JP2747690B2 - Color identification device - Google Patents
Color identification deviceInfo
- Publication number
- JP2747690B2 JP2747690B2 JP61220010A JP22001086A JP2747690B2 JP 2747690 B2 JP2747690 B2 JP 2747690B2 JP 61220010 A JP61220010 A JP 61220010A JP 22001086 A JP22001086 A JP 22001086A JP 2747690 B2 JP2747690 B2 JP 2747690B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- color
- detection
- signal
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Spectrometry And Color Measurement (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は色識別装置、特に被検知物に光を照射し、
その反射あるいは透過光を信号処理して色を識別するも
のに関する。
[従来の技術]
従来この種の色識別装置は、直流電源で連続発光させ
たハロゲンランプの白色光を検知光として利用する一
方、受光側には色フィルターを受光面に配設した光電変
換素子を赤青緑の各3原色に対して1組づつ備え、色を
識別すべき被検知物で反射された白色の検知光を光電変
換素子で3原色の色信号に直接分離した後、各色信号毎
に並列的に信号処理するものが一般的であった。
[発明が解決しようとする問題点]
しかしながら、検知光としてハロゲンランプの白色光
を利用している関係上ランプの連続発光を必要とし、そ
の結果外乱光の影響は避けられず、更に投光部それ自体
の発熱も大きく小型化にも限度があるなど多くの不都合
がある。
本発明はかかる不都合に鑑みてなされたものであっ
て、投光部の発熱が少なく、装置全体の小型化が図れる
と共に、外乱光の影響が可及的に低減でき、使用環境を
選ぶことなく精度の高い色識別が行える装置を提供する
ことを目的とする。
[問題点を解決するための手段]
第1図は本発明にかかる色識別装置の概略を示すブロ
ック図であって、色を識別すべき被検知物1に対して赤
青緑の3原色の光2a,2b,2cを検知光として順次照射する
投光手段と、被検知物1における反射または投過光2dを
受けて一連の電気信号に変換する受光手段と、変換され
た電気信号から検知光2dに対応する検出情報のみを取り
出す検知手段と、検出情報の値を基にして被検知物1の
色を識別する手段とから構成される。
投光手段は、光の三原色である赤青緑の各々の色に対
応して1組づつ発光素子3a,3b,3cを備え、各色の発光素
子3a,3b,3cにおける点灯時期に所定の時間間隔を設けな
がらパルス状に点灯することにより、3原色分の検知光
2a,2b,2c,が被検知物1の同一箇所に対して間欠的に照
射されるようにしている。
検知手段には、入力された電気信号から駆動信号のパ
ルスレートと同一周波数の信号を選択的に取り出すフィ
ルタ手段と、そのフィルタ手段から取り出された信号を
駆動信号で同期検波して色信号を分離する同期検波回路
と、その同期検波回路から取り出された色信号を積分し
て一連の検出情報を形成する積分回路と、その積分回路
から取り出された各色毎の検出情報における略中央の電
圧値をデジタル値に変換するA/D変換器とを備えてい
る。
更に上記投光手段における各色の発光素子は、第2図
および第3図の様に、駆動信号における複数のパルス分
ずつまとめて点灯されるものとし、上記フィルタ手段
を、駆動信号のパルスレートに中心周波数を有するバン
ドパスフィルター22により構成している。
また、第4図および第5図に示す如く、上記した積分
回路から取り出された各色毎の検出情報を時系列的に一
連に合成するマルチプレクサと、そのマルチプレクサか
ら取り出された各色毎の検出情報における略中央の電圧
値をデジタル値に変換するA/D変換器とを備える様にし
てもよい。
この場合、上記した投光手段における各色の発光素子
は、駆動信号における1パルス毎に点灯される素子が変
更されるものであり、上記フィルタ手段は、駆動信号の
パルスレートに中心周波数を有する同調増幅回路40で構
成される。
[作用]
上記構成において、投光手段の焦点位置に被検知物1
の識別面4を配置した状態で装置を作動させると、赤青
緑の各発光素子3a,3b,3cに一定パルスレートの駆動電圧
が時間をずらせて印加され、被検知物1の同一箇所に赤
色、青色そして緑色の検知光2a,2b,2cが所定の時間間隔
を設けて照射される。この検知光は被検知物1で反射ま
たは透過された後、順次受光手段へ入射されて一連の電
気信号に変換される。
ところで、被検知物1で検知光が反射または透過され
る際、識別すべき色と補色関係にある色が吸収される結
果、被検知物1の色を特定可能な3原色分の成分情報を
含んだ検知光2dが得られるが、受光手段にはかかる検知
光2dに加えて外部の蛍光灯等からの外乱光が同時に入射
されることが避けられず、電気信号上にノイズとして重
畳されている。そこで次の検知手段においては、投光手
段から発光素子群3の点灯時期情報を得、この情報を基
にして検知光2の入射強度に対応する検出情報のみを選
択的に取り出すことにより、電気信号から外乱光に対応
するノイズの除去を行いながら、検出情報を取り出す。
すなわち、フィルタ手段で検知光とは周波数の異なるノ
イズを取り除いたあと、同期検波回路において検知光と
略同一周波数ではあるが位相の異なるノイズを除去する
が、それでも取り除けなかったノイズの影響を、積分回
路によって軽減するのである。
ノイズカットされた検出情報は更に、識別手段に於
て、点灯中の発光素子3a,3b,3cの発光色を特定する色情
報と組み合わされて赤青緑の各色毎の成分情報が順次求
められ、かかる3原色分の成分情報を利用して被検知物
1の色が識別されるのである。
[実施例]
以下本発明を、第2図で示す如く、コンベアベルト5
で連続して運ばれてくる乾電池等の小型製品を被検知物
1とし、該製品の外装色を検知して色の適、不適を自動
的に判別し製品の選別制御を行う装置に実施した一例を
示すがこれに限らず、識別した色の名前を単に表示器で
表示する測定装置、あるいは各種色物製品をオンライン
で検査するものなど、各種装置にも略同様に実施できる
ことは勿論である。
本発明にかかる色識別装置は、第2図に示す如く、外
装色を識別すべき被検知物1に赤青緑の検知光2a,2b,2c
を個別に照射する投光部6と、被検知物1において反射
された検知光2dを集光して所定の電気信号に変換する受
光部7と、変換された電気信号から検知光2dの被検知物
1における反射強度に比例した電圧値の成分情報を取り
出す検知部9と、検知光2の色を特定する色情報と前記
成分情報とから各色毎の成分比を求め、該成分比を基に
して色の識別を行ったあと、識別結果に対応した所定の
制御信号S10を出力する演算処理部10と、制御信号S10
に応じた制御動作を行う制御部11とから構成される。
投光部6は、発振回路12から第3図(a)の様な数kH
zないし数10kHz程度のパルスレートのパルス信号S1を
連続的に発振形成し、駆動信号発生回路13を介して発光
素子群3に順次印加可能としている。駆動信号発生回路
13は、ゲート信号の印加と連繋して前記パルス信号S1
を分割するものであって、ゲート信号発生回路14におい
てパルス信号S1から三相のゲート信号S2,S3,S4を作っ
て各ゲートに入力することにより、所定数のパルスが連
続した後に出力ゲートが順次切り替わり、第3図(b)
・(c)・(d)の様な3組の駆動信号S5,S6,S7が形
成される。この駆動信号は、更に増幅回路15で電力増幅
されたのち、各発光素子3a,3b,3cに個別に印加される。
発光素子群3は3組の発光ダイオード3a,3b,3cから構
成されており、光の三原色である赤、青、緑色の光を発
するものを1組づつ設けているが、通常各色の発光効率
が異なるため、前記増幅回路15により各発光ダイオード
3a,3b,3cの許容消費電力量の範囲内で増幅度を適宜調節
し、あるいは複数個の同色の発光ダイオードを並列接続
して同時発光させることにより、各組の発光素子の発光
強度が互いに略等しく且つ可及的に大きくなるように設
定している。この様にして各発光ダイオード3a,3b,3cか
ら発生された検知光2a,2b,2cは、集光レンズを含む光学
系16を用いて被検知物1の一点に照射可能とし、更に被
検知物1で反射された検知光2dが受光部7へ有効に入射
されるようにしている。
受光部7は、光学系17で前記検知光2dをフォトダイオ
ード等の光電変換素子20の受光面に導く。光電変換素子
20は、投光部6から放出される赤青緑の各スペクトルに
対して十分な感度を有するものであって、該素子20で入
射光2dを入射強度に比例した振幅値の電気信号に変換
し、更にプリアンプ21で増幅したあと検知部9へ入力す
る。
検知部9では、先ず発光素子群3の点灯周波数である
パルス信号S1のパルスレートに中心周波数を持つバン
ドパスフィルター22を通すことにより、不要な外乱光の
影響を取り除いた後、OPアンプ23で増幅することによ
り、第3図(e)のように被検知物1の表面4で反射さ
れた検知光2dにのみ関係する一連の正弦波状の色信号S
8が得られるので、この信号S8を更にロックインアンプ
24に入力して信号処理している。
ロックインアンプ24は、同期検波回路25と積分回路26
とから構成され、入力された色信号S8を該信号S8の振
幅値に比例した第3図(f)のような階段状の電圧S9
に変換する。同期検波回路25は、積分回路26の入力側と
アース間にトランジスタスイッチ27を配設したものであ
って、該スイッチ27のオンオフ時期を投光部6の発振回
路12で制御することにより、投光部6から検知光2a,2b,
2cが放出されていない期間は積分回路26の入力側をアー
スして入力を断ち、発光素子群3の点灯時期と対応して
信号S8を積分回路26に入力することにより、信号S8の
発光周波数と同じ周波数成分値のみをパルス状に積分回
路26に送る。ここで同期検波回路としては、トランジス
タのほか電界効果トランジスタアナログ掛算器、平衡復
調器なども使用し得る。積分回路26では入力信号を積分
し、該信号のピーク値に比例した電圧値の信号S9に変
換増幅する。かかる電圧値は、赤青緑の各検知光の被検
知物における反射強度に比例し、更に各色の検知光2a,2
b,2cは所定時間持続したのちに順次切り替わるため、中
央値付近が略一定に安定化され、階段状にその値V1,
V2,V3が変化する信号S9が得られる。
かかる信号S9は更に、電圧値が比較的安定している
各色の中央部分でA/D変換器30によりサンプリングして
デジタルコード化した後、演算処理部10に成分情報とし
て入力する。
演算処理部10は、中央処理装置(CPU)を制御の中心
とし、操作部31からデータ入力等の手動操作を可能とす
るとともに、ROM内に予め格納しておいたプログラムで
下記の動作手順が自動制御されるマイクロコンピュータ
であって、点灯されている発光素子3a,3b,3cを特定する
色情報と前記成分情報とを利用して、成分情報を3原色
毎に互いに分離すると共に、3原色分の成分情報から各
色毎の成分比を求め、更に該成分比を予め基準色につい
て記憶しておいた同様な成分比と比較し、その判定結果
に対応した制御信号S10を出力する。
色情報は例えば投光部6のゲート信号発生回路14から
取り出され、現在発光されている発光素子3a,3b,3cの色
と点灯期間とを特定可能とするものであって、かかる色
情報から、入力されているデジタルコードが何色の成分
情報であるかが判別される。ここで初期データとして、
各色の検知光2a,2b,2cを直接入力したときの成分情報を
記憶しておくことにより、該初期値と被検知物1に於い
て実際に反射させた場合の成分情報との比から反射率が
3原色分の検知光2a,2b,2cについて算出されるので、こ
の反射率の成分比を求めることにより被検知物1の表面
4の色度が特定され、更に反射率それ自体の値、又は各
反射率の二乗の和の平方の値から明度が特定されるので
ある。従って、基準とすべき1ないし複数の基準色につ
いて上記測定を予め行って、基準となる色度と明度を記
憶させておき、かかる基準値と被検知物1における実際
の検査値とを比較し、両者が一致あるいは所定範囲内に
あることが判定された時、所定の制御信号S10が制御部
11に向け出力される様に設定されている。
制御部11では、入力される制御信号S10に基づき、被
検知物1の外装色が合格の場合はコンベア5を1段移行
して次の製品を同様に検査するが、不合格と判定される
と当該製品1をラインから排出するなどして製品の外装
色による選別処理が自動的に連続して行われるのであ
る。
第4図は本発明のほかの実施例であって、本実施例に
於いては、駆動信号発生回路13で第5図(a)のパルス
信号S1から第5図(b)(c)(d)の様な互いに120
度ずつ位相がずれた三相の駆動信号S11,S12,S13を形成
し、該信号を発光素子群3に印加することにより、1パ
ルス毎に点灯する発光素子3a,3b,3cを変更するととも
に、かかる点灯サイクルを複数回繰り返す様にしてい
る。
一方、検知部9に於いては、パルス信号S1のパルス
レート近傍の周波数を増幅帯域とする同調増幅回路40で
入力信号を選択増幅することにより、第5図(e)の様
な信号S14を得たのち、該信号S14を同期検波回路41で
第5図(f)(g)(h)の如く赤青緑の各色の検知光
毎の信号S15,S16,S17に分離している。同期検波回路41
は3組のゲートからなり、各ゲートには駆動信号S11,S
12,S13と同位相で立ち上がりは等しいが立ち下がりの遅
いゲート信号を印加し、更に出力側に積分回路42を繋い
で分離した信号S15,S16,S17を各色毎に並列に積分して
直流電圧を形成している。かかる電圧は、マルチプレク
サ43で時系列的に取り出されて第3図(f)と類似の信
号に変換された後、前記実施例と略同様に信号処理され
るのである。
なお上記実施例では、構成の一部をプログラムで実施
するようにしたが、具体的な回路で構成することも出来
る。
また発光素子3は、レーザー光など各種光源が利用で
き、更に、スポット状に色識別する外に、走査して面状
に模様を判別させることも可能である。
[発明の効果]
本発明は上記の如く、三原色を発する3組の発光素子
3a,3b,3cをパルス状に点灯して検知光2を発生するよう
にしたので、必要とする消費電力に比して強い検知光が
得られ、発光素子3それ自体の発熱が可及的に抑えられ
ると共に、装置全体の小型化も図れる。
更に、発光素子3の発光時期情報と連繋して、被検知
物1で反射又は透過された検知光2dに対応する検出情報
のみを取り出して信号処理するようにしたので、外乱光
によるノイズが軽減され、精度の高い色識別が行えるな
ど多くの利点を有する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention irradiates a color discriminating device, particularly an object, with light,
The present invention relates to a device that performs signal processing on the reflected or transmitted light to identify a color. [Prior Art] Conventionally, this type of color discriminating apparatus uses white light of a halogen lamp continuously emitted by a DC power supply as detection light, while a photoelectric conversion element in which a color filter is disposed on a light receiving surface on a light receiving side. , One set for each of the three primary colors of red, blue, and green. After the white detection light reflected by the object whose color is to be identified is directly separated into three primary color signals by the photoelectric conversion element, In general, the signal processing is performed in parallel every time. [Problems to be Solved by the Invention] However, since white light of a halogen lamp is used as detection light, continuous emission of the lamp is required, and as a result, the influence of disturbance light is inevitable. There are many inconveniences, such as large heat generation itself and limited size reduction. The present invention has been made in view of such inconveniences, and generates less heat from the light projecting unit, can reduce the size of the entire apparatus, can reduce the influence of disturbance light as much as possible, and can select the use environment. It is an object of the present invention to provide an apparatus capable of performing highly accurate color identification. [Means for Solving the Problems] FIG. 1 is a block diagram schematically showing a color discriminating apparatus according to the present invention, in which an object 1 whose color is to be discriminated has three primary colors of red, blue and green. A light projecting means for sequentially irradiating the light 2a, 2b, 2c as detection light, a light receiving means for receiving the reflected or projected light 2d of the object 1 and converting it into a series of electric signals, and detecting from the converted electric signal The detection unit extracts only the detection information corresponding to the light 2d, and the unit for identifying the color of the detection target 1 based on the value of the detection information. The light projecting means includes light-emitting elements 3a, 3b, and 3c, one set corresponding to each of the three primary colors of light, red, blue, and green. Lighting in a pulsed manner while providing an interval enables detection light for three primary colors
2a, 2b, and 2c are intermittently applied to the same portion of the detection target 1. The detection means includes a filter means for selectively extracting a signal having the same frequency as the pulse rate of the drive signal from the input electric signal, and a signal extracted from the filter means is synchronously detected with the drive signal to separate a color signal. A synchronous detection circuit, an integration circuit for integrating a color signal extracted from the synchronous detection circuit to form a series of detection information, and a substantially center voltage value in the detection information for each color extracted from the integration circuit. An A / D converter for converting to a digital value. Further, the light emitting elements of each color in the light emitting means are lit at a time for a plurality of pulses in the drive signal as shown in FIGS. 2 and 3, and the filter means is set to the pulse rate of the drive signal. It comprises a bandpass filter 22 having a center frequency. Further, as shown in FIGS. 4 and 5, a multiplexer for sequentially combining the detection information for each color extracted from the above-described integration circuit in a time series, and a multiplexer for the detection information for each color extracted from the multiplexer. An A / D converter for converting a substantially central voltage value into a digital value may be provided. In this case, the light emitting element of each color in the above-mentioned light projecting means changes the element which is turned on for each pulse in the drive signal, and the filter means has a tuning having a center frequency in the pulse rate of the drive signal. It is composed of an amplifier circuit 40. [Operation] In the above configuration, the detection target 1 is located at the focal position of the light projecting means.
When the apparatus is operated in a state where the identification surface 4 is arranged, a driving voltage of a constant pulse rate is applied to each of the red, green and blue light emitting elements 3a, 3b, 3c with a time lag, and the same voltage is applied to the same portion of the detection target 1. The red, blue, and green detection lights 2a, 2b, and 2c are emitted at predetermined time intervals. After the detection light is reflected or transmitted by the detection target 1, the detection light is sequentially incident on the light receiving means and converted into a series of electric signals. By the way, when the detection light is reflected or transmitted by the detection target 1, a color complementary to the color to be identified is absorbed, and as a result, component information of three primary colors that can specify the color of the detection target 1 is obtained. Although the detection light 2d including the detection light 2d is obtained, it is inevitable that disturbance light from an external fluorescent lamp or the like is simultaneously incident on the light receiving means in addition to the detection light 2d, and is superimposed as noise on the electric signal. I have. Therefore, in the next detecting means, the lighting timing information of the light emitting element group 3 is obtained from the light projecting means, and based on this information, only the detection information corresponding to the incident intensity of the detecting light 2 is selectively extracted to obtain the electric power. Detection information is extracted while removing noise corresponding to disturbance light from the signal.
That is, after removing noise having a frequency different from that of the detection light by the filter means, the synchronous detection circuit removes noise having substantially the same frequency as that of the detection light but having a different phase. It is alleviated by the circuit. The noise-cut detection information is further combined with color information for specifying the emission color of the light-emitting elements 3a, 3b, 3c during lighting by the identification means, and component information for each of red, blue, and green is sequentially obtained. The color of the detected object 1 is identified using the component information of the three primary colors. [Embodiment] As shown in FIG.
A small product, such as a dry battery, which is continuously carried in the above process is defined as the detection target 1, and the apparatus is configured to detect the exterior color of the product, automatically determine whether the color is appropriate or not, and control the product selection. An example is shown, but the present invention is not limited to this, and it goes without saying that the present invention can be carried out in almost the same manner in various devices, such as a measuring device that simply displays the name of the identified color on a display, or a device that inspects various color products online. . As shown in FIG. 2, the color discriminating apparatus according to the present invention applies red, blue, and green detection lights 2a, 2b, and 2c to an object 1 whose exterior color is to be identified.
A light projecting unit 6 for individually irradiating the detection light 2d, a light receiving unit 7 for condensing the detection light 2d reflected on the detection target 1 and converting the same into a predetermined electric signal, and receiving the detection light 2d from the converted electric signal. A detection unit 9 for extracting component information of a voltage value proportional to the reflection intensity of the detection object 1, a component ratio for each color is obtained from the color information specifying the color of the detection light 2 and the component information, and the component ratio is determined based on the component ratio. after performing the identification of colors in the a processing unit 10 for outputting a predetermined control signal S 10 corresponding to the identification result, the control signal S 10
And a control unit 11 that performs a control operation according to. The light projecting section 6 is supplied from the oscillation circuit 12 by several kilohertz as shown in FIG.
A pulse signal S 1 having a pulse rate of about z to several tens of kHz is continuously oscillated, and can be sequentially applied to the light emitting element group 3 via the drive signal generation circuit 13. Drive signal generation circuit
13 is the pulse signal S 1 connected to the application of the gate signal.
The gate signal generation circuit 14 generates three-phase gate signals S 2 , S 3 , and S 4 from the pulse signal S 1 and inputs the signals to each gate, so that a predetermined number of pulses continue. Later, the output gates are sequentially switched, and FIG. 3 (b)
Three sets of drive signals S 5 , S 6 and S 7 as shown in (c) and (d) are formed. This drive signal is further power-amplified by the amplifier circuit 15 and then applied individually to the light emitting elements 3a, 3b, 3c. The light-emitting element group 3 is composed of three sets of light-emitting diodes 3a, 3b, and 3c, each of which emits one of the three primary colors of light, red, blue, and green. Are different, each light emitting diode is
By properly adjusting the amplification within the range of the allowable power consumption of 3a, 3b, and 3c, or by connecting a plurality of light-emitting diodes of the same color in parallel to emit light at the same time, the light-emitting intensity of each set of light-emitting elements is mutually different. They are set to be substantially equal and as large as possible. Thus, the detection light 2a, 2b, 2c generated from each of the light emitting diodes 3a, 3b, 3c can be irradiated to one point of the detection target 1 using the optical system 16 including the condenser lens. The detection light 2d reflected by the object 1 is made to effectively enter the light receiving unit 7. The light receiving unit 7 guides the detection light 2d to the light receiving surface of the photoelectric conversion element 20 such as a photodiode by the optical system 17. Photoelectric conversion element
Reference numeral 20 denotes a device having sufficient sensitivity to each of the red, blue, and green spectra emitted from the light projecting unit 6. The device 20 converts the incident light 2d into an electric signal having an amplitude value proportional to the incident intensity. Then, after being amplified by the preamplifier 21, it is input to the detection unit 9. The detection unit 9, by passing through a band-pass filter 22 first has a center frequency pulse rate of the pulse signals S 1 a lighting frequency of the light emitting element group 3, after removing the effects of unwanted ambient light, OP amp 23 A series of sinusoidal color signals S related only to the detection light 2d reflected by the surface 4 of the detection target 1 as shown in FIG.
Since 8 is obtained, further lock-in amplifier the signal S 8
Input to 24 for signal processing. The lock-in amplifier 24 includes a synchronous detection circuit 25 and an integration circuit 26.
The input color signal S 8 is converted into a step-like voltage S 9 as shown in FIG. 3 (f), which is proportional to the amplitude value of the signal S 8 .
Convert to The synchronous detection circuit 25 has a transistor switch 27 disposed between the input side of the integration circuit 26 and the ground. The on / off timing of the switch 27 is controlled by the oscillation circuit 12 of the light emitting unit 6 to emit light. The detection light 2a, 2b,
During the period in which 2c is not emitted, the input side of the integrating circuit 26 is grounded to cut off the input, and the signal S 8 is input to the integrating circuit 26 in correspondence with the lighting timing of the light emitting element group 3, whereby the signal S 8 Only the same frequency component value as the emission frequency is sent to the integrating circuit 26 in a pulse form. Here, as the synchronous detection circuit, a field effect transistor analog multiplier, a balanced demodulator and the like can be used in addition to the transistor. An input signal in the integrating circuit 26 integrates and converts amplified signal S 9 of the voltage value proportional to the peak value of the signal. Such a voltage value is proportional to the reflection intensity of each of the red, blue, and green detection lights on the detection target, and furthermore, the detection lights 2a, 2
Since b and 2c are sequentially switched after a predetermined period of time, the vicinity of the central value is stabilized to be substantially constant, and the values V 1 and V 2 are stepwisely changed.
Signal S 9 to V 2, V 3 changes is obtained. Further, the signal S 9 is sampled by the A / D converter 30 at the central portion of each color where the voltage value is relatively stable, digitally encoded, and then input to the arithmetic processing unit 10 as component information. The arithmetic processing unit 10 has a central processing unit (CPU) as the center of control, enables manual operations such as data input from the operation unit 31, and executes the following operation procedure by a program stored in the ROM in advance. A microcomputer which is automatically controlled and separates component information from each other for each of the three primary colors by using color information for specifying the light-emitting elements 3a, 3b, and 3c and the component information. seeking component ratio of each color from the minute component information, further compared to similar component ratio which has been stored for advance reference color the ingredients ratio, and outputs a control signal S 10 corresponding to the determination result. The color information is extracted from, for example, the gate signal generating circuit 14 of the light projecting unit 6 and enables to specify the color and the lighting period of the currently emitting light emitting elements 3a, 3b, 3c. It is determined what color component information the input digital code is. Here, as initial data,
By storing the component information when the detection light 2a, 2b, 2c of each color is directly input, the reflection is performed based on the ratio between the initial value and the component information when the object 1 is actually reflected. Since the ratio is calculated for the detection lights 2a, 2b, and 2c for the three primary colors, the chromaticity of the surface 4 of the detection target 1 is specified by calculating the component ratio of the reflectance, and the value of the reflectance itself is determined. Alternatively, the brightness is specified from the value of the square of the sum of the squares of the respective reflectances. Therefore, the above-described measurement is performed in advance for one or a plurality of reference colors to be used as a reference, and the chromaticity and lightness serving as the reference are stored, and the reference value is compared with the actual inspection value of the detection target 1. when the both are in coincidence or in the predetermined range is determined, a predetermined control signal S 10 the control unit
It is set to output to 11. The control unit 11 based on the control signal S 10 to be inputted, but the exterior color of the detection object 1 in the case of passing the conveyor 5 migrated one stage to check as well the following products, it is determined that failure Then, the product 1 is discharged from the line, and the sorting process based on the exterior color of the product is automatically and continuously performed. Figure 4 is a another embodiment of the present invention, in the present embodiment, FIG. 5 from the pulse signals S 1 of FIG. 5 by the drive signal generating circuit 13 (a) (b) ( c) 120d each other as in (d)
By forming three-phase drive signals S 11 , S 12 , and S 13 whose phases are shifted by degrees, and applying the signals to the light-emitting element group 3, the light-emitting elements 3a, 3b, and 3c that are turned on for each pulse are generated. In addition to the change, the lighting cycle is repeated a plurality of times. On the other hand, at the detection section 9, by selecting amplifying the input signal with the tuning amplifier circuit 40 to the frequency of the pulse rate near the pulse signals S 1 and the amplification band, the signal such as FIG. 5 (e) S After the signal 14 is obtained, the signal S 14 is converted into signals S 15 , S 16 , and S 17 for each detection light of each color of red, blue, and green by the synchronous detection circuit 41 as shown in FIGS. 5 (f), (g), and (h). Are separated. Synchronous detection circuit 41
Consists of three sets of gates, each of which has a driving signal S 11 , S
A gate signal having the same phase as S 12 and S 13 and having the same rise but a slow fall is applied, and further, an integration circuit 42 is connected to the output side to integrate the separated signals S 15 , S 16 and S 17 in parallel for each color. As a result, a DC voltage is formed. Such voltages are taken out in time series by the multiplexer 43, converted into signals similar to those shown in FIG. 3 (f), and then subjected to signal processing in substantially the same manner as in the above embodiment. In the above embodiment, a part of the configuration is implemented by a program, but it may be configured by a specific circuit. The light-emitting element 3 can use various light sources such as a laser beam. In addition to spot-color discrimination, it is also possible to scan and discriminate a pattern in a plane. [Effects of the Invention] As described above, the present invention provides three sets of light emitting elements that emit three primary colors.
Since the detection light 2 is generated by lighting the pulses 3a, 3b, and 3c in a pulse shape, the detection light that is stronger than the required power consumption is obtained, and the light emitting element 3 itself generates heat as much as possible. , And the size of the entire apparatus can be reduced. Furthermore, since the detection information corresponding to the detection light 2d reflected or transmitted by the detection target 1 is extracted and signal-processed in connection with the emission timing information of the light-emitting element 3, noise due to disturbance light is reduced. This has many advantages such as high-precision color identification.
【図面の簡単な説明】
第1図は本発明の概略を示すブロック図である。
第2図は本発明の一実施例を示すブロック図、第3図
(a)〜(f)は第2図の動作を説明する波形図であ
る。
第4図は他の実施例を示すブロック図、第5図(a)〜
(h)は第4図の動作を説明する波形図である。
1……被検知物、2……検知光、3……発光素子、6…
…投光部、7……受光部、9……検知部、10……演算処
理部、13……駆動信号発生回路。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an outline of the present invention. FIG. 2 is a block diagram showing an embodiment of the present invention, and FIGS. 3 (a) to 3 (f) are waveform diagrams for explaining the operation of FIG. FIG. 4 is a block diagram showing another embodiment, and FIGS.
(H) is a waveform diagram illustrating the operation of FIG. 1 ... detected object, 2 ... detection light, 3 ... light emitting element, 6 ...
... Floodlight section, 7... Light receiving section, 9... Detecting section, 10.
Claims (1)
おける点灯時期に所定の時間間隔を設けながらパルス状
に点灯することにより、色を識別すべき被検知物の同一
箇所に3原色分の検知光を間欠的に照射可能とする投光
手段と、 被検知物において反射または透過した光を入射し、入射
強度に対応する振幅値の電気信号に変換する受光手段
と、 発光素子の点灯時期と連繋して前記電気信号から検知光
に対応する検出情報のみを取り出す検知手段と、 前記検出情報と点灯中の発光素子を特定する色情報とか
ら3原色の各成分情報を求め、被検知物の色を識別する
手段とを備えた色識別装置であって、 上記投光手段の発光素子は、一定パルスレートの駆動信
号でパルス状に点灯されるものであり、 上記検知手段には、 入力された電気信号から駆動信号のパルスレートと同一
周波数の信号を選択的に取り出すフィルタ手段と、 該フィルタ手段から取り出された信号を駆動信号で同期
検波し、色信号を分離する同期検波回路と、 該同期検波回路から取り出された色信号を積分して一連
の検出情報を形成する積分回路と、 該積分回路から取り出された各色毎の検出情報における
略中央の電圧値をデジタル値に変換するA/D変換器とを
備えるとともに、 上記投光手段における各色の発光素子は、駆動信号にお
ける複数のパルス分ずつまとめて点灯されるものであ
り、 上記フィルタ手段が、駆動信号のパルスレートに中心周
波数を有するバンドパスフィルター(22)であることを
特徴とする色識別装置。 2.3原色の発光素子を個別に備え、各色の発光素子に
おける点灯時期に所定の時間間隔を設けながらパルス状
に点灯することにより、色を識別すべき被検知物の同一
箇所に3原色分の検知光を間欠的に照射可能とする投光
手段と、 被検知物において反射または透過した光を入射し、入射
強度に対応する振幅値の電気信号に変換する受光手段
と、 発光素子の点灯時期と連繋して前記電気信号から検知光
に対応する検出情報のみを取り出す検知手段と、 前記検出情報と点灯中の発光素子を特定する色情報とか
ら3原色の各成分情報を求め、被検知物の色を識別する
手段とを備えた色識別装置であって、 上記投光手段の発光素子は、一定パルスレートの駆動信
号でパルス状に点灯されるものであり、 上記検知手段には、 入力された電気信号から駆動信号のパルスレートと同一
周波数の信号を選択的に取り出すフィルタ手段と、 該フィルタ手段から取り出された信号を駆動信号で同期
検波し、色信号を並列的に分離する同期検波回路と、 該同期検波回路から取り出された色信号を各色毎に積分
して並列的に出力される検出情報を形成する積分回路
と、 該積分回路から取り出された各色毎の検出情報を時系列
的に一連に合成するマルチプレクサと、 該マルチプレクサから取り出された各色毎の検出情報に
おける略中央の電圧値をデジタル値に変換するA/D変換
器とを備えるとともに、 上記投光手段における各色の発光素子は、駆動信号にお
ける1パルス毎に点灯される素子が変更されるものであ
り、 上記フィルタ手段が、駆動信号のパルスレートに中心周
波数を有する同調増幅回路(40)であることを特徴とす
る色識別装置。(57) [Claims] 1.3 The light emitting elements of the three primary colors are individually provided, and the light emitting elements of each color are illuminated in a pulsed manner with a predetermined time interval between the lighting times, so that the colors to be identified can be identified. A light projecting means for intermittently irradiating the detection light of three primary colors to the same place of the detection object, and the light reflected or transmitted by the detection object is incident and converted into an electric signal of an amplitude value corresponding to the incident intensity Detecting means for extracting only detection information corresponding to detection light from the electric signal in association with the lighting timing of the light emitting element; and three primary colors based on the detection information and color information for specifying the light emitting element being lit. And a means for determining each component information and identifying the color of the detected object, wherein the light emitting element of the light emitting means is illuminated in a pulse shape by a drive signal at a constant pulse rate. And the detecting means includes: Filter means for selectively extracting a signal having the same frequency as the pulse rate of the drive signal from the input electric signal; synchronous detection circuit for synchronously detecting the signal extracted from the filter means with the drive signal and separating a color signal; An integration circuit for integrating a color signal extracted from the synchronous detection circuit to form a series of detection information; and converting a substantially central voltage value in the detection information for each color extracted from the integration circuit into a digital value. And an A / D converter, wherein the light emitting elements of each color in the light emitting means are lit at a time for each of a plurality of pulses in the drive signal, and the filter means focuses on the pulse rate of the drive signal. A color discriminating device characterized by being a bandpass filter (22) having a frequency. 2.3 Light-emitting elements of three primary colors are individually provided, and the light-emitting elements of each color are illuminated in a pulsed manner while providing a predetermined time interval between the light-emitting elements, so that the three primary colors can be identified at the same location of the object to be identified. Light-emitting means for intermittently irradiating the detection light with light, light-receiving means for receiving light reflected or transmitted by the object to be detected and converting the light into an electric signal having an amplitude value corresponding to the incident intensity, and lighting of the light-emitting element Detecting means for extracting only the detection information corresponding to the detection light from the electric signal in conjunction with the timing; obtaining the component information of each of the three primary colors from the detection information and the color information specifying the light emitting element being lit; Means for identifying the color of an object, wherein the light emitting element of the light emitting means is illuminated in a pulse shape by a drive signal of a constant pulse rate, the detecting means, Input electric signal Filter means for selectively extracting a signal having the same frequency as the pulse rate of the drive signal; synchronous detection circuit for synchronously detecting the signal extracted from the filter means with the drive signal and separating color signals in parallel; An integrating circuit that integrates the color signal extracted from the detection circuit for each color to form detection information output in parallel, and sequentially synthesizes detection information for each color extracted from the integration circuit in time series And a A / D converter for converting a substantially central voltage value in the detection information for each color extracted from the multiplexer into a digital value. In this case, the element to be lit for each pulse is changed, and the filter means includes a tuning amplifier circuit (40) having a center frequency at the pulse rate of the drive signal. ).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61220010A JP2747690B2 (en) | 1986-09-18 | 1986-09-18 | Color identification device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61220010A JP2747690B2 (en) | 1986-09-18 | 1986-09-18 | Color identification device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6375524A JPS6375524A (en) | 1988-04-05 |
JP2747690B2 true JP2747690B2 (en) | 1998-05-06 |
Family
ID=16744514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61220010A Expired - Lifetime JP2747690B2 (en) | 1986-09-18 | 1986-09-18 | Color identification device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2747690B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100775569B1 (en) * | 1999-10-27 | 2007-11-16 | 일리노이즈 툴 워크스 인코포레이티드 | Outer link for use in a hand strapping tool |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11211568A (en) * | 1998-01-29 | 1999-08-06 | Fuji Xerox Co Ltd | Method and apparatus for optical measurement, and image forming apparatus |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5773635A (en) * | 1980-10-25 | 1982-05-08 | M Ii Kaihatsu Giken:Kk | Photoelectric detector |
JPS58193227U (en) * | 1982-06-17 | 1983-12-22 | オムロン株式会社 | color discrimination device |
JPS5960327A (en) * | 1982-09-30 | 1984-04-06 | Matsushita Electric Works Ltd | Color measuring device |
JPS59128417A (en) * | 1983-01-13 | 1984-07-24 | Toppan Printing Co Ltd | Color picture input head of printed material inspecting device |
JPS60262032A (en) * | 1984-06-09 | 1985-12-25 | Mazda Motor Corp | Color discrimination apparatus |
-
1986
- 1986-09-18 JP JP61220010A patent/JP2747690B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100775569B1 (en) * | 1999-10-27 | 2007-11-16 | 일리노이즈 툴 워크스 인코포레이티드 | Outer link for use in a hand strapping tool |
Also Published As
Publication number | Publication date |
---|---|
JPS6375524A (en) | 1988-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4838697A (en) | Apparatus for rapid colorimetry on different samples | |
US4508449A (en) | Apparatus for measuring diamond colors | |
US5854680A (en) | Photoelectric densitometer | |
US4291975A (en) | Apparatus for determining the color characteristics of a gem | |
US20180372542A1 (en) | LED Lighting Based Multispectral Imaging System for Color Measurement | |
JP5201825B2 (en) | Distance image acquisition apparatus and method | |
DE50207481D1 (en) | Method and apparatus for multiparameter acquisition of single photons for simultaneous generation of time, place, time and wavelength resolved fluorescence images | |
KR102730647B1 (en) | Spectrometer device | |
EP0306337B1 (en) | Spectrophotometer | |
JP2007102235A (en) | Scanning microscope and scanning method using a scanning microscope | |
JP2747690B2 (en) | Color identification device | |
JP6535461B2 (en) | Material analysis sensor and material analysis device | |
JP3978955B2 (en) | Photometric device and colorimeter | |
JP2001159601A (en) | Optical measuring apparatus | |
JPH07294429A (en) | Turbidity meter and turbid chromaticity meter | |
JPH1144638A (en) | Fruit sugar content measurement method and fruit sugar content meter | |
JP5845071B2 (en) | Object detection device | |
RU2287803C2 (en) | Multiple-component ir-range gas analyzer | |
KR100459864B1 (en) | Apparatus for reproducing set up Color of color discrimination Sensor | |
CN218470007U (en) | Optical module for detecting light intensity spectrum of stepping Micro LED | |
JPH10187928A (en) | Color illuminator for image processing and detector for object to be measured | |
JPS60186720A (en) | Color discriminating device | |
JPS62292069A (en) | Color identification device | |
JPS6347626A (en) | Color discrimination apparatus | |
JPH10253528A (en) | Method for spectral reflection factor measurement of plant body, and apparatus therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |