JP2745645B2 - Method for manufacturing semiconductor memory device - Google Patents
Method for manufacturing semiconductor memory deviceInfo
- Publication number
- JP2745645B2 JP2745645B2 JP1050503A JP5050389A JP2745645B2 JP 2745645 B2 JP2745645 B2 JP 2745645B2 JP 1050503 A JP1050503 A JP 1050503A JP 5050389 A JP5050389 A JP 5050389A JP 2745645 B2 JP2745645 B2 JP 2745645B2
- Authority
- JP
- Japan
- Prior art keywords
- opening
- layer
- conductive layer
- insulating film
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 34
- 239000004065 semiconductor Substances 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000003860 storage Methods 0.000 claims description 53
- 238000005530 etching Methods 0.000 claims description 21
- 239000003990 capacitor Substances 0.000 claims description 18
- 238000009792 diffusion process Methods 0.000 claims description 15
- 239000012535 impurity Substances 0.000 claims description 15
- 238000012546 transfer Methods 0.000 claims description 6
- 238000000059 patterning Methods 0.000 claims description 3
- 210000000352 storage cell Anatomy 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 102
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 19
- 210000004027 cell Anatomy 0.000 description 16
- 239000000758 substrate Substances 0.000 description 16
- 238000011161 development Methods 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007687 exposure technique Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Memories (AREA)
Description
【発明の詳細な説明】 〔目 的〕 概要 産業上の利用分野 従来の技術 発明が解決しようとする課題 課題を解決するための手段 作 用 実施例 一実施例の工程平面図(第1図) 一実施例のA−A矢視工程断面図(第2図) 一実施例のB−B矢視工程断面図(第3図) メモリセルの完成図(第4図) 発明の効果 〔概 要〕 本発明は半導体記憶装置の製造方法、特に1転送トラ
ンジスタ・1蓄積容量セルにおける2層導電層構造の電
荷蓄積電極の基板コンタクト形成方法に関し、 上記2層導電層構造によって蓄積容量の増大を図る蓄
積電極と半導体基板との間のコンタクト窓を高精度で確
実に形成することを目的とし、 蓄積容量の蓄積電極を形成するに際し、1方向がゲー
ト電極により他の3方向がフィールド絶縁膜によって画
定された不純物拡散領域上に、該不純物拡散領域上から
該ゲート電極及びフィールド絶縁膜上に延在する下層絶
縁膜を形成する工程、該下層絶縁膜上に、該不純物拡散
領域上部の該下層絶縁膜を表出する第1の開孔を有する
第1の導電層を形成する工程、該第1の導電層上に、該
第1の開孔上を該ゲート電極と平行な方向に横切る第2
の開孔を有する耐エッチング層を形成する工程、該耐エ
ッチング層及び第1の導電層をマスクにして該第2の開
孔内に表出する下層絶縁膜をエッチング除去し該第1の
開孔内に選択的に該不純物拡散領域面を表出せしめる工
程、該耐エッチング層を除去した後、該第1の導電層上
に、該第1の開孔部と該第2の開孔部の共通部において
該不純物拡散領域に接する第2の導電層を形成する工
程、該第2の導電層及び第1の導電層を同一マスクによ
り該第1の開孔の周辺部においてパターニングする工程
を有し構成する。DETAILED DESCRIPTION OF THE INVENTION [Purpose] Outline Industrial field of application Conventional technology Problems to be solved by the invention Means for solving the problem Operation Example Process plan view of one embodiment (FIG. 1) FIG. 2 is a sectional view taken along the line AA of one embodiment (FIG. 2). FIG. 3 is a sectional view taken along the line BB of the embodiment (FIG. 3). Completed view of the memory cell (FIG. 4). The present invention relates to a method for manufacturing a semiconductor memory device, and more particularly, to a method for forming a substrate contact of a charge storage electrode having a two-layer conductive layer structure in a one-transfer transistor / one storage capacitor cell. The purpose is to form the contact window between the storage electrode and the semiconductor substrate with high accuracy and reliability. When forming the storage electrode of the storage capacitor, one direction is defined by the gate electrode and the other three directions are defined by the field insulating film. Impurities Forming a lower insulating film extending from the impurity diffusion region on the gate electrode and the field insulating film on the diffusion region; and displaying the lower insulating film on the impurity diffusion region on the lower insulating film. Forming a first conductive layer having a first opening that emerges, a second conductive layer on the first conductive layer crossing the first opening in a direction parallel to the gate electrode;
Forming an etching-resistant layer having an opening by etching the lower insulating film exposed in the second opening by using the etching-resistant layer and the first conductive layer as a mask; Selectively exposing the surface of the impurity diffusion region in the hole, removing the etching-resistant layer, and then forming the first opening and the second opening on the first conductive layer. Forming a second conductive layer in contact with the impurity diffusion region in the common portion of the above, and patterning the second conductive layer and the first conductive layer in a peripheral portion of the first opening by using the same mask. To be configured.
本発明は半導体記憶装置の製造方法、特に1個の転送
トランジスタと1個の蓄積容量(1トランジスタ・1キ
ャパシタ)によって構成され、且つ蓄積容量の蓄積電極
が直に積層された2層の導電層によって構成される揮発
性メモリセルを有する半導体記憶装置における、蓄積電
極と基板との接続部の形成方法に関する。The present invention relates to a method for manufacturing a semiconductor memory device, and more particularly to a two-layer conductive layer which is constituted by one transfer transistor and one storage capacitor (one transistor and one capacitor) and in which storage electrodes of the storage capacitor are directly stacked. The present invention relates to a method for forming a connecting portion between a storage electrode and a substrate in a semiconductor memory device having a volatile memory cell constituted by the above.
近年、メモリセルが1トランジスタ・1キャパシタに
よって構成される揮発性半導体記憶装置は、その大規模
高集積化の要望に応えて、各部の基準寸法は著しく微細
化されてきており、且つ微細化された際の蓄積容量の減
少を補うために、2層の導電層を直に積層して蓄積容量
に寄与する段差を増大した2層導電層構造の蓄積電極を
備えたメモリセルが提供されていが、それに伴う基板上
面の段差の増大によって、各種の接続領域を形成する際
のリソグラフィ特に露光技術が困難な状況になってきて
おり工夫が望まれている。2. Description of the Related Art In recent years, a volatile semiconductor memory device in which a memory cell is constituted by one transistor and one capacitor has responded to a demand for large-scale and high-integration, and reference dimensions of respective parts have been remarkably miniaturized. In order to compensate for the decrease in the storage capacity when a storage cell is provided, a memory cell having a storage electrode having a two-layer conductive layer structure in which two conductive layers are directly stacked to increase the level difference contributing to the storage capacity has been provided. Due to the increase in steps on the upper surface of the substrate, it is becoming difficult to perform lithography, especially exposure techniques, when forming various connection regions.
第5図は従来の1トランジスタ・1キャパシタ構造の
メモリセルの模式側断面図である。図において、1はp
型シリコン(Si)基板、2はフィールド酸化膜、3はゲ
ート酸化膜、4はゲート電極、5はn+型ソース領域、6
はn+型ドレイン領域(ビットライン)、7は下層絶縁
膜、8はコンタクト窓、9は多結晶Si等よりなる蓄積電
極、10は誘電体膜、11は多結晶Si等よりなる対向電極、
12は被覆絶縁膜、44は隣接トランジスタのゲート電極が
延在してなるワードライン、TTは転送トランジスタ、SC
は蓄積容量を示す。FIG. 5 is a schematic side sectional view of a conventional memory cell having a one-transistor / one-capacitor structure. In the figure, 1 is p
Type silicon (Si) substrate, 2 is a field oxide film, 3 is a gate oxide film, 4 is a gate electrode, 5 is an n + type source region, 6
Is an n + type drain region (bit line), 7 is a lower insulating film, 8 is a contact window, 9 is a storage electrode made of polycrystalline Si or the like, 10 is a dielectric film, 11 is a counter electrode made of polycrystalline Si or the like,
12 is a covering insulating film, 44 is a word line formed by extending the gate electrode of an adjacent transistor, TT is a transfer transistor, SC
Indicates a storage capacity.
この図のように蓄積電極9が1層の導電層9Aよりなる
従来の蓄積容量SCを有するメモリセルにおいて、蓄積電
極9をソース領域6に接続するためのコンタクト窓8
は、第6図(a)〜(d)の工程平面図及びそのA−A
矢視断面図を示す第7図(a)〜(d)の工程断面図を
参照して説明する次の方法により形成されていた。As shown in this figure, in a memory cell having a conventional storage capacitor SC in which the storage electrode 9 is formed of a single conductive layer 9A, a contact window 8 for connecting the storage electrode 9 to the source region 6 is formed.
Are the process plan views of FIGS. 6 (a) to 6 (d) and their AA
It was formed by the following method which will be described with reference to the process sectional views of FIGS.
即ち、第6(a)及び第7図(a)に示すように、通
常通りフィールド酸化膜2で画定された素子領域13上に
ゲート酸化膜3を介してゲート電極4を形成し(フィー
ルド酸化膜2上には隣接セルのゲート電極の延長である
ワードライン44が形成される)、ゲート電極4をマスク
にしイオン注入によりソース領域5及びドレイン領域6
を形成し、この基板上に下層絶縁膜7を堆積形成した
後、第6図(b)及び第7図(b)に示すように、下層
絶縁膜7上にレジスト層14を形成し、ソース領域5上部
のレジスト層14にコンタクト窓に対応する寸法形状を有
するパターンを露光し、通常の現像を行って、このレジ
スト層14にコンタクト窓8に対応する寸法形状を有する
エッチング用開孔15を形成し、次いで第6図(c)及び
第7図(c)に示すように、前記レジスト層14のエッチ
ング用開孔15を介し異方性エッチングにより開孔15内に
表出する下層絶縁膜7を選択的に除去することによりコ
ンタクト窓8を形成する方法である。That is, as shown in FIGS. 6A and 7A, the gate electrode 4 is formed on the element region 13 defined by the field oxide film 2 via the gate oxide film 3 as usual (field oxidation). A word line 44, which is an extension of the gate electrode of the adjacent cell, is formed on the film 2), and the source region 5 and the drain region 6 are formed by ion implantation using the gate electrode 4 as a mask.
After the lower insulating film 7 is deposited on the substrate, a resist layer 14 is formed on the lower insulating film 7 as shown in FIGS. 6 (b) and 7 (b). A pattern having a size and shape corresponding to the contact window is exposed on the resist layer 14 above the region 5, and normal development is performed to form an etching opening 15 having a size and shape corresponding to the contact window 8 in the resist layer 14. Then, as shown in FIGS. 6 (c) and 7 (c), the lower insulating film exposed in the opening 15 by anisotropic etching through the opening 15 for etching the resist layer 14. In this method, a contact window 8 is formed by selectively removing the contact window 7.
なお第6図(d)及び第7図(d)はコンタクト窓8
形成後、レジスト層14を除去し、下層絶縁膜7上に上記
コンタクト窓8部においてソース領域6に接する多結晶
Si等の第1の導電層9Aよりなる蓄積電極9を完成した状
態を示す。6 (d) and 7 (d) show the contact window 8
After the formation, the resist layer 14 is removed, and a polycrystalline film which is in contact with the source region 6 at the contact window 8 is formed on the lower insulating film 7.
The state where the storage electrode 9 made of the first conductive layer 9A of Si or the like is completed is shown.
このように1層の導電層9Aよりなる蓄積電極9を用い
た従来の構造においては、コンタクト窓形成領域周辺に
形成される段差は、フィールド酸化膜2の約1/2に対応
する3000Å程度とゲート電極4に対応する4000Å程度を
合わせた高々7000Å以下程度であったので、コンタクト
窓8の形成部におけるレジスト膜14の厚さt1(第7図
(b)参照)も上記段差に対応して余り大きくならず、
従って一般に行われるようにコンタクト窓に対応する寸
法形状を有するパターンの露光を行っても、レジスト現
像後のエッチング用開孔パターンの底部には露光不足に
よる変形がそれ程極端には発生せず、露光限界に近い微
小寸法のコンタクト窓を高精度で形成することも可能で
あった。As described above, in the conventional structure using the storage electrode 9 composed of one conductive layer 9A, the step formed around the contact window forming region is about 3000 ° corresponding to about 1/2 of the field oxide film 2. Since the total thickness is about 7000 mm or less including about 4000 mm corresponding to the gate electrode 4, the thickness t 1 (see FIG. 7B) of the resist film 14 in the portion where the contact window 8 is formed also corresponds to the step. Not too big,
Therefore, even if a pattern having a dimension corresponding to the contact window is exposed as is generally performed, deformation due to insufficient exposure does not occur so much at the bottom of the etching hole pattern after resist development, and It was also possible to form a contact window of a very small size close to the limit with high precision.
一方、高集積度の半導体記憶装置において、近時、第
8図の模式断面図に示すように、蓄積電極9を、枠状の
第1の導電層9Aと、ソース領域5に直に接続される第2
(2層目)の導電層9Bとを積層して構成し、その高さh
を高く形成して蓄積電極側面の面積を拡大し、これによ
って蓄積容量の増大を図った揮発性メモリセルが提案さ
れている。(図中の符号は第5図と同一対象物と示
す。)この構造に従来のコンタクト窓形成方法を適用す
ると、次に第9図(a)〜(d)の工程断面図によって
説明するような工程になる。(図中の符号は第8図と同
一対象物と示す) 即ち、コンタクト窓の形成に先立って第9図(a)に
示すように、下層絶縁膜7上にソース領域5の上部にあ
たる領域を表出する開孔16を有する第1(1層目)の導
電層9Aを形成した後、第9図(b)に示すようにこの基
板上にレジスト層14を塗布形成し、第9図(c)に示す
ように、コンタクト窓の寸法形状を有するパターンを露
光し、現像することによってこのレジスト層14にエッチ
ング用の開孔115を形成し、次いで第9図(d)に示す
ように、この開孔115を介して下層絶縁膜7のエッチン
グを行いコンタクト窓108が形成される。On the other hand, in a highly integrated semiconductor memory device, recently, as shown in the schematic cross-sectional view of FIG. 8, the storage electrode 9 is directly connected to the frame-shaped first conductive layer 9A and the source region 5. Second
(Second layer) and a conductive layer 9B, and the height h
Has been proposed to increase the area of the side surface of the storage electrode by increasing the height of the storage electrode, thereby increasing the storage capacity. (The reference numerals in the figure are the same as those in FIG. 5.) When a conventional contact window forming method is applied to this structure, it will be described with reference to the process sectional views of FIGS. 9 (a) to 9 (d). Process. (The reference numerals in the figure are the same as those in FIG. 8.) That is, prior to forming the contact window, as shown in FIG. 9A, a region corresponding to the upper part of the source region 5 on the lower insulating film 7 is formed. After forming the first (first layer) conductive layer 9A having the opening 16 to be exposed, a resist layer 14 is applied and formed on the substrate as shown in FIG. As shown in FIG. 9C, an opening 115 for etching is formed in the resist layer 14 by exposing and developing a pattern having the dimensions and shapes of the contact windows. Then, as shown in FIG. The lower insulating film 7 is etched through the opening 115 to form a contact window 108.
しかし上記2層導電層構造の蓄積電極の場合、従来の
コンタクト窓の形成方法によると、第9図(b)に示さ
れるように、コンタクト窓形成部の周囲に蓄積電極を構
成する第1の導電層9Aの厚みに相当する3000〜4000Å程
度高い段差が形成されるので、コンタクト窓形成領域上
のレジスト層14の厚さ(t2)は前記1層導電層構造の場
合に比べて大幅に厚くなる。そのために、セルが高集積
化されてコンタクト窓の外形寸法が露光の限界近くに縮
小された状況において、従来方法通りコンタクト窓の寸
法形状に対応する寸法形状を有するパターンの露光を行
うと、露光光量が少ないためにレジスト層14の底部が露
光不足になり、現像して形成されたレジスト層14のエッ
チング用開孔115の形状は、第9図(c)に示すように
底部が縮小変形した異常形状を有するものになる。そし
てそのために、このレジスト層14のエッチング用開孔11
5を介して異方性エッチング手段により形成されるコン
タクト窓108は第9図(d)に示すように極端に縮小さ
れたり、未貫通になるという問題を生ずる。However, in the case of the storage electrode having the above-described two-layer conductive layer structure, according to the conventional method for forming a contact window, as shown in FIG. Since a step having a height of about 3000 to 4000 mm corresponding to the thickness of the conductive layer 9A is formed, the thickness (t 2 ) of the resist layer 14 on the contact window formation region is significantly larger than that of the single-layer conductive layer structure. It gets thicker. For this reason, in a situation where the cell is highly integrated and the outer dimensions of the contact window are reduced to near the limit of exposure, exposure of a pattern having a size and shape corresponding to the size and shape of the contact window is performed as in the conventional method. Due to the small amount of light, the bottom of the resist layer 14 was underexposed, and the shape of the opening 115 for etching of the developed resist layer 14 was reduced and deformed as shown in FIG. 9 (c). It will have an abnormal shape. For this purpose, the opening 11 for etching the resist layer 14 is formed.
As shown in FIG. 9D, the contact window 108 formed by the anisotropic etching means via 5 has a problem that it is extremely reduced or not penetrated.
そこで本発明は、2層の導電層を積層することにより
表面段差を増大して蓄積容量の増大を図った蓄積電極と
半導体基板との間のコンタクト窓を高精度で確実に形成
できる半導体記憶装置の製造方法の提供を目的とする。Accordingly, the present invention provides a semiconductor memory device that can reliably and accurately form a contact window between a storage electrode and a semiconductor substrate, which has a surface step increased by stacking two conductive layers to increase storage capacitance. The purpose of the present invention is to provide a manufacturing method.
上記課題は、1個の転送トランジスタと1個の蓄積容
量とによって構成される記憶セルを有し、該蓄積容量の
蓄積電極が2層の導電層により構成される半導体記憶装
置の製造方法において、該蓄積容量の蓄積電極を形成す
るに際し、1方向がゲート電極により他の3方向がフィ
ールド絶縁膜によって画定された不純物拡散領域上に、
該不純物拡散領域上から該ゲート電極及びフィールド絶
縁膜上に延在する下層絶縁膜を形成する工程、該下層絶
縁膜上に、該不純物拡散領域上部の該下層絶縁膜を表出
する第1の開孔を有する第1の導電層を形成する工程、
該第1の導電層上に、該第1の開孔上を該ゲート電極と
平行な方向に横切る第2の開孔を有する耐エッチング層
を形成する工程、該耐エッチング層及び第1の導電層を
マスクにして該第2の開孔内に表出する下層絶縁膜をエ
ッチング除去し該第1の開孔内に選択的に該不純物拡散
領域面を表出せしめる工程、該耐エッチング層を除去し
た後、該第1の導電層上に、該第1の開孔部と該第2の
開孔部との共通部において該不純物拡散領域に接する第
2の導電層を形成する工程、該第2の導電層及び第1の
導電層を同一マスクにより該第1の開孔の周辺部におい
てパターニングする工程を有する本発明による半導体記
憶装置の製造方法によって解決される。The object of the present invention is to provide a method of manufacturing a semiconductor memory device having a storage cell including one transfer transistor and one storage capacitor, wherein a storage electrode of the storage capacitor includes two conductive layers. In forming the storage electrode of the storage capacitor, one direction is formed on the impurity diffusion region defined by the gate electrode and the other three directions by the field insulating film.
Forming a lower insulating film extending on the gate electrode and the field insulating film from the impurity diffusion region; and exposing the lower insulating film on the impurity diffusion region on the lower insulating film. Forming a first conductive layer having openings,
Forming, on the first conductive layer, an etching-resistant layer having a second opening crossing over the first opening in a direction parallel to the gate electrode, the etching-resistant layer and the first conductive layer; Etching the lower insulating film exposed in the second opening by using the layer as a mask to selectively expose the surface of the impurity diffusion region in the first opening; Forming a second conductive layer on the first conductive layer in contact with the impurity diffusion region on the first conductive layer at a common portion of the first opening and the second opening, The problem is solved by a method of manufacturing a semiconductor memory device according to the present invention, which comprises a step of patterning a second conductive layer and a first conductive layer in the periphery of the first opening with the same mask.
即ち本発明の方法においては、2層の導電層が積層さ
れて形成される蓄積電極を基板に接続させるコンタクト
窓を形成するに際して、コンタクト窓の一方向側の対向
する2辺が、第1の導電層に形成され下層絶縁膜を表出
する第1の開孔の1方向側の2辺に自己整合的に形成さ
れ、他方向側の対向する2辺のみが、上記導電層の第1
の開孔を横切ってレジスト層に形成される第2の開孔の
対向する2辺に自己整合的に形成される。That is, in the method of the present invention, when forming a contact window for connecting a storage electrode formed by laminating two conductive layers to a substrate, two opposing sides on one side of the contact window are the first side. Two sides in one direction of the first opening formed in the conductive layer and exposing the lower insulating film are formed in a self-aligned manner, and only two opposing sides in the other direction are the first side of the conductive layer.
Are formed in a self-aligned manner on two opposing sides of a second opening formed in the resist layer across the opening.
従って、レジスト層に形成する第2の開孔の1方の幅
はコンタクト窓の開孔幅に関係なく緩和拡大することが
可能で、コンタクト窓寸法が露光の限界寸法近傍まで縮
小された際にも、露光領域を上記1方の幅側に広く拡大
することが可能になるので、レジスト底部まで確実に露
光されるような十分な露光光量が得られて現像後の開孔
パターンの寸法精度が向上且つ安定し、パターン不良、
再生率等が減少する。Therefore, the width of one side of the second opening formed in the resist layer can be relaxed and expanded irrespective of the opening width of the contact window, and when the contact window size is reduced to near the critical dimension of exposure, In addition, since the exposure area can be widened to the one width side, a sufficient exposure light amount can be obtained so that the resist bottom can be surely exposed, and the dimensional accuracy of the aperture pattern after development is reduced. Improved and stable, pattern failure,
Reproduction rate etc. decrease.
以下本発明を、図示実施例により具体的に説明する。 Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
第1図(a)〜(e)は本発明の方法の一実施例の工
程平面図、第2図(a)〜(e)は同実施例のA−A矢
視断面を示す工程断面図、第3図(a)〜(e)は同実
施例のB−B矢視断面を示す工程断面図、第4図は本発
明の方法による揮発性メモリセルの完成図で(a)は平
面図、(b)はA−A矢視断面図、(c)はB−B矢視
断面図である。1 (a) to 1 (e) are process plan views of an embodiment of the method of the present invention, and FIGS. 2 (a) to 2 (e) are process cross sectional views showing cross sections taken along line AA of the embodiment. 3 (a) to 3 (e) are process sectional views showing a cross section taken along line BB of the embodiment, and FIG. 4 is a completed view of a volatile memory cell according to the method of the present invention. FIG. 3B is a cross-sectional view taken along the line AA, and FIG. 3C is a cross-sectional view taken along the line BB.
全図を通じ同一対象物は同一符合で示す。 The same objects are denoted by the same reference symbols throughout the drawings.
第1図(a)、第2図(a)、第3図(a)参照 本発明の方法により1トランジスタ・1キャパシタ構
造を有し蓄積容量の蓄積電極が直に積層された2層の導
電層によって構成される揮発性メモリセルを形成するに
際しては、通常の方法により例えばp型Si基板1上に素
子領域13を画定する例えば厚さ6000Å程度のフィールド
酸化膜2を形成し、該基板上に多結晶Si等よりなりゲー
ト酸化膜3を介して該領域を横切るゲート電極4を形成
し(この際、隣接トランジスタのゲート電極4はワード
ライン44を構成してフィールド酸化膜1上に延在す
る)、ゲート電極4をマスクにしてイオン注入手段によ
り素子領域13にn+型ソース領域5及びn+型ドレイン領域
(ビットライン)6を形成した後、この基板上に化学気
相成長(CVD)法等により二酸化Si(SiO2)等よりなる
厚さ1000〜2000Å程度の下層絶縁膜7に形成する。FIGS. 1 (a), 2 (a), and 3 (a). A two-layered conductive film having a one-transistor / one-capacitor structure and having storage electrodes of storage capacitors directly stacked according to the method of the present invention. When forming a volatile memory cell composed of layers, for example, a field oxide film 2 having a thickness of, for example, about 6000 mm which defines an element region 13 is formed on a p-type Si substrate 1 by a usual method. A gate electrode 4 made of polycrystalline Si or the like is formed across the region via a gate oxide film 3 (at this time, the gate electrode 4 of the adjacent transistor forms a word line 44 and extends over the field oxide film 1). After forming an n + -type source region 5 and an n + -type drain region (bit line) 6 in the element region 13 by ion implantation using the gate electrode 4 as a mask, chemical vapor deposition (CVD) is performed on the substrate. ) Method, etc. O 2 ) is formed on the lower insulating film 7 having a thickness of about 1000 to 2000 °.
第1図(b)、第2図(b)、第3図(b)参照 次いで、上記下層絶縁膜7上にCVD法により厚さ3000
Å程度の第1の多結晶Si層9Aを形成する。なお上記第1
の多結晶Si層9Aはその高さが容量に寄与するのでその要
求に応じその厚さが変更される。1 (b), 2 (b) and 3 (b). Next, a thickness of 3000 is formed on the lower insulating film 7 by the CVD method.
A first polycrystalline Si layer 9A of about Å is formed. Note that the first
Since the height of the polycrystalline Si layer 9A contributes to the capacitance, the thickness thereof is changed according to the requirement.
次いで、通常のフォトリソグラフィ手段により上記第
1の多結晶Si層9Aにソース領域5に沿って下層絶縁膜7
を表出する露光限界近傍の例えば1μm程度の狭い幅の
第1の開孔16を形成する。Next, the lower insulating film 7 is formed on the first polycrystalline Si layer 9A along the source region 5 by ordinary photolithography.
The first opening 16 having a narrow width of about 1 μm, for example, in the vicinity of the exposure limit, is formed.
第1図(c)、第2図(c)、第3図(c)参照 次いで上記第1の多結晶Si層9Aの形成面上に平坦部上
で1μm程度の厚さを有するレジスト層14を形成し、次
いでこのレジスト層14に例えば上記第1の開孔16の上部
をゲート電極4と平行に横切る露光限界近傍の例えば1
μm程度の幅のパターンを露光し、通常の現像を行っ
て、該レジスト層14に前記1μm程度の幅の第1の開孔
16を直角に横切る幅1μm程度の第2の開孔17を形成す
る。なおここで、上記露光領域の長さは幅よりも大きく
例えば2倍程度に設計される。これにより露光パターン
の幅は露光限界寸法近傍であっても長さ方向が露光限界
寸法より大幅に大きく設計されることによりレジスト層
14底部まで露光光量は十分に確保されるので、現像によ
り形成された第2の開孔17の底部に露光不足による縮小
変形を生ずることはない。1 (c), 2 (c) and 3 (c) Next, a resist layer 14 having a thickness of about 1 μm on a flat portion is formed on the surface on which the first polycrystalline Si layer 9A is formed. Is formed on the resist layer 14, for example, in the vicinity of an exposure limit which crosses the upper part of the first opening 16 in parallel with the gate electrode 4.
A pattern having a width of about 1 μm is exposed and subjected to normal development to form a first opening having a width of about 1 μm on the resist layer 14.
A second opening 17 having a width of about 1 .mu.m, which crosses at right angles to 16, is formed. Here, the length of the exposure region is designed to be larger than the width, for example, about twice. Thus, even if the width of the exposure pattern is close to the critical dimension, the length direction is designed to be significantly larger than the critical dimension.
Since the amount of exposure light is sufficiently ensured up to the bottom of the substrate 14, the bottom of the second opening 17 formed by development does not undergo a reduction deformation due to insufficient exposure.
次いで、上記レジスト層14及びレジスト層14内に表出
している第1の多結晶Si層9Aをマスクにし、レジスト層
14の第2の開孔17と第1の多結晶Si層9Aの第1の開孔16
の交差部に表出する下層絶縁膜7を異方性のドライエッ
チング手段で除去し、下層絶縁膜7にゲート電極4に平
行な方向側の対向する2辺がそれぞれ同方向側の第1の
多結晶Si層9Aの第1の開孔16の対向する2辺に自己整合
し、ゲート電極4に直角な方向側の対向する2辺がそれ
ぞれ同方向側のレジスト層14の第2の開孔17の対向する
2辺に自己整合し、各々の方向の幅が第1の開孔16及び
第2の開孔17の幅に整合して1μm程度の露光限界に近
い微小幅を有するコンタクト窓8を形成する。Next, using the resist layer 14 and the first polycrystalline Si layer 9A exposed in the resist layer 14 as a mask, the resist layer
14 and the first opening 16 of the first polycrystalline Si layer 9A.
Is removed by anisotropic dry etching means, and two opposing sides of the lower insulating film 7 in the direction parallel to the gate electrode 4 are in the same direction. The self-aligned two sides of the first opening 16 of the polycrystalline Si layer 9A are aligned with the two sides of the resist layer 14 in the direction perpendicular to the gate electrode 4 in the same direction. A contact window 8 which is self-aligned with two opposing sides of 17 and whose width in each direction is aligned with the width of the first opening 16 and the second opening 17 and has a minute width close to the exposure limit of about 1 μm. To form
第1図(d)、第2図(d)、第3図(d)参照 次いで、レジスト層14を除去し、次いでこの基板上に
CVD法により厚さ1000Å程度の第2の多結晶Si層9Bを形
成し、通常の方法によりこの第1及び第2の多結晶Si層
9Bにn+型の導電性を付与する。1 (d), 2 (d), and 3 (d). Next, the resist layer 14 is removed, and then,
A second polycrystalline Si layer 9B having a thickness of about 1000 mm is formed by a CVD method, and the first and second polycrystalline Si layers are formed by a usual method.
9B is given an n + -type conductivity.
第1図(e)、第2図(e)、第3図(e)参照 次いで、1枚のマスクに整合し通常のフォトリソグラ
フィ手段により第2の多結晶Si層9B及び第1の多結晶Si
層9Aを前記第1の開孔16の周辺部でパターニングし、本
発明の方法による2層の導電層積層構造の蓄積電極9が
完成する。1 (e), 2 (e) and 3 (e). Next, the second polycrystalline Si layer 9B and the first polycrystalline silicon are matched with one mask by ordinary photolithography. Si
The layer 9A is patterned around the first opening 16 to complete the storage electrode 9 having a two-layered conductive layer structure according to the method of the present invention.
なお、この構造においては、第1の多結晶Si層9Aの端
面が容量形成面として寄与し、且つコンタクト窓8側に
形成される蓄積電極9の段差も導電層1層構造のものよ
り増すので、蓄積容量の増大が図れる。従って、蓄積容
量が第1の多結晶Si層9Aが厚くする程増大するのは勿論
である。Note that, in this structure, the end face of the first polycrystalline Si layer 9A contributes as a capacitance forming surface, and the level difference of the storage electrode 9 formed on the contact window 8 side is larger than that of the conductive layer single layer structure. In addition, the storage capacity can be increased. Therefore, it goes without saying that the storage capacitance increases as the thickness of the first polycrystalline Si layer 9A increases.
以後第4図(a)、(b)、(c)の本発明の方法に
よる揮発性メモリセルの完成図に示されるように、蓄積
電極9の表面に厚さ100Å程度の窒化Si(Si3N4)膜等の
誘電体膜10を形成し、その基板上に導電性を付与した多
結晶Si層等よりなる厚さ2000Å程度の対向電極11を形成
し、その上に5000〜6000Å程度の厚さの被覆絶縁膜12を
形成して本発明の方法による揮発性メモリセルは完成す
る。Thereafter FIG. 4 (a), (b), as shown in completion drawing of the volatile memory cell according to the method of the present invention (c), the surface to a thickness 100Å approximately nitride Si of storage electrode 9 (Si 3 N 4) of film or the like dielectric film 10 is formed, a counter electrode 11 having a thickness of about 2000Å of polycrystalline Si layer or the like having conductivity on the substrate to form, about 5000~6000Å thereon The volatile memory cell according to the method of the present invention is completed by forming a coating insulating film 12 having a thickness.
以上実施例から明らかなように、本発明の方法によれ
ば、2層の導電層が積層されて形成される蓄積電極を基
板に接続させるコンタクト窓の一方向側の対向する2辺
が、蓄積電極に用いられる第1の導電層に形成された下
層絶縁膜を表出する第1の開孔の1方向側の2辺に自己
整合的に形成され、他方向側の対向する2辺のみが、上
記導電層の第1の開孔を横切ってレジスト層に形成され
る第2の開孔の対向する2辺に自己整合的に形成され
る。As is apparent from the above embodiment, according to the method of the present invention, two opposing sides on one side of the contact window for connecting the storage electrode formed by laminating two conductive layers to the substrate are formed by the accumulation. Two sides on one side of a first opening exposing a lower insulating film formed on a first conductive layer used for an electrode are formed in a self-aligned manner, and only two opposing sides on the other side are formed. And a second opening formed in the resist layer across the first opening of the conductive layer and formed on two opposite sides of the resist layer in a self-aligned manner.
そのため、レジスト層に形成する第2の開孔の1方向
側に向かう幅はコンタクト窓の開孔幅に関係なく緩和す
ることが可能で、コンタクト窓寸法が露光の限界寸法近
傍まで縮小された際にも、露光領域を上記1方向側に広
く拡大することが可能になるので、レジスト底部まで確
実に露光されるような十分な露光光量が得られ、露光限
界に近い微小幅を有するレジストの開孔パターンを変形
を生ぜずに高精度で確実に形成することがでる。従っ
て、このレジスト層と第1の導電層をマスクにしてエッ
チングを行うことにより前記第1の開孔と第2の開孔の
交差部に露光限界に近い寸法の4辺を有する微細なコン
タクト窓を高精度でばらつきなく形成することができ
る。Therefore, the width of the second opening formed in the resist layer in one direction can be reduced irrespective of the opening width of the contact window, and when the contact window dimension is reduced to near the critical dimension of exposure. In addition, since the exposure area can be widened in the above-described one direction, a sufficient amount of exposure light can be obtained so that the bottom of the resist can be surely exposed. The hole pattern can be formed with high accuracy and without deformation. Therefore, by performing etching using the resist layer and the first conductive layer as a mask, a fine contact window having four sides close to the exposure limit at the intersection of the first opening and the second opening. Can be formed with high precision and without variation.
以上説明のように本発明によれば、2層の導電層が積
層された構造の蓄積電極を有する揮発性メモリセルにお
ける蓄積電極と基板との間の接続を微細なコンタクト窓
を介し微小領域における確実に行うことができるので、
1トランジスタ・1キャパシタ構造の揮発性半導体記憶
装置の高集積化及び、歩留、信頼性の向上が図れる。As described above, according to the present invention, a connection between a storage electrode and a substrate in a volatile memory cell having a storage electrode having a structure in which two conductive layers are stacked is formed in a minute region through a fine contact window. It can be done reliably,
The integration and the yield and the reliability of the volatile semiconductor memory device having the one-transistor / one-capacitor structure can be improved.
第1図(a)〜(e)は本発明の方法の一実施例の工程
平面図、 第2図(a)〜(e)は同実施例のA−A矢視工程断面
図、 第3図(a)〜(e)は同実施例のB−B矢視工程断面
図、 第4図は本発明の方法による揮発性メモリセルの完成図
で(a)は平面図、(b)はA−A矢視断面図、(c)
はB−B矢視断面図、 第5図は従来の1層構造の蓄積電極を有するメモリセル
の模式側断面図、 第6図(a)〜(d)は従来の1層構造の蓄積電極の形
成方法の工程平面図、 第7図(a)〜(d)は同1層構造の蓄積電極の形成方
法の工程断面図、 第8図は2層構造の蓄積電極の模式断面図、 第9図(a)〜(d)は従来の2層構造の蓄積電極の形
成方法の工程断面図である。 図において、 1はp型Si基板、 2はフィールド酸化膜、 3はゲート酸化膜、 4はゲート電極、 5はn+型ソース領域、 6はn+型ドレイン領域(ビットライン) 7は下層絶縁膜、 8、108はコンタクト窓、 9は蓄積電極、 9Aは第1の多結晶Si層(第1の導電層)、 9Bは第2の多結晶Si層(第2の導電層)、 10は誘電体膜、 11は対向電極、 12は被覆絶縁膜、 13は素子領域、 14はレジスト層、 15、115はコンタクト窓のエッチング用開孔、 16は第1の開孔、 17は第2の開孔、 44はワードライン、 TTは転送トランジスタ、 SCは蓄積容量 を示す。1 (a) to 1 (e) are process plan views of an embodiment of the method of the present invention, FIGS. 2 (a) to 2 (e) are cross-sectional views of the embodiment taken along the line AA, FIG. 4 (a) to 4 (e) are cross-sectional views taken along the line BB of the embodiment, FIG. 4 is a completed view of a volatile memory cell according to the method of the present invention, FIG. 4 (a) is a plan view, and FIG. AA arrow sectional drawing, (c)
Is a cross-sectional view taken along the line BB, FIG. 5 is a schematic side cross-sectional view of a conventional memory cell having a single-layered storage electrode, and FIGS. FIGS. 7A to 7D are process cross-sectional views of a method of forming a storage electrode having the same one-layer structure, FIG. 8 is a schematic cross-sectional view of a storage electrode having the two-layer structure, and FIGS. 9 (a) to 9 (d) are process sectional views of a conventional method for forming a storage electrode having a two-layer structure. In the figure, 1 is a p-type Si substrate, 2 is a field oxide film, 3 is a gate oxide film, 4 is a gate electrode, 5 is an n + -type source region, 6 is an n + -type drain region (bit line), and 7 is a lower insulating layer. 8, 108 are contact windows, 9 is a storage electrode, 9A is a first polycrystalline Si layer (first conductive layer), 9B is a second polycrystalline Si layer (second conductive layer), 10 is Dielectric film, 11 is a counter electrode, 12 is a covering insulating film, 13 is an element region, 14 is a resist layer, 15, 115 are etching openings for contact windows, 16 is a first opening, and 17 is a second opening. Opening, 44 indicates a word line, TT indicates a transfer transistor, and SC indicates a storage capacitor.
Claims (1)
とによって構成される記憶セルを有し、該蓄積容量の蓄
積電極が2層の導電層により構成される半導体記憶装置
の製造方法において、 該蓄積容量の蓄積電極を形成するに際し、 1方向がゲート電極により他の3方向がフィールド絶縁
膜によって画定された不純物拡散領域上に、該不純物拡
散領域上から該ゲート電極及びフィールド絶縁膜上に延
在する下層絶縁膜を形成する工程、 該下層絶縁膜上に、該不純物拡散領域上部の該下層絶縁
膜を表出する第1の開孔を有する第1の導電層を形成す
る工程、 該第1の導電層上に、該第1の開孔上を該ゲート電極と
平行な方向に横切る第2の開孔を有する耐エッチング層
を形成する工程、 該耐エッチング層及び第1の導電層をマスクにして該第
2の開孔内に表出する下層絶縁膜をエッチング除去し該
第1の開孔内に選択的に該不純物拡散領域面を表出せし
める工程、 該耐エッチング層を除去した後、該第1の導電層上に、
該第1の開孔部と該第2の開孔部との共通部において該
不純物拡散領域に接する第2の導電層を形成する工程、 該第2の導電層及び第1の導電層を同一マスクにより該
第1の開孔の周辺部においてパターニングする工程を有
することを特徴とする半導体記憶装置の製造方法。1. A method of manufacturing a semiconductor memory device, comprising: a storage cell formed by one transfer transistor and one storage capacitor, wherein a storage electrode of the storage capacitor is formed by two conductive layers. In forming the storage electrode of the storage capacitor, one direction is on the impurity diffusion region defined by the gate electrode and the other three directions are defined by the field insulating film, and from the impurity diffusion region on the gate electrode and the field insulating film. Forming a first conductive layer having a first opening exposing the lower insulating film above the impurity diffusion region, on the lower insulating film; Forming, on the first conductive layer, an etching-resistant layer having a second opening crossing the first opening in a direction parallel to the gate electrode; and forming the etching-resistant layer and the first conductive layer. Using the layer as a mask Removing the lower insulating film exposed in the second opening by etching to selectively expose the impurity diffusion region surface in the first opening; removing the etching-resistant layer; On the conductive layer of
Forming a second conductive layer in contact with the impurity diffusion region at a portion common to the first opening and the second opening, wherein the second conductive layer and the first conductive layer are the same. A method for manufacturing a semiconductor memory device, comprising a step of patterning a peripheral portion of the first opening with a mask.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1050503A JP2745645B2 (en) | 1989-03-02 | 1989-03-02 | Method for manufacturing semiconductor memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1050503A JP2745645B2 (en) | 1989-03-02 | 1989-03-02 | Method for manufacturing semiconductor memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02229467A JPH02229467A (en) | 1990-09-12 |
JP2745645B2 true JP2745645B2 (en) | 1998-04-28 |
Family
ID=12860759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1050503A Expired - Fee Related JP2745645B2 (en) | 1989-03-02 | 1989-03-02 | Method for manufacturing semiconductor memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2745645B2 (en) |
-
1989
- 1989-03-02 JP JP1050503A patent/JP2745645B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02229467A (en) | 1990-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2501501B2 (en) | Method for manufacturing semiconductor memory-memory of device-capacitor used in cell and structure thereof | |
JPH01152660A (en) | Method of manufacturing semiconductor memory device | |
KR960011652B1 (en) | Stack Capacitor and Manufacturing Method Thereof | |
JP2682509B2 (en) | Method for manufacturing semiconductor device | |
JP2557592B2 (en) | Method of manufacturing semiconductor memory cell | |
JPH11186127A (en) | Semiconductor device and manufacturing method thereof | |
JP3344786B2 (en) | Method for manufacturing capacitor electrode of semiconductor memory cell | |
US5937290A (en) | Method of manufacturing semiconductor integrated circuit devices using phase shifting mask | |
JPH04264767A (en) | Semiconductor device and its manufacturing method | |
JP2745645B2 (en) | Method for manufacturing semiconductor memory device | |
JPH0817943A (en) | Method for manufacturing semiconductor device | |
JPH02260454A (en) | Manufacture of memory device | |
JP2602581B2 (en) | Method for manufacturing semiconductor memory device | |
JP2000114481A (en) | Manufacture of semiconductor memory device | |
JPH11274434A (en) | Semiconductor device and manufacturing method thereof | |
JPH1093038A (en) | Semiconductor memory device and manufacture thereof | |
JP2950550B2 (en) | Method for manufacturing semiconductor memory device | |
JPH0330471A (en) | Semiconductor memory cell and manufacture thereof | |
JP2973495B2 (en) | Method for manufacturing semiconductor memory | |
JP2985855B2 (en) | Method for manufacturing semiconductor device | |
JP2624127B2 (en) | Semiconductor device and manufacturing method thereof | |
KR0165304B1 (en) | Self align contact structure semiconductor device & its fabrication method | |
JP2753092B2 (en) | Method for manufacturing semiconductor memory device | |
JP2893913B2 (en) | Semiconductor memory | |
JPS609348B2 (en) | Manufacturing method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |