[go: up one dir, main page]

JP2742975B2 - Regeneration method of ion exchange device - Google Patents

Regeneration method of ion exchange device

Info

Publication number
JP2742975B2
JP2742975B2 JP5113678A JP11367893A JP2742975B2 JP 2742975 B2 JP2742975 B2 JP 2742975B2 JP 5113678 A JP5113678 A JP 5113678A JP 11367893 A JP11367893 A JP 11367893A JP 2742975 B2 JP2742975 B2 JP 2742975B2
Authority
JP
Japan
Prior art keywords
anion exchange
water
resin
tower
regenerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5113678A
Other languages
Japanese (ja)
Other versions
JPH06296880A (en
Inventor
秀樹 田沢
誠太郎 長谷川
Original Assignee
整水工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 整水工業株式会社 filed Critical 整水工業株式会社
Priority to JP5113678A priority Critical patent/JP2742975B2/en
Publication of JPH06296880A publication Critical patent/JPH06296880A/en
Application granted granted Critical
Publication of JP2742975B2 publication Critical patent/JP2742975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】この発明はイオン交換装置の再生方法に係
り、その目的はシリカ含有率の高い被処理水を用いて
も、特にアニオン交換塔における樹脂内部でのシリカの
残留を防ぐことが可能で、イオン交換処理に続く純水の
高度精製処理を円滑に行ない、高純度の処理水を常に一
定製造することができるイオン交換装置の再生方法の提
供にある。
[0001] The present invention relates to a method for regenerating an ion-exchange apparatus, and an object of the present invention is to prevent silica from remaining in a resin particularly in an anion exchange column even when using water to be treated having a high silica content. It is an object of the present invention to provide a method for regenerating an ion exchange apparatus which can smoothly perform a highly purified treatment of pure water subsequent to an ion exchange treatment and can constantly produce a high-purity treated water constantly.

【0002】[0002]

【従来の技術】集積回路製造時の洗浄用水として要求さ
れる超純水の製造技術に逆浸透膜が採用されて以来、高
度精製水である超純水の製造量が飛躍的に増大し、現在
では半導体をはじめとするエレクトロニクス関連や原子
力発電、食品工業などの先端技術分野を中心に超純水が
利用されている。この超純水を製造する工程は一般に、
工業用水、上水、地下水等の原水を凝集、沈殿、濾過す
る前処理、イオン交換装置や逆浸透膜による一次純水ラ
イン、カートリッジポリッシャーや限外濾過膜、紫外線
殺菌などによる二次純水ラインとの工程によって行なわ
れている。一次純水ラインにおいて用いられているイオ
ン交換装置としては、カチオン交換塔、脱炭酸塔、アニ
オン交換塔からなる2床3塔式のものが一般的である
が、弱酸性及び強酸性のカチオン交換樹脂をそれぞれ用
いたカチオン交換塔、脱炭酸塔、弱酸性及び強酸性のア
ニオン交換樹脂をそれぞれ用いたアニオン交換塔からな
る4床5塔式、或いは4床5塔式において、弱酸性及び
強酸性のカチオン交換樹脂及びアニオン交換樹脂を各々
1塔にまとめた複層式のイオン交換装置なども使用され
てくるようになってきている。
2. Description of the Related Art Since reverse osmosis membranes have been employed in the production technology of ultrapure water required as cleaning water for the production of integrated circuits, the production volume of ultrapure water, which is highly purified water, has increased dramatically. At present, ultrapure water is used mainly in advanced technology fields such as semiconductors and other electronics-related fields, nuclear power generation, and the food industry. The process of producing this ultrapure water is generally
Pretreatment for coagulation, sedimentation and filtration of raw water such as industrial water, clean water and groundwater, primary pure water line with ion exchange device and reverse osmosis membrane, secondary pure water line with cartridge polisher, ultrafiltration membrane, ultraviolet sterilization, etc. And the process is performed. The ion exchange device used in the primary pure water line is generally a two-bed, three-column system comprising a cation exchange column, a decarboxylation column, and an anion exchange column. In a four-bed, five-column system or a four-bed, five-column system comprising a cation exchange tower, a decarbonation tower, and an anion exchange tower using a weakly acidic and a strongly acidic anion exchange resin, respectively, using a resin, each is weakly acidic and strongly acidic. And a multi-layer ion exchange apparatus in which the cation exchange resin and the anion exchange resin are combined into one column.

【0003】この様なイオン交換装置においては、被処
理水の通液を続けることによって、カチオン交換塔及び
アニオン交換塔における樹脂のイオン交換能が次第に低
下してくるため、適宜イオン交換塔における樹脂の再生
処理を行なう必要がある。イオン交換樹脂の再生は、樹
脂の下側から上向きに水(逆洗水)を流すことにより樹
脂内に沈着した被処理水中の懸濁物を洗い流し且つ樹脂
をときほぐす逆洗工程と、カチオン交換樹脂であれば塩
酸、アニオン交換樹脂であれば水酸化ナトリウム等の所
定の再生剤をイオン交換樹脂中に通液して、排液集水管
(コレクター)より排出する再生工程と、再生後に樹脂
中に洗浄水を通液して前記同様の樹脂の洗浄を行なうと
ともに樹脂中の再生剤を押し出す押出し工程と、樹脂中
に残る再生剤を洗い流す水洗工程とによって行なわれて
いる。
[0003] In such an ion exchange apparatus, the ion exchange capacity of the resin in the cation exchange tower and the anion exchange tower gradually decreases by continuing the flow of the water to be treated. Must be reproduced. Regeneration of the ion-exchange resin includes a back-washing step in which water (backwash water) is flowed upward from the bottom of the resin to wash away suspended substances in the water to be treated deposited in the resin and to loosen the resin, and a cation exchange resin. Then, a regenerating step in which a predetermined regenerant such as sodium hydroxide or the like is passed through the ion-exchange resin and discharged from the drainage collecting pipe (collector) if the anion exchange resin is used. The resin is washed by passing the washing water through, and an extruding step of extruding a regenerating agent in the resin and a water washing step of washing out the regenerating agent remaining in the resin are performed.

【0004】前記逆洗工程において逆洗水と同時に空気
を導入する技術も一般に採用されている。このような技
術としては例えば特開昭60−114345号「イオン
交換樹脂床の洗浄方法」、特公昭59−40064号
「イオン交換樹脂層の再生方法」、特開昭56−314
46号「復水脱塩装置の逆洗方法」に開示されている技
術を挙げることができる。これらの技術は、塔内に形成
されたイオン交換樹脂床を洗浄する方法において、該塔
内の水位を該イオン交換樹脂床の上面付近に調整する第
1工程、該塔の底部より逆洗水及び加圧空気を同時に導
入して、該イオン交換樹脂床の該塔外への流出を防止し
ながら該イオン交換樹脂床を混合攪拌する第2工程、該
塔頂部より加圧空気を導入し、該塔底部より前記逆洗水
の一部を排出する第3工程、続いて該イオン交換樹脂床
の上面の上方近傍に設置された排水管より該塔内に残留
する前記逆洗水を排出する第4工程からなるイオン交換
樹脂床の洗浄方法(特開昭60−114345号「イオ
ン交換樹脂床の洗浄方法」)であり、弱塩基性陰イオン
交換樹脂層の上方から澱粉糖水溶液を下向流で通液し、
該イオン交換樹脂層の機能が減退した時に、該イオン交
換樹脂層の下部より水又は空気を導入して該イオン交換
樹脂層を攪拌混合し、次いで沈静させた後、該イオン交
換樹脂層の下部より上向流で再生剤を通液して該イオン
交換樹脂層を再生するイオン交換樹脂層の再生方法(特
公昭59−40064号「イオン交換樹脂層の再生方
法」)であり、復水脱塩塔内でイオン交換樹脂を逆洗す
るにあたり、前記脱塩塔の下部からスルーシング水及び
空気をともに供給することより前記樹脂を攪拌しながら
洗浄し、そして洗浄廃液を前記脱塩塔内部に設けられた
フリーボードドレンから排除する復水脱塩装置の逆洗方
法(特開昭56−31446号「復水脱塩装置の逆洗方
法」)である。上記のように逆洗中に空気等を導入する
と、イオン交換樹脂がより好適にほぐれ、樹脂に沈着し
た懸濁物がより好適に洗い流されるので好ましい。
[0004] In the above-mentioned backwashing step, a technique of introducing air at the same time as backwash water is also generally employed. Such techniques include, for example, JP-A-60-114345, "Method of Cleaning Ion Exchange Resin Bed", JP-B-59-40064, "Method of Regenerating Ion Exchange Resin Layer", and JP-A-56-314.
No. 46, "Method of Backwashing Condensate Desalination Equipment". These techniques are used in a method of washing an ion-exchange resin bed formed in a tower, wherein a first step of adjusting the water level in the tower to near the upper surface of the ion-exchange resin bed, backwash water from the bottom of the tower And pressurized air are simultaneously introduced, and a second step of mixing and stirring the ion exchange resin bed while preventing the ion exchange resin bed from flowing out of the column, introducing pressurized air from the top of the column, A third step of discharging a part of the backwash water from the bottom of the tower, and subsequently discharging the backwash water remaining in the tower from a drain pipe installed near and above the upper surface of the ion exchange resin bed. A method for washing an ion exchange resin bed comprising a fourth step (Japanese Patent Laid-Open No. 60-114345, "Method for washing an ion exchange resin bed"), wherein an aqueous starch sugar solution is directed downward from above a weakly basic anion exchange resin layer. Through the flow,
When the function of the ion-exchange resin layer is reduced, water or air is introduced from the lower part of the ion-exchange resin layer to stir and mix the ion-exchange resin layer. A method of regenerating an ion-exchange resin layer by regenerating the ion-exchange resin layer by flowing a regenerant in a more upward flow (Japanese Patent Publication No. 59-40064, "Method of Regenerating an Ion-Exchange Resin Layer"). In backwashing the ion exchange resin in the salt tower, the resin is washed while stirring by supplying both slicing water and air from the lower part of the desalting tower, and the washing waste liquid is introduced into the desalting tower. This is a method for backwashing a condensate desalination apparatus that removes the condensate from the freeboard drain provided (Japanese Patent Application Laid-Open No. 56-31446, "Method for Backwashing Condensate Desalination Equipment"). The introduction of air or the like during the backwashing as described above is preferable because the ion exchange resin is more appropriately loosened and the suspended matter deposited on the resin is more appropriately washed away.

【0005】前記再生工程における再生方法としては、
被処理水の流通方向と同方向に再生剤を流通させる並流
再生法や、被処理水の流通方向と逆方向に再生剤を流通
させる向流再生法等がある。以前は並流再生法が広く採
用されていたが、向流再生法を採用すると樹脂の再生効
率が高くなるため近年はこの向流再生法が好適に使用さ
れている。また向流再生法ではイオン交換処理水の出口
から再生剤を通液するため、処理水出口付近ではイオン
交換樹脂が最もよく再生されており、高純度の処理水が
得られやすいのでより好ましい。
[0005] As a reproducing method in the reproducing step,
There are a cocurrent regeneration method in which the regenerant is circulated in the same direction as the flow direction of the water to be treated, and a countercurrent regeneration method in which the regenerant is circulated in the opposite direction to the flow direction of the water to be treated. In the past, the cocurrent regeneration method was widely used. However, the adoption of the countercurrent regeneration method increases the resin regeneration efficiency, and in recent years, this countercurrent regeneration method has been suitably used. Further, in the countercurrent regeneration method, since the regenerant is passed through the outlet of the ion-exchange treated water, the ion-exchange resin is most regenerated near the treated water outlet, and high-purity treated water is easily obtained, which is more preferable.

【0006】なお、従来は向流再生法にを採用する場合
再生工程以降に樹脂を攪拌しないようにされていた。こ
の理由は、向流再生法により樹脂を再生した場合処理水
の出口において最もよく再生されているが、この状態で
樹脂を攪拌すると充分再生されていない樹脂が処理水の
出口付近に移動することになるため、得られるイオン交
換水の純度が下がるからである。ところが、イオン交換
装置の再生工程においては、再生剤の通液にある程度の
偏流が避けられないため、再生剤を通液しても再生剤は
イオン交換樹脂層全体に行き渡らず、再生剤と接触しな
い樹脂部分が生じてしまうことがあり、イオン交換樹脂
が均一に再生されないことがある。通常の被処理水を処
理する場合はイオン交換樹脂が均一に再生される必要は
特にないが、シリカの含有量が多い被処理水を処理する
場合、アニオン交換塔において被処理水の通液時にトラ
ブルが生じやすくなるという課題が存在した。すなわ
ち、充分再生された樹脂部分と再生が充分でない樹脂部
分との界面におけるpH差の影響でシリカの析出が起こ
りやすいので、イオン交換樹脂が均一に再生されない状
態でアニオン交換塔に被処理水を通液しても、再生アル
カリ剤が行き渡りpHが高い樹脂部分と、再生剤が行き
渡らずpHが低い樹脂部分との界面にはゲル状又はコロ
イド状シリカが残留してしまう。
[0006] Conventionally, when the countercurrent regeneration method is employed, the resin is not stirred after the regeneration step. The reason for this is that when the resin is regenerated by the countercurrent regeneration method, the resin is best regenerated at the outlet of the treated water, but if the resin is agitated in this state, the insufficiently regenerated resin moves to the vicinity of the outlet of the treated water. , The purity of the obtained ion-exchanged water is reduced. However, in the regeneration step of the ion exchange apparatus, a certain amount of drift is unavoidable in the passage of the regenerant, so that even if the regenerant is passed, the regenerant does not reach the entire ion-exchange resin layer and contacts the regenerant. In some cases, an unexchanged resin portion may be generated, and the ion exchange resin may not be uniformly regenerated. It is not particularly necessary to regenerate the ion-exchange resin uniformly when treating the normal water to be treated, but when treating the water to be treated having a high silica content, when the water to be treated is passed through the anion exchange tower. There was a problem that trouble easily occurred. That is, since the precipitation of silica is likely to occur due to the pH difference at the interface between the resin portion that has been sufficiently regenerated and the resin portion that has not been sufficiently regenerated, the water to be treated is supplied to the anion exchange tower in a state where the ion exchange resin is not uniformly regenerated. Even when the solution is passed, gel-like or colloidal silica remains at the interface between the resin portion where the regenerating alkali agent spreads and the pH is high and the resin portion where the regenerant does not spread and the pH is low.

【0007】このため、上記したようなアニオン交換塔
を用いて被処理水の通液工程を行なうと、アニオン交換
塔よりコロイド状シリカが流出され、一次純水ラインか
ら二次純水ラインへと移行する純水の精製工程で、アニ
オン交換塔より流出されたコロイド状シリカが、マイク
ロフィルターやウルトラフィルターを閉塞してしまい、
円滑な純水の製造工程を行なうことができないという課
題が存在した。
For this reason, when the flow of the water to be treated is performed using the above-described anion exchange tower, the colloidal silica flows out of the anion exchange tower, and the colloidal silica flows from the primary pure water line to the secondary pure water line. In the purification process of the purified water that migrates, the colloidal silica that has flowed out of the anion exchange tower has clogged the microfilter and ultrafilter,
There was a problem that a smooth pure water production process could not be performed.

【0008】[0008]

【発明が解決しようとする課題】そこで、業界ではこの
ような実情に鑑みて、特にシリカ含有率が高い被処理水
を脱イオン処理する場合でも、高度精製が要求される先
端技術分野において使用される超純水を効率良く円滑に
常に一定して製造することのできるラインを確保するべ
く、優れたイオン交換装置の再生方法の創出が望まれて
いた。
In view of such circumstances, the industry has been used in the field of advanced technology, which requires high purification, especially when deionizing water to be treated having a high silica content. It has been desired to create an excellent method for regenerating an ion-exchange apparatus in order to secure a line capable of constantly and efficiently producing ultrapure water constantly and constantly.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の発明
は、シリカ含有率の高い被処理水を脱イオン処理するイ
オン交換装置の再生方法であって、カチオン交換塔とア
ニオン交換塔とを備えてなるイオン交換装置のアニオン
交換塔における樹脂を向流再生により再生する再生工程
において、前記アニオン交換塔内部の水位を樹脂層の上
部位置迄低下させた後、該アニオン交換塔の下部より上
向流で再生剤を通液させるとともに、この再生剤の通液
時に空気又は不活性ガスをアニオン交換塔の下部より流
入させることにより、再生工程中にアニオン交換樹脂を
攪拌することを特徴とするイオン交換装置の再生方法で
ある。請求項2に記載の発明は、前記再生剤通液後、ア
ニオン交換塔の下部より上向流で洗浄水を通液するとと
もに、この洗浄水の通液と同時に空気又は不活性ガスを
アニオン交換塔の下部より流入させ、前記再生剤を樹脂
層の上部位置より流出させることにより押出し工程中に
アニオン交換樹脂を攪拌することを特徴とする請求項1
に記載のイオン交換装置の再生方法である。上記の発明
を提供することにより、前記従来の課題を悉く解消す
る。
The invention according to claim 1 is a method for regenerating an ion exchange apparatus for deionizing water to be treated having a high silica content, wherein the method comprises a cation exchange tower and an anion exchange tower. In the regeneration step of regenerating the resin in the anion exchange tower of the provided ion exchange apparatus by countercurrent regeneration, after lowering the water level inside the anion exchange tower to the upper position of the resin layer, the water level is higher than the lower part of the anion exchange tower. It is characterized in that the anion exchange resin is agitated during the regeneration step by allowing the regenerant to flow in countercurrent and flowing air or an inert gas from the lower part of the anion exchange tower when the regenerant is passed. It is a regeneration method of the ion exchange device. The invention according to claim 2 is that, after passing the regenerant, the washing water is passed upward from the lower part of the anion exchange tower, and at the same time as the washing water is passed, air or an inert gas is anion exchanged. 2. The anion exchange resin is agitated during the extrusion step by flowing the regenerant from the lower part of the column and flowing out the regenerant from the upper part of the resin layer.
A method for regenerating an ion exchange device according to the item (1). By providing the above invention, all of the conventional problems are solved.

【0010】[0010]

【作用】アニオン交換塔内のイオン交換樹脂を再生処理
する際に、樹脂層の上部位置迄抜液して水位を低下させ
た後、再生剤の通液をアニオン交換塔の下部より上向流
で行い、アニオン交換塔内部に再生剤を通液する。ま
た、再生剤の通液時に空気又は不活性ガスをアニオン交
換塔の下部より流入させる。すると、アニオン交換塔内
のイオン交換樹脂層が空気又は不活性ガスの流入により
展開されるため、再生剤がイオン交換樹脂層に均一に分
散して通液される、或いは行き渡ることとなり、樹脂中
に再生剤が行き渡らないデッドスペースが生じず、アニ
オン交換塔内のイオン交換樹脂は均一に再生される。さ
らに、再生剤通液後、洗浄水を、アニオン交換塔の下部
より空気又は不活性ガスの流入と同時に上向流で行な
い、樹脂層の上部位置より前記再生剤を流出させて、再
生剤の押し出し工程を行なうことによって、アニオン交
換塔内部で樹脂層が展開され、イオン交換樹脂はさらに
均一に再生された状態となる。従って、アニオン交換塔
でシリカ含有率の高い被処理水を脱イオン処理した場合
でも、樹脂中にコロイド状シリカが析出してしまうこと
がなく、アニオン交換塔よりコロイド状シリカが流出し
て、ウルトラフィルターやマイクロフィルターを閉塞し
てしまうようなことがなく、純水の製造効率の低下や得
られる処理水の品質が低下してしまうようなことがな
い。
When the ion exchange resin in the anion exchange tower is regenerated, the water level is lowered by draining to the upper position of the resin layer, and then the regenerant is passed upward from the lower part of the anion exchange tower. And the regenerant is passed through the anion exchange tower. In addition, air or an inert gas is caused to flow from the lower part of the anion exchange column when the regenerant is passed. Then, since the ion exchange resin layer in the anion exchange tower is developed by the inflow of air or an inert gas, the regenerant is uniformly dispersed and passed through the ion exchange resin layer, or spreads throughout the resin. There is no dead space in which the regenerating agent does not spread, and the ion exchange resin in the anion exchange tower is uniformly regenerated. Further, after passing the regenerating agent, the washing water is supplied in an upward flow from the lower part of the anion exchange tower at the same time as the inflow of air or inert gas, and the regenerating agent is discharged from the upper position of the resin layer. By performing the extrusion step, the resin layer is developed inside the anion exchange tower, and the ion exchange resin is more uniformly regenerated. Therefore, even when the water to be treated having a high silica content is deionized in the anion exchange tower, colloidal silica does not precipitate in the resin, and the colloidal silica flows out of the anion exchange tower, and There is no possibility that the filter or the microfilter is clogged, and there is no decrease in the production efficiency of pure water or the quality of the obtained treated water.

【0011】[0011]

【発明の構成】以下、この発明に係るイオン交換装置の
再生方法の構成を図面に基づきながら詳述する。図1は
この発明の一実施例に係るイオン交換装置(1)の模式
図を示すもので、図中(2)はカチオン交換塔、(3)
は脱炭酸塔、(4)はアニオン交換塔を示す。カチオン
交換塔(2)内部には、カチオン交換樹脂(21)が充
填され、またアニオン交換塔(4)内部にはアニオン交
換樹脂(41)がそれぞれ充填されており、2床3塔式
のイオン交換装置を形成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of a method for regenerating an ion exchange apparatus according to the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic view of an ion exchange apparatus (1) according to one embodiment of the present invention, in which (2) is a cation exchange column and (3)
Indicates a decarbonation tower, and (4) indicates an anion exchange tower. The inside of the cation exchange column (2) is filled with a cation exchange resin (21), and the inside of the anion exchange column (4) is filled with an anion exchange resin (41). Forming a switching device.

【0012】純水を製造するに際しては、まず被処理水
(原水)(W0)をカチオン交換塔(2)の上部より矢
印の方向へ通液させる。まずカチオン交換塔(2)で被
処理水中のカチオン性イオンを除去し、次いで、必要に
応じ脱炭酸塔(3)にて炭酸塩を除去し、最後にアニオ
ン交換塔(4)にてアニオン性イオンを除去した後、得
られた処理水(W1)を後続の混床式イオン交換装置或
いは逆浸透膜、限外濾過による高度精製工程へと移行さ
せる。
In producing pure water, first, the water to be treated (raw water) (W0) is passed through the upper part of the cation exchange tower (2) in the direction of the arrow. First, the cation exchange tower (2) removes the cationic ions in the water to be treated, then, if necessary, the carbonate is removed in the decarbonation tower (3), and finally, the anion is removed in the anion exchange tower (4). After removing the ions, the obtained treated water (W1) is transferred to a subsequent advanced purification step using a mixed-bed ion exchange device, a reverse osmosis membrane, or ultrafiltration.

【0013】以上のような構成からなるイオン交換装置
(1)においては、被処理水を通液させるに従って、内
部に充填されているイオン交換樹脂の能力が低下し、処
理水中にイオンがリークされてくるようになるため、適
宜イオン交換塔の再生処理を行なう。この再生処理は、
まず被処理水の通液を一時停止させた後行なわれる。
[0013] In the ion exchange apparatus (1) having the above structure, the capacity of the ion exchange resin filled therein decreases as the water to be treated is passed, and ions leak into the treated water. Therefore, regeneration treatment of the ion exchange tower is performed as appropriate. This playback process
First, the process is performed after temporarily stopping the passage of the water to be treated.

【0014】図2は、この発明の一実施例に係るアニオ
ン交換塔(4)を示す断面模式図である。この発明では
特にアニオン交換塔(4)を再生処理するに際して、水
位を図2に示すように樹脂層(41)の上部位置(A)
迄抜液等により低下させる。この発明において、洗浄水
の抜液方法に関しては特に限定はされない。
FIG. 2 is a schematic sectional view showing an anion exchange column (4) according to one embodiment of the present invention. In the present invention, particularly when the anion exchange tower (4) is regenerated, the water level is set at the upper position (A) of the resin layer (41) as shown in FIG.
Until it is drained. In the present invention, there is no particular limitation on the method of draining the washing water.

【0015】洗浄水を樹脂層(41)の上部位置(A)
迄抜液すると、図2に示すように、アニオン交換塔
(4)内部には、樹脂層(A)の上方に空間(S)が生
じる。この状態で、アニオン交換塔(4)の下部(B)
より上向流で再生剤を通液させる。再生剤としては、特
に限定はされず、内部に充填されているアニオン交換樹
脂に応じて、或いは通液させる被処理水の成分特性に応
じて適宜任意のものを採用すればよく、水酸化ナトリウ
ム(NaOH)、水酸化アンモニウム(NH4 OH)な
ど公知のものが好適に採用できる。また、この再生剤の
濃度としても特に限定はされず0.5〜20%程度のも
のが好適に使用できる。
The washing water is supplied to the upper position (A) of the resin layer (41).
When the liquid is drained to the maximum, as shown in FIG. 2, a space (S) is formed inside the anion exchange tower (4) above the resin layer (A). In this state, the lower part (B) of the anion exchange tower (4)
The regenerant is passed through in a more upward flow. The regenerating agent is not particularly limited, and may be any appropriate one according to the anion exchange resin filled therein or according to the component characteristics of the water to be treated to be passed. Known materials such as (NaOH) and ammonium hydroxide (NH 4 OH) can be suitably used. The concentration of the regenerant is not particularly limited, and a concentration of about 0.5 to 20% can be suitably used.

【0016】また、この発明では前記した再生剤の通液
中にアニオン交換塔(4)の下部より空気又は不活性ガ
スを樹脂中に流入させる。この空気又は不活性ガスの流
入位置は、前記再生剤の通液と同じ位置(C)より、或
いは再生剤の通液位置よりも上部位置(D)で行なえば
よく、アニオン交換塔(4)の樹脂層(41)の下部位
置であれば特に限定はされない。不活性ガスとしては、
窒素ガス、アルゴンガス、ヘリウムガス等の反応性が小
さいガスが特に限定されることなく使用できる。さら
に、樹脂中に流入させる空気又は不活性ガスの流量とし
ては、特に限定はされないが、アニオン交換塔(4)内
部に充填されている樹脂(41)を展開させるだけの圧
力で流入させることが要件とされる。従って、用いるア
ニオン交換塔(4)の内径や充填されているイオン交換
樹脂層(41)の充填高さにより異なり、アニオン交換
塔(4)の内径が1.8m、イオン交換樹脂層(41)
の充填高さが1.5mの場合では、だいたい0.2〜2
Kg/cm2程度の圧力で流入されればよいが、特に限
定はされない。
In the present invention, air or an inert gas flows into the resin from the lower part of the anion exchange column (4) during the passage of the regenerant. The inflow position of the air or the inert gas may be set at the same position (C) as the flow of the regenerant, or at a position (D) above the flow position of the regenerant. The position is not particularly limited as long as the position is below the resin layer (41). As an inert gas,
Gases having low reactivity such as nitrogen gas, argon gas, and helium gas can be used without particular limitation. Further, the flow rate of the air or the inert gas to flow into the resin is not particularly limited, but it is preferable that the flow rate is such that the resin (41) filled in the anion exchange tower (4) is developed at a pressure enough to develop the resin. It is a requirement. Therefore, depending on the inner diameter of the anion exchange tower (4) used and the filling height of the filled ion exchange resin layer (41), the inner diameter of the anion exchange tower (4) is 1.8 m and the ion exchange resin layer (41)
In the case where the filling height is 1.5 m, approximately 0.2 to 2
The pressure may be introduced at a pressure of about Kg / cm 2, but is not particularly limited.

【0017】以上のように、アニオン交換塔(4)の下
部より空気又は不活性ガスを流入することにより、充填
されている樹脂層(41)が攪拌、展開される。従っ
て、再生剤の通液時に、或いは再生剤をアニオン交換塔
(4)内に通液させた際に、空気又は不活性ガスを下部
より流入させることによって樹脂層(41)が攪拌、展
開されるため、再生剤が樹脂層(41)全体に分散して
行き渡り、樹脂層(41)に再生剤が行き渡らないデッ
ドスペースが生じることがなく、樹脂層(41)内の樹
脂は均一に再生される。
As described above, the air or the inert gas flows from the lower part of the anion exchange tower (4), whereby the filled resin layer (41) is stirred and developed. Therefore, when the regenerant is passed or when the regenerant is passed through the anion exchange tower (4), the resin layer (41) is stirred and developed by flowing air or an inert gas from below. Therefore, the regenerant is dispersed throughout the resin layer (41) and spreads, so that there is no dead space where the regenerant is not spread in the resin layer (41), and the resin in the resin layer (41) is uniformly regenerated. You.

【0018】この発明において、再生剤の通液について
は特に限定されることなく、通常の方法に従って所要量
を通液し、アニオン交換塔(4)に所要時間通過させ
て、イオン交換樹脂に吸着されているHCO3 - ,Cl
- ,SO4 - などのアニオン性イオンを除去させる。以
上のような操作終了後、このアニオン交換塔(4)に洗
浄水を通液して、再生剤の押し出し工程を行なう。押出
水の通液は図3に示すように前記再生剤の通液と同様
に、アニオン交換塔(4)の下部(E)より上向流で行
なう。この時、同時に空気又は不活性ガスをアニオン交
換塔(4)の下部((F)又は(G)の位置)より流入
させ、樹脂層(41)の上部位置(H)より、アニオン
交換塔(4)に残存する再生剤を流出させ、コレクター
等により回収する。
In the present invention, the flow of the regenerant is not particularly limited, and is passed through a required amount according to a usual method, passed through an anion exchange column (4) for a required time, and adsorbed on an ion exchange resin. It is HCO 3 -, Cl
- , SO 4 - and other anionic ions are removed. After the above operation, the washing water is passed through the anion exchange tower (4) to perform a step of extruding the regenerant. As shown in FIG. 3, the flow of the extruding water is carried out in the upward direction from the lower part (E) of the anion exchange tower (4), similarly to the flow of the regenerant. At this time, at the same time, air or an inert gas is allowed to flow from the lower part (position (F) or (G)) of the anion exchange tower (4), and from the upper position (H) of the resin layer (41), the anion exchange tower ( The regenerant remaining in 4) is drained and collected by a collector or the like.

【0019】以上のように、洗浄水の通液と同時に空気
又は不活性ガスを流入させて、アニオン交換塔(4)の
再生剤の押し出し工程を行なうことにより、充填されて
いる樹脂層が前記同様、攪拌、展開されるため、樹脂層
(41)内の樹脂はさらに均一になる。操作終了後は、
通常通り、被処理水(原水)を通液させて、イオン交換
処理に供される。
As described above, air or an inert gas is caused to flow simultaneously with the flow of the washing water, and the step of extruding the regenerant in the anion exchange tower (4) is performed, whereby the filled resin layer is formed. Similarly, since the resin is stirred and developed, the resin in the resin layer (41) becomes more uniform. After the operation,
As usual, the water to be treated (raw water) is passed through, and then subjected to ion exchange treatment.

【0020】この発明のイオン交換装置の再生方法に係
る一実施例の構成は以上の通りであるが、この発明は前
記した2床3塔型のイオン交換装置には限定されず、3
床4塔式、4床5塔式或いは複層床式等あらゆるタイプ
のイオン交換装置のアニオン交換塔に採用することがで
きる。また、再生剤通液後の樹脂の後洗浄及び押し出し
工程については、前記した方法に限定されず、再生剤の
通液処理のみを空気又は不活性ガスの流入とともに樹脂
下部位置より上向流で行い、次の押し出し工程について
は通常の方法を採用してもよく、通液する被処理水の成
分特性に応じて適宜採用すればよい。すなわち、通液さ
せる被処理水がシリカ濃度の高いものである場合には、
樹脂中のシリカを充分に除去させる必要があるが、比較
的不純物の少ない被処理水を通液させた場合では、再生
剤の押し出し工程に際して、洗浄水のみを通液させて行
なっても、また上向流以外に下向流で洗浄水の通液を行
なってもよく、いずれもこの発明の範囲である。
The construction of one embodiment of the method for regenerating the ion exchange apparatus of the present invention is as described above. However, the present invention is not limited to the two-bed three-column ion exchange apparatus described above.
The present invention can be applied to anion exchange columns of all types of ion exchange apparatuses such as a four-bed type, a four-bed type, a five-bed type, and a multi-bed type. Further, the post-washing and extrusion steps of the resin after the passage of the regenerating agent are not limited to the above-described method, and only the passing process of the regenerating agent is performed in an upward flow from the resin lower position together with the inflow of air or inert gas. For the next extrusion step, a normal method may be adopted, or an appropriate method may be adopted depending on the component characteristics of the water to be passed. In other words, when the water to be treated is high in silica concentration,
Although it is necessary to sufficiently remove the silica in the resin, in the case where the water to be treated having relatively few impurities is allowed to pass therethrough, in the step of extruding the regenerant, even if only the washing water is allowed to pass therethrough, The washing water may be passed in a downward flow in addition to the upward flow, and both are within the scope of the present invention.

【0021】[0021]

【実施例】以下、実施例を挙げることにより、この発明
に係るイオン交換装置の再生方法の効果を一層明確なも
のとする。但し、この発明は以下の実施例により何ら限
定されるものではない。
EXAMPLES The effects of the method for regenerating an ion exchange apparatus according to the present invention will be further clarified by giving examples. However, the present invention is not limited at all by the following examples.

【0022】(実施例) 内径1.8mのアニオン交換塔内部にOH形強塩基性ア
ニオン交換樹脂(商品名:ダイヤイオンSA20A、三
菱化成(株)製)を1.5m充填したアニオン交換塔に
試料水(シリカ濃度70ppm)を上部より通液させ
た。試料水の通液は、2000m3 毎に一時停止し、ア
ニオン交換塔の樹脂の再生工程を行なった。再生工程に
おいては、通常の前洗浄を行なった後、洗浄水を樹脂層
上部位置まで抜液し、この状態で再生剤(4%水酸化ナ
トリウム)を3m/時間の流速でアニオン交換塔の最下
部より上向流で通液し、この通液と同時にアニオン交換
塔の最下部より空気を0.5Kg/cm2 の圧力で流入
させた。この再生剤の通液処理を0.7時間行なった
後、再生剤の通液、及び空気の流入を停止した。その
後、洗浄水を再生剤の通液位置より同位置で上向流で通
液し、同時に前記同様に空気を流入して、押出し工程を
行なった後、再度試料水を通液させた。この試料水の4
00m3 毎の通液によって得られた処理水をメンブレン
フィルター(直径25mm,0.2μm孔径、商品名;
ニュークリポア、コースター社(株)製)にて濾過(濾
過圧3Kg/cm2 )し、濾過開始より40ml、20
0ml、及び400ml濾過するに要する時間をそれぞ
れ測定した。濾過開始より40ml濾過するに要する時
間をT1、濾過開始より200ml濾過するに要する時
間をT2、濾過開始より400ml濾過するに要する時
間をT3として、フィルターの目詰まり指標(FI値)
を下記の式より算出した。 T3−2T2 FI値= ─────────── T1 この結果を表1乃至表2に示す。
(Example) An anion exchange tower filled with 1.5 m of an OH type strong basic anion exchange resin (trade name: Diaion SA20A, manufactured by Mitsubishi Kasei Co., Ltd.) inside an anion exchange tower having an inner diameter of 1.8 m was used. Sample water (silica concentration 70 ppm) was passed from above. The flow of the sample water was temporarily stopped every 2000 m 3, and a resin regeneration step of the anion exchange tower was performed. In the regeneration step, after performing the normal pre-washing, the washing water is drained to the upper position of the resin layer, and in this state, the regenerant (4% sodium hydroxide) is supplied to the anion exchange tower at the flow rate of 3 m / hour. The liquid was passed upward from the lower part, and at the same time as the liquid, air was introduced from the lowermost part of the anion exchange tower at a pressure of 0.5 kg / cm 2 . After the regenerating agent flow-through process was performed for 0.7 hours, the flow of the regenerating agent and the inflow of air were stopped. Thereafter, the washing water was passed upward at the same position from the position where the regenerant was passed. At the same time, air was introduced in the same manner as described above, and after the extrusion process was performed, the sample water was passed again. This sample water 4
The treated water obtained by passing every 00 m 3 is passed through a membrane filter (diameter 25 mm, 0.2 μm pore diameter, trade name;
Filtration (filtration pressure: 3 Kg / cm 2 ) by Nuclepore, manufactured by Coaster Co., Ltd.
The time required to filter 0 ml and 400 ml was measured, respectively. T1 is the time required to filter 40 ml from the start of filtration, T2 is the time required to filter 200 ml from the start of filtration, and T3 is the time required to filter 400 ml from the start of filtration (FI value).
Was calculated from the following equation. T3-2T2 FI value = ───────────T1 The results are shown in Tables 1 and 2.

【0023】[0023]

【表1】[Table 1]

【表2】[Table 2]

【0024】(比較例) アニオン交換塔の再生工程時に空気の流入を行なわなか
ったこと以外は前記実施例と同様に、試料水を通液させ
てメンブレンフィルターの目詰まり指標(FI値)を算
出した。この結果を表1乃至表2に示す。
(Comparative Example) A clogging index (FI value) of a membrane filter was calculated by passing a sample water in the same manner as in the above-described embodiment except that air was not introduced during the regeneration step of the anion exchange tower. did. The results are shown in Tables 1 and 2.

【0025】表1の結果から明らかな如く、実施例の方
法により再生処理したアニオン交換塔では、試料水の通
液400m3 、800m3 、1200m3 、1600m
3 、2000m3 毎のFI値はいずれも0.05以下を
示しており、目詰まりがほとんど生じていないことが判
る。また比較例でのFI値はいずれも0.06以上で、
目詰まりを起こしていることが判る。さらに表2の結果
から明らかな如く、実施例の方法により再生処理したア
ニオン交換塔では、試料水の通液量に正比例したフィル
ターへの濾過時間が得られているが、比較例では通液量
が増えると濾過時間が長くなることが判る。
As is clear from the results shown in Table 1, in the anion exchange tower regenerated by the method of the embodiment, 400 m 3 , 800 m 3 , 1200 m 3 , and 1600 m 3 of the sample water flow.
3 and FI values for every 2000 m 3 are both 0.05 or less, which indicates that almost no clogging occurs. The FI values in the comparative examples are all 0.06 or more,
It turns out that clogging is occurring. Further, as is clear from the results in Table 2, in the anion exchange tower regenerated by the method of the example, the filtration time to the filter was obtained in direct proportion to the flow rate of the sample water. It can be seen that the filtration time becomes longer as the amount increases.

【0026】[0026]

【発明の効果】以上詳述した如く、この発明はシリカ含
有率の高い被処理水を脱イオン処理するイオン交換装置
の再生方法であって、カチオン交換塔とアニオン交換塔
とを備えてなるイオン交換装置のアニオン交換塔におけ
る樹脂を向流再生により再生する再生工程において、前
記アニオン交換塔内部の水位を樹脂層の上部位置迄低下
させた後、該アニオン交換塔の下部より上向流で再生剤
を通液させるとともに、この再生剤の通液時に空気又は
不活性ガスをアニオン交換塔の下部より流入させること
により、再生工程中にアニオン交換樹脂を攪拌すること
を特徴とするイオン交換装置の再生方法であり、及び前
記再生剤通液後、アニオン交換塔の下部より上向流で洗
浄水を通液するとともに、この洗浄水の通液と同時に空
気又は不活性ガスをアニオン交換塔の下部より流入さ
せ、前記再生剤を樹脂層の上部位置より流出させること
により押出し工程中にアニオン交換樹脂を攪拌すること
を特徴とする請求項1に記載のイオン交換装置の再生方
法であるから、アニオン交換塔内のイオン交換樹脂が均
一に再生され、前記実施例の結果からも明らかな如く、
シリカ濃度の高い被処理水を通液させた場合でも、被処
理水の通液時にコロイド状シリカが析出してしまうこと
がなく、イオン交換処理に続く、純水の高度精製工程を
円滑に遂行させることができ、高純度の処理水を常に一
定して製造することができるという優れた効果を奏す
る。
As described in detail above, the present invention relates to a method for regenerating an ion exchange apparatus for deionizing water to be treated having a high silica content, comprising an cation exchange column and an anion exchange column. In the regeneration step of regenerating the resin in the anion exchange tower of the exchange unit by countercurrent regeneration, after the water level inside the anion exchange tower is lowered to the upper position of the resin layer, the water is regenerated in the upward flow from the lower part of the anion exchange tower. An ion exchange device characterized by stirring the anion exchange resin during the regeneration step by allowing air or an inert gas to flow from the lower part of the anion exchange tower when the regenerant is passed. The method is a regeneration method, and after passing the regenerant, the washing water is passed upward from the lower part of the anion exchange tower, and simultaneously with the passing of the washing water, air or an inert gas is passed. The method for regenerating an ion exchange apparatus according to claim 1, wherein the anion exchange resin is stirred during the extrusion step by flowing the regenerant from the lower part of the anion exchange tower and flowing out the regenerant from the upper part of the resin layer. Therefore, the ion exchange resin in the anion exchange tower is uniformly regenerated, and as is clear from the results of the above examples,
Even when the water to be treated having a high silica concentration is passed, the colloidal silica does not precipitate during the passage of the water to be treated, and the advanced purification process of pure water following the ion exchange treatment is smoothly performed. This has an excellent effect that high-purity treated water can always be produced constantly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係るイオン交換装置の再生方法の一
実施例で使用されるイオン交換装置の模式図である。
FIG. 1 is a schematic view of an ion exchange apparatus used in an embodiment of a method for regenerating an ion exchange apparatus according to the present invention.

【図2】この発明に係るイオン交換装置の再生方法の一
実施例を示す、再生剤の通液時のアニオン交換塔の断面
模式図である。
FIG. 2 is a schematic cross-sectional view of an anion exchange tower when a regenerant is passed, showing one embodiment of a method for regenerating an ion exchange apparatus according to the present invention.

【図3】この発明に係るイオン交換装置の再生方法の一
実施例を示す、後洗浄及び押し出し工程時のアニオン交
換塔の断面模式図である。
FIG. 3 is a schematic cross-sectional view of an anion exchange column during a post-washing and extrusion step, showing one embodiment of a method for regenerating an ion exchange apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 イオン交換装置 2 カチオン交換塔 3 脱炭酸塔 4 アニオン交換塔 41樹脂層 DESCRIPTION OF SYMBOLS 1 Ion exchange apparatus 2 Cation exchange tower 3 Decarbonation tower 4 Anion exchange tower 41 Resin layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−114345(JP,A) 特開 昭56−31446(JP,A) 特公 昭59−40064(JP,B2) 「別冊化学工業28−16 増補 実用イ オン交換」、宮原昭三,大曲隆昭,酒井 重男共著(化学工業社)、昭和59年8月 30日発行、91頁 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-114345 (JP, A) JP-A-56-31446 (JP, A) JP-B-59-40064 (JP, B2) −16 Enlarged Practical Ion Exchange, ”Shozo Miyahara, Takaaki Omagari, Shigeo Sakai (Chemical Industry Co., Ltd.), August 30, 1984, p. 91

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリカ含有率の高い被処理水を脱イオン
処理するイオン交換装置の再生方法であって、カチオン
交換塔とアニオン交換塔とを備えてなるイオン交換装置
のアニオン交換塔における樹脂を向流再生により再生す
再生工程において、前記アニオン交換塔内部の水位を
樹脂層の上部位置迄低下させた後、該アニオン交換塔の
下部より上向流で再生剤を通液させるとともに、この再
生剤の通液時に空気又は不活性ガスをアニオン交換塔の
下部より流入させることにより、再生工程中にアニオン
交換樹脂を攪拌することを特徴とするイオン交換装置の
再生方法。
1. Deionized water to be treated having a high silica content
A method for regenerating an ion exchange apparatus to be treated, wherein the resin in an anion exchange tower of an ion exchange apparatus comprising a cation exchange tower and an anion exchange tower is regenerated by countercurrent regeneration.
In the regeneration step, the water level inside the anion exchange tower is lowered to the upper position of the resin layer, and then the regenerant is passed upward from the lower part of the anion exchange tower. by flowing from the lower part of the air or inert gas anion exchange column, anion during the regeneration step
A method for regenerating an ion exchange apparatus, comprising stirring an exchange resin .
【請求項2】 前記再生剤通液後、アニオン交換塔の下
部より上向流で洗浄水を通液するとともに、この洗浄水
の通液と同時に空気又は不活性ガスをアニオン交換塔の
下部より流入させ、前記再生剤を樹脂層の上部位置より
流出させることにより押出し工程中にアニオン交換樹脂
を攪拌することを特徴とする請求項1に記載のイオン交
換装置の再生方法。
2. After passing the regenerant, the washing water is passed upward from the lower part of the anion exchange tower, and at the same time as the washing water is passed, air or an inert gas is passed from the lower part of the anion exchange tower. The anion exchange resin during the extrusion process by flowing in and allowing the regenerant to flow out of the upper position of the resin layer.
The method for regenerating an ion exchange device according to claim 1, wherein the mixture is stirred .
JP5113678A 1993-04-15 1993-04-15 Regeneration method of ion exchange device Expired - Lifetime JP2742975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5113678A JP2742975B2 (en) 1993-04-15 1993-04-15 Regeneration method of ion exchange device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5113678A JP2742975B2 (en) 1993-04-15 1993-04-15 Regeneration method of ion exchange device

Publications (2)

Publication Number Publication Date
JPH06296880A JPH06296880A (en) 1994-10-25
JP2742975B2 true JP2742975B2 (en) 1998-04-22

Family

ID=14618399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5113678A Expired - Lifetime JP2742975B2 (en) 1993-04-15 1993-04-15 Regeneration method of ion exchange device

Country Status (1)

Country Link
JP (1) JP2742975B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027213A2 (en) * 2009-09-06 2011-03-10 Earth Metallurgical Solutions (Pty) Limited Apparatus for the treatment of an effluent
EP2711340B1 (en) * 2011-05-17 2020-06-17 Organo Corporation Ion exchanging apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631446A (en) * 1979-08-22 1981-03-30 Toshiba Corp Back-washing method of condensed water desalter
JPS5940064A (en) * 1982-08-31 1984-03-05 Toshiba Corp Ball joint for enclosed compressor
JPS60114345A (en) * 1983-11-24 1985-06-20 Nippon Rensui Kk Washing method of ion exchange resin bed

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
「別冊化学工業28−16 増補 実用イオン交換」、宮原昭三,大曲隆昭,酒井重男共著(化学工業社)、昭和59年8月30日発行、91頁

Also Published As

Publication number Publication date
JPH06296880A (en) 1994-10-25

Similar Documents

Publication Publication Date Title
JP3200301B2 (en) Method and apparatus for producing pure or ultrapure water
JPS60132693A (en) Washing method of granular ion exchange resin with ultra-pure water and preparation of ultra-pure water
WO1999004904A1 (en) Method for minimizing wastewater discharge
KR100463268B1 (en) Mixed-bed type sugar solution refining system and regeneration method for such apparatus
WO2018037870A1 (en) Regenerative ion exchange device and operation method therefor
JP2940651B2 (en) Pure water production equipment
AU640472B2 (en) Ion exchange apparatus
JP2742975B2 (en) Regeneration method of ion exchange device
JPH10137751A (en) Ion exchange method and ion exchange column used in this ion exchange method
JPS60257840A (en) Ion exchange apparatus
JP2950621B2 (en) Ultrapure water production method
JP6337933B2 (en) Water quality management system and operation method of water quality management system
JP3613376B2 (en) Pure water production apparatus and pure water production method
JP5023809B2 (en) Electrolysis method of aqueous sodium chloride solution
JP2891790B2 (en) Regeneration method of anion exchange resin
JP2000153166A (en) Regeneration method of mixed bed type ion exchanger
JP2742976B2 (en) Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus
JP2002361247A (en) Pure water production method
JP3951456B2 (en) Pure water production equipment
JP3460324B2 (en) Filtration device
JP3160435B2 (en) Pure water production apparatus and method for regenerating the same
JP2940648B2 (en) Pure water production equipment
JPS6159199B2 (en)
JP3661204B2 (en) Ion exchange apparatus and regeneration method
JPH03293087A (en) Production of ultra-pure water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 15

EXPY Cancellation because of completion of term