[go: up one dir, main page]

JP2746520B2 - Method for producing Al-Zn-Mg based alloy - Google Patents

Method for producing Al-Zn-Mg based alloy

Info

Publication number
JP2746520B2
JP2746520B2 JP14930793A JP14930793A JP2746520B2 JP 2746520 B2 JP2746520 B2 JP 2746520B2 JP 14930793 A JP14930793 A JP 14930793A JP 14930793 A JP14930793 A JP 14930793A JP 2746520 B2 JP2746520 B2 JP 2746520B2
Authority
JP
Japan
Prior art keywords
giant
compound
alloy
primary crystal
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14930793A
Other languages
Japanese (ja)
Other versions
JPH073353A (en
Inventor
克之 吉川
敏正 坂本
隆夫 古川
健三 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14930793A priority Critical patent/JP2746520B2/en
Publication of JPH073353A publication Critical patent/JPH073353A/en
Application granted granted Critical
Publication of JP2746520B2 publication Critical patent/JP2746520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、航空機、車両等に使用
される展伸用Al-Zn-Mg系合金の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a wrought Al-Zn-Mg alloy used for aircraft, vehicles and the like.

【0002】[0002]

【従来の技術】展伸用Al合金のなかで、Al-Zn-Mg系合金
は強度、溶接性等の諸特性に優れるため、鉄道車両等の
溶接構造材料として汎用されている。このようなAl-Zn-
Mg系合金においては、強度、耐応力腐食割れ性、溶接性
等の改善のため、主要合金元素であるZn、Mg以外にMn、
Cr、Ti、Zr等の合金元素が添加されるのが普通であり、
現在、これら元素を含有した合金として実用化されてい
る。
2. Description of the Related Art Among aluminum alloys for spreading, Al-Zn-Mg alloys are widely used as welding structural materials for railway vehicles and the like because of their excellent properties such as strength and weldability. Al-Zn-
For Mg-based alloys, in addition to the main alloying elements Zn and Mg, Mn, in order to improve strength, stress corrosion cracking resistance, weldability, etc.
Usually, alloying elements such as Cr, Ti, and Zr are added,
At present, it is put into practical use as an alloy containing these elements.

【0003】このように、Al-Zn-Mg系合金においては、
Mn、Cr、Ti、Zr等の合金元素が添加されるが、これらの
元素は、強度、耐応力腐食割れ性、溶接性等の諸性質が
最も良好となるように適正量が添加されている。例え
ば、代表的Al-Zn-Mg系合金であるJIS 7N01合金の場合、
Mn、Cr、Zr、Tiの規格値は、Mnは 0.2〜0.7 %、Crは0.
3 %以下、Zrは0.25%以下、Tiは0.2 %以下である。
[0003] Thus, in an Al-Zn-Mg alloy,
Alloying elements such as Mn, Cr, Ti, and Zr are added, and these elements are added in appropriate amounts so that various properties such as strength, stress corrosion cracking resistance, weldability, etc. become the best. . For example, in the case of JIS 7N01 alloy, which is a typical Al-Zn-Mg alloy,
The standard values of Mn, Cr, Zr and Ti are as follows: Mn is 0.2-0.7%, Cr is 0.
3% or less, Zr is 0.25% or less, and Ti is 0.2% or less.

【0004】しかしながら、このような規格範囲におい
て、これら元素を添加した場合、次のような問題点があ
った。これら元素の添加量が多い合金溶湯を溶製し、半
連続鋳造等の通常の方法で鋳造し、鋳塊を製造した場
合、鋳塊内には凝固時、巨大な金属間化合物(以下、巨
大化合物という)が生成してしまうという問題があっ
た。
[0004] However, when these elements are added within such a specification range, there are the following problems. When an alloy melt containing a large amount of these elements is smelted and cast by a normal method such as semi-continuous casting to produce an ingot, a large intermetallic compound (hereinafter referred to as a huge Compound).

【0005】このような巨大化合物は通常数10ミクロン
〜数100 ミクロン、極端な場合には数ミリメートルにも
達するものであり、これらが鋳塊内に生成した場合、こ
れら巨大化合物は、その後の圧延、押出、鍛造等の加工
工程中に消失することはなく、最終製品の板材あるいは
押出材等の加工材中に残存することになる。最終製品中
に残存したこれら巨大化合物は、鉄鋼等の金属材料中に
おける介在物と同様、最終製品の強度、延性、靱性、疲
労強度等の諸性質を劣化させたり信頼性を低下させたり
することは既によく知られるところである。
[0005] Such giant compounds usually reach tens of microns to hundreds of microns, and in extreme cases, even a few millimeters. When they are formed in an ingot, these giant compounds can be subsequently rolled. It does not disappear during processing steps such as extrusion, forging, etc., but remains in a processing material such as a plate material or extruded material of the final product. These giant compounds remaining in the final product, as well as inclusions in metallic materials such as iron and steel, may degrade the properties, such as strength, ductility, toughness, and fatigue strength, of the final product, or reduce its reliability. Is already well known.

【0006】例えば、巨大化合物の発生が多く、鋳塊全
体に発生した場合、その鋳塊から押出等の加工工程を経
て製造された製品あるいは部品は巨大化合物を含むの
で、これら巨大化合物が疲労破壊の起点となったり、亀
裂の進展を助長するため、疲労強度の低下を引き起こす
ことになる。また、巨大化合物の発生が比較的少なく、
鋳塊内に局部的に散在して巨大化合物が存在する場合、
巨大化合物を含んだ部分の鋳塊から製造された製品ある
いは部品は、含まない物に比べて疲労強度特性が低くな
る。
For example, when a large amount of a large compound is generated and occurs in the entire ingot, a product or a part manufactured from the ingot through a processing step such as extrusion contains the large compound. , And promotes crack propagation, which causes a decrease in fatigue strength. In addition, the generation of giant compounds is relatively small,
If there is a giant compound scattered locally in the ingot,
Products or parts manufactured from the ingot of the portion containing the macro-compound have lower fatigue strength characteristics than those not containing it.

【0007】このように、巨大化合物が発生する場合、
その発生の程度により、健全な特性を示す製品および部
品の歩留りが変化し、安定して信頼性の高い製品および
部品を供給することが困難となる。また、巨大化合物は
圧延、押出、鍛造等の加工時に割れ等の原因となり、加
工を阻害する原因になる場合もある。
Thus, when a huge compound is generated,
Depending on the degree of occurrence, the yield of products and parts exhibiting sound characteristics changes, and it becomes difficult to supply stable and reliable products and parts. In addition, the giant compound may cause cracks or the like at the time of processing such as rolling, extrusion, forging, or the like, and may cause processing to be hindered.

【0008】以上のような有害な巨大化合物に関して
は、これまでいくつかの合金系について比較的詳細に調
査されており、以下のように報告されている。まず、高
力系Al-Zn-Mg-Cu 系合金であるJIS 7075合金ならびにAl
-Mg 系合金であるJIS 5083合金においては、巨大化合物
は凝固時α-Al が晶出する以前に初晶として晶出し、ま
た、その組成はMn、Fe等を含有したCrAl7 金属間化合物
であるとされている。(参考文献、(1)M.K.B.Day:J.I.M
85(1956-57),263 、(2)L.E.Steele,et al:J.I.M 88
(1959-60),260、(3)Donald J.Beerntsen:Metallurgical
Transactions B 8B(1977)687、(4) 吉川 他: 軽金属
29(1979)4、144 )。その防止方法としては、CrAl7
の初晶線以下にMn、Cr濃度を低減、制御することが必要
とされ、種々の初晶線に関する式が提案されている。
[0008] Regarding the above-mentioned harmful giant compounds, some alloy systems have been investigated comparatively in detail, and are reported as follows. First, JIS 7075 alloy, which is a high-strength Al-Zn-Mg-Cu alloy, and Al
In JIS 5083 alloy, which is a -Mg alloy, the giant compound is crystallized as a primary crystal before α-Al crystallizes during solidification, and its composition is a CrAl 7 intermetallic compound containing Mn, Fe, etc. It is said that there is. (References, (1) MKBDay: JIM
85 (1956-57), 263, (2) LESteele, et al: JIM 88
(1959-60), 260, (3) Donald J. Beerntsen: Metallurgical
Transactions B 8B (1977) 687, (4) Yoshikawa et al .: Light metal
29 (1979) 4, 144). To prevent this, it is necessary to reduce and control the Mn and Cr concentrations below the primary crystal line of the CrAl 7 phase, and various equations for the primary crystal line have been proposed.

【0009】また、Al-Mn 系合金であるJIS 3004合金で
は、巨大化合物は7075、5083合金と同様、初晶化合物で
あり、その組成は(Fe,Mn)Al6と報告されている。(参考
文献、吉川 他: 軽金属 33(1983)10 、602 )。さら
に、Al-Zn-Mg系合金では、上述の合金と同様、巨大化合
物はTiを含有したZrAl3 系の初晶化合物であり、その初
晶領域が報告されている。また、Ti、Zr量の抑制、制御
がその防止に効果があるとされてきた。(参考文献、軽
金属学会第19回シンポジウム「アルミニウムの連続鋳造
技術と鋳塊組織」1981年10月、P.65)。
In the JIS 3004 alloy, which is an Al-Mn alloy, the giant compound is a primary crystal compound like the 7075 and 5083 alloys, and its composition is reported to be (Fe, Mn) Al 6 . (References, Yoshikawa et al .: Light Metal 33 (1983) 10, 602). Further, in the Al-Zn-Mg-based alloy, the giant compound is a Ti-containing ZrAl 3 -based primary crystal compound similarly to the above-mentioned alloys, and the primary crystal region thereof has been reported. In addition, it has been considered that the suppression and control of the Ti and Zr amounts are effective in preventing the above. (Reference, 19th Symposium of the Japan Institute of Light Metals, "Continuous casting technology and ingot structure of aluminum", October 1981, p.65).

【0010】しかしながら、その制御の目標値について
は、Zrに関しては定量的な値が提案されているものの、
Tiに関しては明確な定量値はこれまでのところ明らかに
されていない。
However, as for the target value of the control, although a quantitative value has been proposed for Zr,
No clear quantitative values have been reported for Ti so far.

【0011】以上のように、これまでの研究によれば、
巨大化合物は初晶として晶出する金属間化合物であり、
その組成は合金系により種々異なるものの、各合金系に
ついていずれも1種類の巨大化合物が生成し、その防止
のための初晶線が提案されてきた。
As described above, according to the previous research,
Giant compounds are intermetallic compounds that crystallize as primary crystals,
Although the composition varies depending on the alloy system, one kind of giant compound is generated for each alloy system, and a primary crystal line for preventing such a giant compound has been proposed.

【0012】[0012]

【発明が解決しようとする課題】前述のように、各合金
系について巨大化合物を防止するための初晶線が提案さ
れ、Al-Zn-Mg系合金についても、Al-Zr 系巨大化合物を
対象としてその初晶線が提案されてきた。
As described above, a primary crystal line for preventing a giant compound in each alloy system has been proposed, and the Al-Zn-Mg based alloy is also applicable to the Al-Zr based giant compound. The primary crystal line has been proposed.

【0013】しかしながら、本発明者らがAl-Zn-Mg系合
金の巨大化合物について鋭意研究した結果、本合金系で
は、一種類の巨大化合物のみを対象とした初晶線を基に
してZr量を低減する従来の方法では、巨大化合物の発生
を完全には防止できないことが明らかとなった。その原
因は、本合金系では従来のZrAl3 系巨大化合物以外に新
たにCrAl7 系の巨大化合物が発生するためであり、従っ
て、この両者を同時に防止する新たな方法を確立しなけ
ればならないという新たな問題に直面した。
However, as a result of the inventor's intense research on the giant compound of the Al-Zn-Mg alloy, the present inventors have found that the Zr content of this alloy system is based on the primary crystal line for only one kind of giant compound. It has been clarified that the conventional method for reducing the odor cannot completely prevent the generation of a giant compound. The cause is that in the present alloy system, a CrAl 7- based giant compound is newly generated in addition to the conventional ZrAl 3- based giant compound.Therefore, it is necessary to establish a new method to prevent both of them at the same time. Faced with new problems.

【0014】本発明は上記の問題点を解決するためにな
されたもので、本合金系の溶製時にMn、Cr、Ti、Zrの量
を制御することによって、初晶巨大化合物の発生を防止
するAl-Zn-Mg系合金の製造方法を提供することを目的と
する。
The present invention has been made in order to solve the above-mentioned problems. By controlling the amounts of Mn, Cr, Ti, and Zr at the time of melting the present alloy system, it is possible to prevent the generation of a primary crystal giant compound. It is an object of the present invention to provide a method for producing an Al-Zn-Mg-based alloy.

【0015】[0015]

【課題を解決するための手段】本発明の要旨は、Zn:4〜
5 %、Mg:1〜2 %、Mn:0.2〜0.7 %、Cr:0.3%以下、T
i:0.2%以下、Zr:0.25 %以下を含み、Cu、Si、Fe等の
その他の元素量が各々0.2 %以下であるAl-Zn-Mg系合金
において、前記合金の溶製時に、Mn、Cr量が%Mn+3.25
%Cr<0.905 、Ti、Zr量が%Zr+0.909 %Ti<0.127 な
る組成に制御して初晶巨大化合物の発生を防止するAl-Z
n-Mg系合金の製造方法である。
The gist of the present invention is that Zn: 4 to
5%, Mg: 1-2%, Mn: 0.2-0.7%, Cr: 0.3% or less, T
i: In an Al-Zn-Mg alloy containing 0.2% or less and Zr: 0.25% or less, and other elements such as Cu, Si, and Fe each being 0.2% or less, Mn, Cr content is% Mn + 3.25
Al-Z which controls the composition such that% Cr <0.905 and the content of Ti and Zr is% Zr + 0.909% Ti <0.127 to prevent the generation of primary crystals.
This is a method for producing an n-Mg alloy.

【0016】[0016]

【作用】本発明者らは、ZrAl3 系およびCrAl7 系の両巨
大化合物の生成挙動について、さらに研究を重ねた結
果、表1および図1に示す結果が得られた。表1はMn、
Cr、Ti、Zr量が種々に異なるJIS 7N01合金をるつぼ中で
溶解し、α−Alの晶出する温度(本合金の液相線温度、
通常 648.8℃)直上の温度 654℃で等温保持を行い、る
つぼ底部に沈殿する巨大化合物の生成状況を調査した平
衡実験の結果である。
The present inventors have conducted further studies on the formation behavior of both ZrAl 3 -based and CrAl 7 -based giant compounds. As a result, the results shown in Table 1 and FIG. 1 were obtained. Table 1 shows Mn,
The temperature at which JIS 7N01 alloys with various Cr, Ti, and Zr contents are melted in a crucible and α-Al crystallizes (the liquidus temperature of this alloy,
This is the result of an equilibrium experiment in which isothermal holding was performed at a temperature of 654 ° C directly above the temperature of 654 ° C, and the formation of giant compounds precipitated at the bottom of the crucible was investigated.

【0017】[0017]

【表1】 [Table 1]

【0018】図1に示す顕微鏡観察による巨大化合物の
説明図は、表1のNo.1の試料で認められた巨大化合物で
あり、図中A、Bで示す化合物は、顕微鏡下では明らか
に色調が異なり、二種類の巨大化合物が生成しているこ
とが明らかである。これらの化合物について、さらに調
査、研究した結果、化合物Aは前述のAl-Zn-Mg系合金で
報告されているものと同様のTiを含有した初晶のZrAl3
化合物(以下、(Ti,Zr)Al3という)である。一方、化合
物Bは前述の報告では認められていない化合物であり、
調査の結果、Mnを含有した初晶のCrAl7 化合物(以下、
(Mn,Cr)Al7という)であることが判明した。
The explanatory diagram of the giant compound observed with a microscope shown in FIG. 1 is the giant compound observed in the sample No. 1 in Table 1. The compounds indicated by A and B in the figure clearly show the color tone under the microscope. It is clear that two types of giant compounds were formed. As a result of further investigation and study of these compounds, Compound A was found to be a primary Ti-containing ZrAl 3 containing the same Ti as that reported in the Al-Zn-Mg alloy described above.
A compound (hereinafter, referred to as (Ti, Zr) Al 3 ). On the other hand, compound B is a compound that has not been recognized in the aforementioned report,
As a result of the investigation, a primary CrAl 7 compound containing Mn (hereinafter, referred to as
(Mn, Cr) Al 7 ).

【0019】表1、No.1〜7 の結果から分かるように、
Mn、Cr、Ti、Zrが高い場合には、(Mn,Cr)Al7、(Ti,Zr)A
l3の巨大化合物が同時に生成している。一方、Mn、Cr濃
度を低減したNo.8〜20の組成では、(Mn,Cr)Al7の巨大化
合物の生成は認められないが、もう一方の(Ti,Zr)Al3
巨大化合物の生成が認められる。さらに、Mn、Cr、Ti、
Zrの濃度を抑制したNo.21 〜27の試料では、両巨大化合
物の生成は全く認められなかった。すなわち、本合金で
はこれまで報告されてきた(Ti,Zr)Al3初晶化合物の他
に、新たに(Mn,Cr)Al7初晶化合物が生成することが明ら
かとなった。
As can be seen from the results of Table 1, Nos. 1 to 7,
When Mn, Cr, Ti, Zr are high, (Mn, Cr) Al 7 , (Ti, Zr) A
l 3 giant compounds are formed simultaneously. On the other hand, in the compositions of Nos. 8 to 20 in which the Mn and Cr concentrations were reduced, the formation of the (Mn, Cr) Al 7 giant compound was not recognized, but the other (Ti, Zr) Al 3 giant compound Formation is observed. In addition, Mn, Cr, Ti,
In the samples of Nos. 21 to 27 in which the concentration of Zr was suppressed, generation of both giant compounds was not observed at all. In other words, it became clear that, in addition to the previously reported (Ti, Zr) Al 3 primary crystal compound, a new (Mn, Cr) Al 7 primary crystal compound is generated in this alloy.

【0020】以上の表1の結果ならびに初晶線の温度依
存性等を考慮して、JIS 7N01合金の(Mn,Cr)Al7の初晶線
を 648.8℃の平衡状態において求めると、図2に示す%
Mn+3.25%Cr=0.905 となることが明らかとなった。従
って、Mn、Cr濃度を %Mn+3.25%Cr<0.905 に制御すれば(Mn,Cr)Al7巨大化合物は完全に防止するこ
とが可能となった。
Taking the results of Table 1 above and the temperature dependence of the primary crystal line into consideration, the primary crystal line of (Mn, Cr) Al 7 of the JIS 7N01 alloy is obtained at an equilibrium state of 648.8 ° C., as shown in FIG. % Shown
It became clear that Mn + 3.25% Cr = 0.905. Therefore, by controlling the Mn and Cr concentrations to be% Mn + 3.25% Cr <0.905, it was possible to completely prevent the (Mn, Cr) Al 7 giant compound.

【0021】さらに、%Mn+3.25%Cr<0.905 なるMn、
Cr濃度範囲において、(Ti,Zr)Al3の初晶線を表1、No.8
〜27の結果から求めると、初晶線は図3に示す%Zr+0.
909%Ti=0.127 となることが明らかとなった。従っ
て、Ti、Zr濃度を %Zr+0.909 %Ti<0.127 に制御すれば、(Ti,Zr)Al3巨大化合物も同時に防止可能
となった。
Further, Mn that satisfies% Mn + 3.25% Cr <0.905,
In the Cr concentration range, the primary crystal line of (Ti, Zr) Al 3 is shown in Table 1, No. 8
~ 27, the primary crystal line is% Zr + 0.
It became clear that 909% Ti = 0.127. Therefore, by controlling the concentration of Ti and Zr to be% Zr + 0.909% Ti <0.127, it was possible to prevent (Ti, Zr) Al 3 giant compound at the same time.

【0022】以上のように、本合金系においては二種類
の巨大化合物が発生するため、従来一種類の巨大化合物
を対象とした防止方法ではその発生を防止することは困
難であったが、本発明によれば、Mn、Cr濃度を%Mn+3.
25%Cr<0.905 に、Ti、Zr濃度を%Zr+0.909 %Ti<0.
127 に制御しているため、二種類の巨大化合物を同時に
防止可能である。
As described above, since two types of giant compounds are generated in the present alloy system, it has been difficult to prevent the generation by the conventional method for preventing one type of giant compound. According to the invention, the Mn and Cr concentrations are set to% Mn + 3.
25% Cr <0.905 and Ti and Zr concentrations as% Zr + 0.909% Ti <0.
Since it is controlled to 127, two types of giant compounds can be prevented at the same time.

【0023】[0023]

【実施例】以下に、本発明の実施例について説明する。
Mn、Cr、Ti、Zr濃度を種々に変化させ、これら元素以外
のMg、Zn等の元素濃度はJIS 7N01合金相当とした種々の
溶湯を溶製し、通常行われている連続鋳造法で鋳塊を造
塊した後、鋳塊内部を顕微鏡観察し、巨大化合物の発生
の有無を調査した。調査結果を溶湯組成とともに表2に
示す。なお、造塊した鋳塊寸法は厚さ500mm 、幅1500m
m、長さ5000mmである。また、巨大化合物の調査は、鋳
塊の長さ方向中央部において、500 ×1500×20mmの試料
を切り出し、この試料の幅方向中央部を鋳塊の表面から
中心部にわたって顕微鏡観察することにより行った。
Embodiments of the present invention will be described below.
Mn, Cr, Ti, Zr concentrations are changed in various ways, and other elements such as Mg, Zn, etc. other than these elements are melted in various molten metals equivalent to JIS 7N01 alloy and cast by a usual continuous casting method. After the ingot was formed, the inside of the ingot was observed under a microscope to check for the occurrence of a giant compound. The results of the investigation are shown in Table 2 together with the composition of the molten metal. The dimensions of the ingot were 500 mm thick and 1500 m wide.
m, 5000 mm long. Investigation of giant compounds was performed by cutting out a 500 × 1500 × 20 mm sample at the center of the ingot in the length direction, and observing the center of the sample in the width direction from the surface of the ingot to the center. Was.

【0024】表2から明らかなように、比較例No.1〜3
はMn、Cr、Ti、Zrの濃度が、本発明の初晶線を越えてい
るため、(Mn,Cr)Al7、(Ti,Zr)Al3の巨大化合物が同時に
発生している。
As is clear from Table 2, Comparative Examples Nos. 1 to 3
Since the concentration of Mn, Cr, Ti, and Zr exceeds the primary crystal line of the present invention, giant compounds of (Mn, Cr) Al 7 and (Ti, Zr) Al 3 are simultaneously generated.

【0025】比較例No.4〜6 は、Mn、Crの濃度が本発明
の初晶線以下で、Ti、Zrの濃度が本発明の初晶線を越え
ているため、(Mn,Cr)Al7の巨大化合物の発生は認められ
ないが、もう一方の(Ti,Zr)Al3の巨大化合物の発生が認
められる。
In Comparative Examples Nos. 4 to 6, since the concentrations of Mn and Cr were below the primary crystal line of the present invention and the concentrations of Ti and Zr exceeded the primary crystal line of the present invention, (Mn, Cr) No generation of a giant compound of Al 7 is observed, but generation of another giant compound of (Ti, Zr) Al 3 is observed.

【0026】本発明法No.7〜10は、Mn、Cr、Ti、Zrの全
てを本発明の初晶線以下の濃度に抑制しているため、両
巨大化合物の発生は全く認められない。
In methods 7 to 10 of the present invention, since all of Mn, Cr, Ti and Zr are suppressed to a concentration below the primary crystal line of the present invention, generation of both giant compounds is not recognized at all.

【0027】[0027]

【表2】 [Table 2]

【0028】以上述べたように、本発明により本合金系
で発生する両巨大化合物を同時に防止可能となった。
As described above, according to the present invention, it is possible to simultaneously prevent both giant compounds generated in the present alloy system.

【0029】[0029]

【発明の効果】本発明は、Zn:4〜5 %、Mg:1〜2 %、M
n:0.2〜0.7 %、Cr:0.3%以下、Ti:0.2%以下、Zr:0.25
%以下を含み、Cu、Si、Fe等のその他の元素量が各々
0.2 %以下であるAl-Zn-Mg系合金において、前記合金の
溶製時に、Mn、Cr量が%Mn+3.25%Cr<0.905 、Ti、Zr
量が%Zr+0.909 %Ti<0.127 なる組成に制御して初晶
巨大化合物の発生を防止するもので、本発明によれば、
本合金で発生する(Mn,Cr)Al7、(Ti,Zr)Al3の二種類の初
晶巨大化合物の発生を同時に防止可能である。
According to the present invention, Zn: 4-5%, Mg: 1-2%, M
n: 0.2-0.7%, Cr: 0.3% or less, Ti: 0.2% or less, Zr: 0.25
%, Other elements such as Cu, Si, Fe etc.
In an Al-Zn-Mg alloy having a content of 0.2% or less, when the alloy is melted, the amount of Mn and Cr is% Mn + 3.25% Cr <0.905, Ti, Zr
The amount is controlled to a composition of% Zr + 0.909% Ti <0.127 to prevent the generation of a primary crystal giant compound.
It is possible to simultaneously prevent the generation of two types of primary crystal giant compounds, (Mn, Cr) Al 7 and (Ti, Zr) Al 3 , generated in the present alloy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】巨大化合物の説明図である。FIG. 1 is an explanatory diagram of a giant compound.

【図2】JIS 7N01合金の(Mn,Cr)Al7の初晶線を示す図で
ある。
FIG. 2 is a view showing a primary crystal line of (Mn, Cr) Al 7 of a JIS 7N01 alloy.

【図3】JIS 7N01合金の(Ti,Zr)Al3の初晶線を示す図で
ある。
FIG. 3 is a diagram showing a primary crystal line of (Ti, Zr) Al 3 of JIS 7N01 alloy.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯塚 健三 栃木県真岡市鬼怒ケ丘15番地 株式会社 神戸製鋼所 真岡製造所内 (58)調査した分野(Int.Cl.6,DB名) C22C 1/02 503 C22C 21/10────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenzo Iizuka 15 Kinuigaoka, Moka City, Tochigi Prefecture Kobe Steel, Ltd. Inside Moka Works (58) Field surveyed (Int.Cl. 6 , DB name) C22C 1 / 02 503 C22C 21/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Zn:4〜5 %、Mg:1〜2 %、Mn:0.2〜0.7
%、Cr:0.3%以下、Ti:0.2%以下、Zr:0.25 %以下を含
み、Cu、Si、Fe等のその他の元素量が各々0.2 %以下で
あるAl-Zn-Mg系合金において、前記合金の溶製時に、M
n、Cr量が%Mn+3.25%Cr<0.905 、Ti、Zr量が%Zr+
0.909 %Ti<0.127 なる組成に制御して初晶巨大化合物
の発生を防止することを特徴とするAl-Zn-Mg系合金の製
造方法。
[Claim 1] Zn: 4 to 5%, Mg: 1 to 2%, Mn: 0.2 to 0.7
%, Cr: 0.3% or less, Ti: 0.2% or less, Zr: 0.25% or less, and the content of other elements such as Cu, Si and Fe is 0.2% or less, respectively. When melting the alloy, M
n, Cr content is% Mn + 3.25% Cr <0.905, Ti, Zr content is% Zr +
A method for producing an Al-Zn-Mg-based alloy, wherein the composition is controlled to be 0.909% Ti <0.127 to prevent generation of a giant primary crystal compound.
JP14930793A 1993-06-21 1993-06-21 Method for producing Al-Zn-Mg based alloy Expired - Lifetime JP2746520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14930793A JP2746520B2 (en) 1993-06-21 1993-06-21 Method for producing Al-Zn-Mg based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14930793A JP2746520B2 (en) 1993-06-21 1993-06-21 Method for producing Al-Zn-Mg based alloy

Publications (2)

Publication Number Publication Date
JPH073353A JPH073353A (en) 1995-01-06
JP2746520B2 true JP2746520B2 (en) 1998-05-06

Family

ID=15472275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14930793A Expired - Lifetime JP2746520B2 (en) 1993-06-21 1993-06-21 Method for producing Al-Zn-Mg based alloy

Country Status (1)

Country Link
JP (1) JP2746520B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155609A1 (en) * 2010-06-11 2011-12-15 昭和電工株式会社 Method for producing al alloy joined body
CN102943193B (en) * 2012-12-11 2015-07-08 丛林集团有限公司 Grain refinement machining process of hard aluminium alloy cast ingot
CN107541624B (en) * 2016-06-29 2019-10-22 中国科学院金属研究所 A 7N01 aluminum alloy profile with high corrosion resistance and its preparation and application

Also Published As

Publication number Publication date
JPH073353A (en) 1995-01-06

Similar Documents

Publication Publication Date Title
JP4101749B2 (en) Weldable high strength Al-Mg-Si alloy
Ram et al. Microstructural refinement through inoculation of type 7020 Al–Zn–Mg alloy welds and its effect on hot cracking and tensile properties
US6019939A (en) Aluminium alloy brazing sheet
US4077810A (en) Aluminum alloys having improved mechanical properties and workability and method of making same
US4126487A (en) Producing improved metal alloy products (Al-Fe alloy and Al-Fe-Si alloy)
AU717614B2 (en) Aluminium alloy for use as core material in brazing sheet
Dev et al. Effect of scandium additions on microstructure and mechanical properties of Al–Zn–Mg alloy welds
Babu et al. Influence of titanium–boron additions on grain refinement of AA6082 gas tungsten arc welds
EP0273600A2 (en) Aluminum-lithium alloys
US5587029A (en) Machineable aluminum alloys containing In and Sn and process for producing the same
US4576791A (en) Aluminium-strontium-titanium-boron master alloy
JP3219293B2 (en) Aluminum alloy filler metal and its manufacturing method
US20040086417A1 (en) High conductivity bare aluminum finstock and related process
JPH0762200B2 (en) Abrasion resistant aluminum alloy casting rod for forging and its manufacturing method
JPH09125181A (en) Aluminum alloy for forging
JP2746520B2 (en) Method for producing Al-Zn-Mg based alloy
JPH07145440A (en) Aluminum alloy forging stock
EP0964069B1 (en) Strontium master alloy composition having a reduced solidus temperature and method of manufacturing the same
JPH0121217B2 (en)
JP3242493B2 (en) Heat resistant magnesium alloy
JP2746521B2 (en) Method for Preventing Generation of Giant Compound in Al-Zn-Mg Alloy
JPH08120385A (en) Al-zn-mg-cu alloy for expanding
JPH1096039A (en) Wear resistant aluminum alloy material excellent in cutting workability and corrosion resistance
JPH08120386A (en) Al-zn-mg aluminum alloy excellent in intergranular corrosion resistance
RU2148101C1 (en) Aluminium-based alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140213

Year of fee payment: 16

EXPY Cancellation because of completion of term