] The present invention has been made to solve the above problems, and it is essential to precisely control and arrange the position, shape, and area of a crystal region. It was invented by the recognition that it was important.
即ち、特定の予め設計された薄膜領域に素子特性分布
の主原因たる粒界を形成せず、良質な結晶構造をもつ様
に結晶を形成すれば良いという考えに立脚する。That is, the present invention is based on the idea that a crystal should be formed so as to have a good crystal structure without forming a grain boundary which is a main cause of the device characteristic distribution in a specific pre-designed thin film region.
第1図に本発明の主旨を図示する。 FIG. 1 illustrates the gist of the present invention.
第1図(a)に非晶質基板上に非晶質半導体層を、素
子を形成するのに最適な大きさに分離して形成する。半
導体層は、通常IC工程に用いられる光リソグラフィと、
反応性イオンエッチングを用いて行う。本発明において
は分離する非晶質膜の大きさは角の場合1辺が5〜10μ
mのもの、また、円としては直径が5〜10μm程度のも
のが好ましい。In FIG. 1A, an amorphous semiconductor layer is formed on an amorphous substrate so as to be separated to an optimum size for forming an element. The semiconductor layer is a photolithography usually used in the IC process,
This is performed using reactive ion etching. In the present invention, the size of the amorphous film to be separated is 5 to 10 μm on one side in the case of a corner.
m, and a circle having a diameter of about 5 to 10 μm is preferable.
特願平01−110386号に詳細に記述した様にイオン注入
を用いて分離した各非晶質半導体島の中央に核形成サイ
トを形成し、熱処理を施すことにより、樹枝状結晶の単
一核を該サイトに選択的に固相成長させる(第1図
(b))。As described in detail in Japanese Patent Application No. 01-110386, a nucleation site is formed at the center of each of the amorphous semiconductor islands separated by ion implantation, and a heat treatment is performed to form a single nucleus of a dendritic crystal. Is selectively solid-phase grown on the site (FIG. 1 (b)).
つまり、非晶質薄膜内に、他の領域よりもイオン注入
による損傷の程度が小さな微少領域が、非晶質薄膜と下
地基体との界面近傍に形成されるように非晶質薄膜に、
該非晶質薄膜の構成物質のイオンを注入し、次いで融点
以下の温度で熱処理を行う。In other words, in the amorphous thin film, a minute region having a smaller degree of damage due to ion implantation than other regions is formed near the interface between the amorphous thin film and the base substrate.
Ions of the constituent material of the amorphous thin film are implanted, and then heat treatment is performed at a temperature lower than the melting point.
そのまま成長を続行すると、各サイトに単一核形成し
た結晶は、周囲の非晶質相から原子が非晶質/結晶相境
界を横断して、結晶相内にとり込まれ、結晶領域は拡大
しつづけ最終的には、各島全体が単一のドメインをもつ
結晶相に転移し、島領域内には粒界は形成されない。何
故ならば島内には、他の核から成長した別個の結晶領域
が存在しないからに他ならない(第1図(c))。本発
明においては分離して配置された非晶質薄膜の各々の領
域内には単一の核が成長するようにイオン注入を行な
う。When the growth is continued as it is, the crystal in which a single nucleus is formed at each site is taken in the crystal phase by atoms crossing the amorphous / crystal phase boundary from the surrounding amorphous phase, and the crystal region expands. Eventually, the entire island is transformed into a crystal phase having a single domain, and no grain boundary is formed in the island region. This is because there is no separate crystal region grown from other nuclei in the island (FIG. 1 (c)). In the present invention, ion implantation is performed so that a single nucleus grows in each region of the amorphous thin film separately arranged.
但し、島内には粒界は存在しないが樹枝状結晶のた
め、双晶面が第1図(c)の様に残留し、また、多数の
結晶欠陥も存在する。双晶や転移等の結晶欠陥は、いわ
ゆる薄膜トランジスターの様な低級な性能のものに本結
晶を用いる場合には、双晶面や内部欠陥は粒界ほど悪影
響を与えないが、バルク並みの高性能素子を作製する場
合には、致命傷となり、欠陥除去は必須となる。However, there are no grain boundaries in the island, but due to dendritic crystals, twin planes remain as shown in FIG. 1 (c) and many crystal defects also exist. When crystal defects such as twins and dislocations are used for low-grade ones such as so-called thin-film transistors, twin planes and internal defects do not have as bad an effect as grain boundaries, but are as high as bulk. In the case of producing a performance element, it is fatal and removal of defects is indispensable.
そのためには、大面積一括薄膜のみを高温に熱処理す
ることが可能な、インコヒーレント光による熱処理が、
この目的のためには最適である。それは、コヒーレント
光、たとえば、レーザー光ではビーム径に制限があるた
め、処理時間(走査時間)、制御性、経済性が問題とな
る場合があるためである。たとえばランプのようなイン
コヒーレント光を用いると一括大面積照射が可能とな
る。また、本発明においては分離して配置された非晶質
薄膜の各々の領域内には単一の核が成長するようにイオ
ン注入を行ない、その後熱処理を行うことで結晶を成長
させ、結晶成長終了後には各々の領域内には粒界が存在
しないようにすることが好ましい。For that purpose, heat treatment using incoherent light, which can heat-treat only a large-area batch thin film at a high temperature,
Optimal for this purpose. This is because the processing time (scanning time), controllability, and economical efficiency may become a problem because the beam diameter of coherent light, for example, laser light, is limited. For example, when incoherent light such as a lamp is used, batch large-area irradiation can be performed. Further, in the present invention, ion implantation is performed so that a single nucleus grows in each region of the amorphous thin film which is separately arranged, and thereafter, a crystal is grown by performing a heat treatment. After completion, it is preferable that no grain boundary exists in each region.
以上の様に本発明により非晶質基板上に薄膜状平坦な
単一ドメインより成る結晶欠陥の少ない半導体島が形成
され、その結果高性能かつバラツキの少ない電子素子が
作製される。As described above, according to the present invention, a semiconductor island having a thin film-like flat single domain and having few crystal defects is formed on an amorphous substrate, and as a result, an electronic device having high performance and less variation is manufactured.
[実施例] (実施例1) SiO2を主成分とするガラス基板状に、減圧CVD法で非
晶質Si層を100nmの厚みに堆積した。In the Example] (Example 1) A glass substrate like composed mainly of SiO 2, it was deposited an amorphous Si layer to a thickness of 100nm by vacuum CVD method.
ソースガスはSiH4を使用し、550℃圧力0.3Torrで形成
した。この非晶質Si層に1×1015ions/cm2のSi+イオン
を40KeVで前面に注入し、その後、レジストを塗布し、
通常のリソグラフィー技術で1μm径のレジストを15μ
m間隔に格子点状に残した。The source gas was formed at 550 ° C. and a pressure of 0.3 Torr using SiH 4 . This amorphous Si layer is implanted with 1 × 10 15 ions / cm 2 of Si + ions at the front surface at 40 KeV, and then a resist is applied.
15μm resist with 1μm diameter by normal lithography
The lattice points were left at m intervals.
このレジストをマスクにしてSi+イオンを70keVで全面
に注入した。注入量は3×1015ions/cm2とした。70keV
の注入エネルギーによってその投影飛程は100nmのSiと
下地材料のSiO2ガラス界面近傍に来る。これで1μm径
のレジスト以外の領域は全てその界面(Si/SiO2)に損
傷が与えられた。レジストを剥離した後、レジストを再
塗付し、上記格子点の中間に3μmの巾の線状に格子状
の溝を該非晶質Si層に反応性イオンエッチングを用いて
形成した。即ち、前記格子点状に配置した核形成サイト
を中心に置く12μm×12μmの非晶質Si島が複数個形成
された。その後、N2雰囲気中で630℃、80時間の熱処理
を行った。その後、透過電子顕微鏡で観察した結果、12
μm×12μmの領域は全て単一ドメインの双晶面をふく
む結晶に変質し、内部には粒界は皆無であった。Using this resist as a mask, Si + ions were implanted into the entire surface at 70 keV. The injection amount was 3 × 10 15 ions / cm 2 . 70keV
Due to the implantation energy, the projection range comes near the interface between 100 nm of Si and the SiO 2 glass as the base material. As a result, the interface (Si / SiO 2 ) was damaged in all regions except the resist having a diameter of 1 μm. After the resist was peeled off, the resist was re-applied, and a linear lattice-like groove having a width of 3 μm was formed in the amorphous Si layer in the middle of the lattice points by using reactive ion etching. That is, a plurality of 12 μm × 12 μm amorphous Si islands centered on the nucleation sites arranged in the lattice points were formed. Thereafter, heat treatment was performed at 630 ° C. for 80 hours in an N 2 atmosphere. Then, as a result of observation with a transmission electron microscope, 12
All the regions of μm × 12 μm were transformed into crystals containing twin planes of a single domain, and there were no grain boundaries inside.
更に、タングステンハロゲンランプにより1300℃、3
分の熱処理を施した結果、島内部の残留欠陥は激減し、
透過電子顕微鏡による観察ではBend−extion contours
が広域に渡り観察され、良好な結晶性を示すに至った。Furthermore, at 1300 ° C, 3
As a result of the heat treatment for minutes, residual defects inside the island are drastically reduced,
Bend-extion contours
Was observed over a wide area, and good crystallinity was shown.
この各結晶島はMOSFET(電界効果,トランジスタ)を
試作したところバルクSiに作製した素子の90%に匹敵す
るキャリヤー易動度を示し、しきい値のバラツキもバル
クに作製したものと遜色ないことが確認された。Each of these crystal islands shows a carrier mobility equivalent to 90% of a device fabricated on bulk Si when a MOSFET (field effect transistor) is prototyped, and the variation in threshold value is comparable to that of a device fabricated on bulk. Was confirmed.
(実施例2) 板状のガラスからなる下地材料上に、減圧化学気相法
によってSiH4を熱分解し、多結晶Si薄膜を100nm堆積し
た。形成温度は620℃、圧力0.3Torrであり、その粒径は
微細であり50nm程度であった。Si注入は2回行った。ま
ず、最初にレジストマスクなしに全面に40keVの注入を
エネルギーで3×1015ions/cm2の注入量でSiイオンを該
多結晶Si層へ注入し、損傷は連続となり、非晶質化され
た。ただし、40keVの投影飛程は100nmの膜厚中央近傍に
位置し、その結果、Si/SiO2下地界面近傍の損傷はほと
んどない。Example 2 SiH 4 was thermally decomposed by a low pressure chemical vapor deposition method on a base material made of a plate-like glass, and a polycrystalline Si thin film was deposited to a thickness of 100 nm. The formation temperature was 620 ° C., the pressure was 0.3 Torr, and the particle size was fine, about 50 nm. Si implantation was performed twice. First, 40 keV implantation is performed on the entire surface without a resist mask, and Si ions are implanted into the polycrystalline Si layer with an energy of 3 × 10 15 ions / cm 2 , and the damage becomes continuous and becomes amorphous. Was. However, the projection range of 40 keV is located near the center of the film thickness of 100 nm, and as a result, there is almost no damage near the Si / SiO 2 underlayer interface.
その後、実施例1と同様にレジストマスクを1μm径
で15μm間隔で格子点状に設け、2回目のSi+イオン注
入を今度は70keVで行い、界面近傍に損傷を導入した。
注入量は1回目の注入と同一とした。レジスト剥離後レ
ジストを再塗付し、上記格子点の中間に3μm巾の線状
に格子状の溝を該非晶質Si層に反応性イオンエッチング
を用いて形成する。即ち、前記格子点状に配置した核形
成サイトを中心に置く12μm×12μmの非晶質Si島が複
数個形成された。その後、N2中で620℃、100時間熱処理
した。その結果、実施例1と同様に、12μm×12μmの
Si島には粒界が存在しない単一ドメインの結晶が形成さ
れる。Thereafter, as in Example 1, a resist mask having a diameter of 1 μm was provided at lattice points at intervals of 15 μm, and a second Si + ion implantation was performed at 70 keV to introduce damage near the interface.
The injection amount was the same as the first injection. After the resist is peeled off, the resist is re-applied, and a linear lattice-like groove having a width of 3 μm is formed in the amorphous Si layer in the middle of the lattice points by using reactive ion etching. That is, a plurality of 12 μm × 12 μm amorphous Si islands centered on the nucleation sites arranged in the lattice points were formed. Thereafter, heat treatment was performed at 620 ° C. for 100 hours in N 2 . As a result, similarly to the first embodiment, a 12 μm × 12 μm
A single domain crystal without a grain boundary is formed on the Si island.
(実施例3) 非晶質Ge薄膜を50nmの厚さで、SiO2からなる下地材料
上に電子ビームによって真空蒸着する。真空度は1×10
-6Torr、室温で堆積した。レジストによって1.5μm
径、間隔15μmの領域をマスクし、全域をGe+イオンを1
30keVで注入する。注入量は2×1015ions/cm2であっ
た。Ge+イオンの注入深さは表面より約50nmであり、主
に下地基板界面近傍に集中的に注入され、界面部分に損
傷が与えられる。マスクを除去した後、レジストを再塗
付し、上記格子点の中間に3μm巾の線状に格子状の溝
を該非晶質Ge層に反応性イオンエッチングを用いて形成
する。即ち、前記格子点状に配置した核形成サイトを中
心に置く12μm×12μmの非晶質Ge島が複数個形成され
た。その後、N2中、或いはH2雰囲気中で380℃50時間熱
処理したところ、マスクで覆われてGe+イオンが注入さ
れず界面に損傷が無い微小領域のみから単一の結晶が成
長し、Ge+イオンにより界面に損傷が導入された非晶質G
e領域へ結晶が伸長した。透過電子顕微鏡で結晶構造を
調べた結果、各々の12μm×12μmの島には単一ドメイ
ンの結晶が成長し、島内部には粒界が存在しない。Thick (Example 3) 50 nm amorphous Ge thin film, vacuum deposition by the electron beam on the underlying material formed of SiO 2. The degree of vacuum is 1 × 10
Deposited at -6 Torr, room temperature. 1.5μm depending on resist
Mask the area with a diameter and spacing of 15 μm, and use Ge +
Inject at 30 keV. The injection amount was 2 × 10 15 ions / cm 2 . Ge + ions are implanted at a depth of about 50 nm from the surface, are mainly implanted intensively near the interface of the underlying substrate, and damage the interface. After removing the mask, a resist is applied again, and a linear lattice-shaped groove having a width of 3 μm is formed in the amorphous Ge layer by reactive ion etching between the lattice points. In other words, a plurality of 12 μm × 12 μm amorphous Ge islands were formed, centered on the nucleation sites arranged in the lattice points. Thereafter, when heat treatment was performed at 380 ° C. for 50 hours in N 2 or in an H 2 atmosphere, a single crystal was grown only from a small region covered with a mask and Ge + ions were not implanted and the interface was not damaged. Amorphous G with damage introduced at the interface by + ions
The crystal extended to the e region. As a result of examining the crystal structure with a transmission electron microscope, a single-domain crystal grows on each 12 μm × 12 μm island, and there is no grain boundary inside the island.
[発明の効果] 本発明によれば、平坦薄膜のまま、しかも低温で粒界
のない単一のドメインより成る結晶領域を所望の位置に
形成することができる。[Effect of the Invention] According to the present invention, a crystal region consisting of a single domain without a grain boundary at a low temperature can be formed at a desired position as a flat thin film.
従って、特性にバラツキの少ない電子素子を大面積に
渡って作製することができる。Therefore, it is possible to manufacture an electronic element having small variations in characteristics over a large area.
第1図は、本発明の方法を示す工程図である。第1図
(a)は、分離された非晶質半導体島が非晶質絶縁物基
板上に相互に分離して配置され、各島の中央に人工的に
核形成サイトが設けた状態を示す。第1図(b)は、熱
処理を開始すると、各島の中央にある人工的に形成され
た核形成サイトに単一の核が形成される様子を示す。第
1図(c)は、最終的に島全体が結晶化し、単一のドメ
インよりなる粒界の無い結晶が成長する様子を示す。 第2図は従来例を示し、成長前に薄膜が分離されておら
ず、連結のまま固相成長した結果、結晶粒界が複雑な形
状となる様子を示す。 (符号の説明) 1,6……非晶質絶縁物基板、2……非晶質半導体島、3
……人工核形成サイト、4……単一核(3の個所に固相
で形成された)、5……単一ドメインよりなる結晶半導
体の島、7……単一ドメインよりなる結晶領域、8……
粒界。FIG. 1 is a process chart showing the method of the present invention. FIG. 1A shows a state in which isolated amorphous semiconductor islands are arranged separately on an amorphous insulator substrate, and a nucleation site is artificially provided at the center of each island. . FIG. 1 (b) shows how a single nucleus is formed at an artificially formed nucleation site at the center of each island when the heat treatment is started. FIG. 1 (c) shows a state in which the entire island is finally crystallized, and a single-domain crystal without grain boundaries grows. FIG. 2 shows a conventional example, in which a thin film is not separated before growth, and shows a state in which a crystal grain boundary has a complicated shape as a result of solid phase growth while being connected. (Explanation of symbols) 1,6 ... Amorphous insulator substrate, 2 ... Amorphous semiconductor island, 3
... an artificial nucleation site, 4 ... a single nucleus (formed in a solid state at 3 places), 5 ... a crystal semiconductor island consisting of a single domain, 7 ... a crystal region consisting of a single domain, 8 ...
Grain boundaries.
Claims (1)
御する固相結晶成長法に於いて、成長前に予め、複数個
の非晶質薄膜を相互に分離して、非晶質絶縁物基板上に
配置する過程と、前記各々の非晶質薄膜において単一の
核のみから結晶が成長するように結晶核発生基点を形成
する過程と、前記複数の非晶質薄膜を該非晶質薄膜の融
点以下の温度で熱処理することによって結晶を固相成長
させる過程と、前記固相成長終了後に成長した結晶にイ
ンコヒーレント光を照射して結晶の内部の欠陥を除去す
る過程とから成ることを特徴とする固相結晶成長法。In a solid phase crystal growth method for controlling a crystal nucleus generation origin in a solid phase of an amorphous thin film, a plurality of amorphous thin films are separated from each other before growth, Disposing the plurality of amorphous thin films on the amorphous insulator substrate, forming a crystal nucleus origin such that a crystal grows from only a single nucleus in each of the amorphous thin films, A step of subjecting the crystal to solid phase growth by heat treatment at a temperature equal to or lower than the melting point of the amorphous thin film, and a step of irradiating the crystal grown after completion of the solid phase growth with incoherent light to remove defects inside the crystal. A solid phase crystal growth method characterized by comprising:
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2094778A JP2749945B2 (en) | 1990-04-10 | 1990-04-10 | Solid phase crystal growth method |
EP91105613A EP0451789B1 (en) | 1990-04-10 | 1991-04-09 | Method of forming semiconductor thin film |
AT91105613T ATE132919T1 (en) | 1990-04-10 | 1991-04-09 | METHOD FOR PRODUCING A SEMICONDUCTOR THIN FILM |
DE69116202T DE69116202T2 (en) | 1990-04-10 | 1991-04-09 | Process for the production of a semiconductor thin film |
US08/352,113 US5495824A (en) | 1990-04-10 | 1994-12-01 | Method for forming semiconductor thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2094778A JP2749945B2 (en) | 1990-04-10 | 1990-04-10 | Solid phase crystal growth method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03292720A JPH03292720A (en) | 1991-12-24 |
JP2749945B2 true JP2749945B2 (en) | 1998-05-13 |
Family
ID=14119554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2094778A Expired - Fee Related JP2749945B2 (en) | 1990-04-10 | 1990-04-10 | Solid phase crystal growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2749945B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4711166B2 (en) * | 2004-08-03 | 2011-06-29 | 株式会社 液晶先端技術開発センター | Crystallization apparatus and crystallization method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01187875A (en) * | 1988-01-22 | 1989-07-27 | Seiko Epson Corp | Method for manufacturing semiconductor devices |
JPH03290924A (en) * | 1990-03-22 | 1991-12-20 | Ricoh Co Ltd | Manufacture of crystalline silicon film, crystalline silicon semiconductor utilizing the same and its manufacture |
-
1990
- 1990-04-10 JP JP2094778A patent/JP2749945B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03292720A (en) | 1991-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2695488B2 (en) | Crystal growth method | |
US5278093A (en) | Method for forming semiconductor thin film | |
US4177084A (en) | Method for producing a low defect layer of silicon-on-sapphire wafer | |
EP0390608B1 (en) | Method for forming semiconductor thin-film and resulting semiconductor thin-film | |
KR20000076851A (en) | Method for fabricating a semiconductor structure having a crystalline alkaline earth metal oxide interface with silicon | |
KR19980079536A (en) | How to Reduce Tread Potential by Amorphization and Recrystallization | |
JPH0395922A (en) | Forming method for thin semiconductor film | |
US5495824A (en) | Method for forming semiconductor thin film | |
JP2749945B2 (en) | Solid phase crystal growth method | |
JP2695466B2 (en) | Crystal growth method | |
KR100347519B1 (en) | Method of low temperature growth of a semiconductor film | |
JP2800060B2 (en) | Method for manufacturing semiconductor film | |
EP0420516B1 (en) | Method for forming semiconductor thin film | |
JP2541456B2 (en) | Microstructure fabrication method | |
JPH059099A (en) | Method for growing crystal | |
JPS6191917A (en) | Manufacture of semiconductor thin film crystal | |
JP2680114B2 (en) | Method for forming crystalline semiconductor thin film | |
JP2695462B2 (en) | Crystalline semiconductor film and method for forming the same | |
JPH02105517A (en) | Manufacture of semiconductor device | |
JPH0311618A (en) | Crystalline semiconductor film and forming method thereof | |
JPH02258690A (en) | Method of forming semiconductor thin film | |
JPH04114995A (en) | Method for depositing diamond thin film | |
JPH05335234A (en) | Manufacture of semiconductor substrate | |
JPH05195231A (en) | Formation of crystal film | |
JPH0442918A (en) | Formation of semiconductor thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |