JP2736189B2 - Radioactive waste contamination / activation radioactive identification method with openings - Google Patents
Radioactive waste contamination / activation radioactive identification method with openingsInfo
- Publication number
- JP2736189B2 JP2736189B2 JP3213733A JP21373391A JP2736189B2 JP 2736189 B2 JP2736189 B2 JP 2736189B2 JP 3213733 A JP3213733 A JP 3213733A JP 21373391 A JP21373391 A JP 21373391A JP 2736189 B2 JP2736189 B2 JP 2736189B2
- Authority
- JP
- Japan
- Prior art keywords
- ratio
- ray
- opening
- rays
- radiation detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measurement Of Radiation (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、老朽化した原子炉の解
体時などに発生する廃棄物の処理に際して用いられる放
射性廃棄物の汚染/放射化放射能識別方法に係わり、特
に配管や弁のような開口部を持つ廃棄物に対し、γ線の
散乱、あるいはβ線とγ線の割合を利用して汚染/放射
化放射能の識別を行う方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for identifying radioactive waste contamination / activated radioactivity used in the treatment of waste generated during the dismantling of an aging nuclear reactor, and more particularly to piping and valves. The present invention relates to a method for discriminating contamination / activated radioactivity by using γ-ray scattering or the ratio of β-ray and γ-ray to waste having such an opening.
【0002】[0002]
【従来の技術】老朽化した原子炉の解体等に際しては、
発生する廃棄物が汚染物か放射化物かを識別しておく必
要がある。2. Description of the Related Art When dismantling an aging nuclear reactor,
It is necessary to identify whether the generated waste is contaminated or radioactive.
【0003】従来、汚染/放射化放射能の識別方法とし
ては、図13に示す方法が知られている。この方法で
は、同図(a)に示すように、廃棄物が汚染物であるか
放射化物であるかを識別するために、平板状の測定対象
物Sを挟んで、放射線検出器1a,1bを180度対称
の位置に配置して遮蔽容器2内に収納し、放射線検出器
1a,1bの散乱γ線/直接γ線の比率を比較すること
により、汚染物であれば汚染面と反対面の散乱γ線/直
接γ線の比率が異なるが、放射化物ではその比率が異な
らないことを利用して、測定対象物Sの汚染/放射化を
識別している。また、同図(b)に示す方法では、4個
の放射線検出器1a,1b,1c,1dを90度間隔で
配置し、測定対象物Sの測定位置に関係なく両面の測定
を行えるようにして、測定対象物Sの汚染/放射化を識
別するようにしている。また更に、同図(c)に示す方
法では、1個の放射線検出器1aのみを用い、この放射
線検出器あるいは測定対象物Sを180度回転して、2
回測定した散乱γ線/直接γ線の比率を比較することに
より、測定対象物Sの汚染/放射化を識別するようにし
ている。Conventionally, a method shown in FIG. 13 has been known as a method for identifying contamination / activation radioactivity. In this method, as shown in FIG. 1A, in order to identify whether the waste is a contaminant or a radioactive material, the radiation detectors 1a and 1b are sandwiched by a flat object S to be measured. Are placed in a shielding container 2 at 180-degree symmetrical positions, and the ratio of scattered γ-rays / direct γ-rays of the radiation detectors 1a and 1b is compared. The ratio of scattered γ-rays / direct γ-rays is different, but the ratio of activated materials is not different. In the method shown in FIG. 2B, four radiation detectors 1a, 1b, 1c and 1d are arranged at 90-degree intervals so that both sides can be measured regardless of the measurement position of the measurement target S. Thus, contamination / activation of the measurement object S is identified. Further, in the method shown in FIG. 2C, only one radiation detector 1a is used, and the radiation detector or the measurement object S is rotated by 180 degrees to obtain 2
By comparing the ratio of the scattered γ-ray / direct γ-ray measured twice, contamination / activation of the measurement target S is identified.
【0004】また、上記の散乱γ線/直接γ線の比率の
代りに、β線とγ線の割合を利用する方法も知られてい
る。この方法では、図14に示すように、γ線検出部4
とβ線検出部5とを組み合わせた放射線検出器6を用
い、同図(a)のように、2個の放射線検出器6a,6
bを平板状の測定対象物Sを挟んで180度対称に配置
するか、あるいは同図(b)のように、1個の放射線検
出器6を用い、この放射線検出器6あるいは測定対象物
Sを180度回転して、2回測定したβ線/γ線比率を
比較することにより、測定対象物Sの汚染/放射化を識
別するようにしている。A method is also known in which the ratio of β-rays to γ-rays is used instead of the ratio of scattered γ-rays / direct γ-rays. In this method, as shown in FIG.
As shown in FIG. 3A, two radiation detectors 6a and 6
b is arranged 180 degrees symmetrically with the plate-like measurement object S interposed therebetween, or as shown in FIG. 3B, one radiation detector 6 is used, and the radiation detector 6 or the measurement object S is used. Is rotated by 180 degrees, and the contamination / activation of the measurement target S is identified by comparing the β-ray / γ-ray ratio measured twice.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、以上説
明した従来の方法では、測定対象物が配管のような開口
部を持つ廃棄物に対しては、放射線検出器1a,1b,
6a,6bを測定対象物の面を測定するように単に18
0度対称に配置すると、放射線検出器から得られる散乱
γ線/直接γ線比率およびβ線/γ線比率は等しくなっ
てしまうため、開口部を持つ廃棄物の汚染/放射化を識
別することはできない。However, in the conventional method described above, the radiation detector 1a, 1b,
6a and 6b are simply set to 18 so as to measure the surface of the object to be measured.
When symmetrically arranged at 0 degrees, the scattered γ-ray / direct γ-ray ratio and β-ray / γ-ray ratio obtained from the radiation detector become equal. Can not.
【0006】そこで、従来の方法において、開口部を持
つ廃棄物の汚染/放射化を識別する場合には、測定対象
物を回転させることになるが、大型の廃棄物の場合に
は、測定対象物を回転させることは極めて困難であり、
しかも同一の測定対象物を2度測定するため、大量の廃
棄物を処理する際には極めて非効率的であり、しかも作
業員が被曝する危険性もその分だけ増大するという欠点
があった。Therefore, in the conventional method, when the contamination / activation of the waste having the opening is identified, the object to be measured is rotated. However, in the case of a large waste, the object to be measured is rotated. It is extremely difficult to rotate things,
In addition, since the same measurement target is measured twice, it is extremely inefficient when treating a large amount of waste, and furthermore, there is a drawback that the risk of exposure of workers is increased correspondingly.
【0007】本発明は、従来技術における上述のごとき
欠点を除去すべくなされたものである。The present invention has been made to eliminate the above-mentioned drawbacks in the prior art.
【0008】[0008]
【課題を解決するための手段】請求項1の発明は、放射
線を検出する放射線検出器と、この放射線検出器からの
信号を分析するシステムと、この分析された信号を演算
し、評価し、表示する計算機とを用いて、開口部を持つ
放射性廃棄物の汚染/放射化放射能を識別する方法にお
いて、放射線検出器により放射性廃棄物の開口部方向か
らのγ線スペクトルおよび開口部以外の方向からのγ線
スペクトルを測定する工程と、開口部方向からのγ線ス
ペクトルより散乱γ線と直接γ線の比を求める工程と、
前記開口部以外の方向からのγ線スペクトルより散乱γ
線と直接γ線の比を求める工程と、前記開口部方向から
の散乱γ線/直接γ線の比に対する前記開口部以外の方
向からの散乱γ線/直接γ線の比の比率を算出する工程
と、この算出された比率に基づいて放射性廃棄物が汚染
物か放射化物かを識別する工程とを有することを特徴と
するものである。また請求項2の発明は、放射線を検出
する放射線検出器と、この放射線検出器からの信号を分
析するシステムと、この分析された信号を演算し、評価
し、表示する計算機とを用いて、開口部を持つ放射性廃
棄物の汚染/放射化放射能を識別する方法において、放
射線検出器により放射性廃棄物の開口部方向からのβ線
およびγ線を測定し、その測定比を求める工程と、放射
線検出器により放射性廃棄物の開口部以外の方向からの
β線およびγ線を測定し、その測定比を求める工程と、
前記開口部方向からのβ線/γ線の測定比と前記開口部
以外の方向からのβ線/γ線の測定比との比率を算出す
る工程と、この算出された比率から、予め作成された開
口部を持つ放射性廃棄物における汚染物の放射能と放射
化物の放射能の割合による前記比率の変化曲線に基づい
て放射性廃棄物が汚染物か放射化物かを識別する工程と
を有することを特徴とする。 According to the first aspect of the present invention, there is provided a light emitting device.
Using a radiation detector that detects lines, a system that analyzes the signal from the radiation detector, and a computer that calculates, evaluates, and displays the analyzed signal, radioactive waste having an opening In the method of identifying contaminated / activated radioactivity, the radiation detector is used
Gamma ray spectrum and gamma rays from directions other than the aperture
The step of measuring the spectrum and the gamma ray scanning from the opening direction
Obtaining a ratio of scattered γ-rays and direct γ-rays from the spectrum,
Scattering γ from γ-ray spectrum from directions other than the opening
The step of directly determining the ratio of the line and the γ-ray, from the opening direction
To the ratio of scattered γ-rays / direct γ-rays other than the apertures
For calculating the ratio of the ratio of scattered γ-rays / direct γ-rays from different directions
And radioactive waste is contaminated based on this calculated ratio.
And a step of distinguishing between an object and a radioactive substance . The invention according to claim 2 detects radiation.
Radiation detector and the signal from this radiation detector
System to analyze and calculate and evaluate this analyzed signal
Radioactive waste with openings using a computer
A method for identifying waste contamination / activation radioactivity
Β-rays from the opening direction of radioactive waste by radiation detector
Measuring γ-rays and γ-rays to determine the measurement ratio;
X-ray detector detects radioactive waste from directions other than the opening
measuring β-rays and γ-rays and determining the measurement ratio;
The measurement ratio of β-ray / γ-ray from the opening direction and the opening
Calculate the ratio with the measurement ratio of β-ray / γ-ray from directions other than
From the calculated ratio and the calculated ratio.
Radioactivity and radiation of pollutants in radioactive waste with mouth
Based on the change curve of the ratio according to the ratio of
Process to identify whether radioactive waste is contaminated or radioactive
It is characterized by having.
【0009】[0009]
【作用】上記構成の本発明方法によれば、汚染物と放射
化物の識別の目的を失うことなく作業効率を向上させ、
作業員の被曝の危険を低減し、老朽化した原子炉の解体
時などに発生する多種多量の廃棄物を迅速かつ正確に測
定することができる。即ち、図2(a)に示すように、
開口部を持つ測定対象物Pが内面汚染物であった場合、
開口部を向いた放射線検出器1aは主に測定対象物Pか
らの直接γ線を多く検出するが、開口部を向いていない
放射線検出器1bは測定対象物Pの中で散乱されたγ線
を、開口部を向いた放射線検出器1aに比べて多く検出
するため、両放射線検出器1a,1bの散乱γ線の計数
値と直接γ線の計数値との比率(以下、散乱γ線/直接
γ線比率という)には差が生ずることになる。一方、図
3(a)に示すように、測定対象物Pが放射化物であっ
た場合、開口部を向いた放射線検出器1aおよび開口部
を向いていない放射線検出器1bは、ともに多くの散乱
γ線を検出することになり、両放射線検出器1a,1b
から得られる散乱γ線/直接γ線比率には殆ど差は生じ
ない。よって、両放射線検出器1a,1bの散乱γ線/
直接γ線比率を比較することにより、汚染物と放射化物
を識別することが可能である。According to the method of the present invention having the above structure, the work efficiency can be improved without losing the purpose of discriminating between contaminants and radioactive substances,
The danger of worker exposure can be reduced, and a large amount of waste generated at the time of dismantling of an aging nuclear reactor can be measured quickly and accurately. That is, as shown in FIG.
When the measurement object P having an opening is an inner surface contaminant,
The radiation detector 1a facing the opening mainly detects a large amount of direct γ-rays from the measurement object P, while the radiation detector 1b not facing the opening detects the γ-rays scattered in the measurement object P. Is detected more than the radiation detector 1a facing the opening, the ratio between the count value of the scattered γ-rays and the count value of the direct γ-rays of both the radiation detectors 1a and 1b (hereinafter, scattered γ-ray / (Referred to as the direct γ-ray ratio). On the other hand, as shown in FIG. 3A, when the measurement object P is a radioactive substance, both the radiation detector 1a facing the opening and the radiation detector 1b not facing the opening have much scattering. γ-rays are detected, and both radiation detectors 1a and 1b are detected.
There is almost no difference in the ratio of scattered γ-rays / direct γ-rays obtained from the above. Therefore, the scattered γ-rays of the radiation detectors 1a and 1b /
By directly comparing the gamma ray ratios, it is possible to distinguish between contaminants and radioactive materials.
【0010】これは、図4(a)に示すように、γ線検
出部4とβ線検出部5とを組み合わせた放射線検出器6
a,6bを用いて計測する場合にもほぼ同じである。即
ち、開口部を持つ測定対象物Pが内面汚染物であった場
合、開口部を向いた放射線検出器6aのβ線検出部5は
内面汚染面からのβ線を検出し、開口部を向いた放射線
検出器6aのγ線検出部4は内面汚染面からのγ線を多
く検出する。これに対して、開口部を向いていない放射
線検出器1bのβ線検出部5は、β線が測定対象物P自
体に遮蔽されるためβ線を検出できないが、物質透過能
力の大きいγ線は測定対象物Pによって遮蔽されないた
め、開口部を向いていない放射線検出器6bのγ線検出
部4によっても検出される。従って、開口部を向いた放
射線検出器6aのβ線検出部5によるβ線計数率とγ線
検出部4によるγ線の計数率の比と、開口部を向いてい
ない放射線検出器6bのβ線検出部5によるβ線計数率
とγ線検出部4によるγ線の計数率の比の間には差を生
ずることになる。一方、図5(a)に示すように、測定
対象物Pが放射化物であった場合、開口部を向いた放射
線検出器6aのβ線検出部5によるβ線計数率とγ線検
出部4によるγ線の計数率の比と、開口部を向いていな
い放射線検出器6bのβ線検出部5によるβ線計数率と
γ線検出部4によるγ線の計数率の比の差は小さい。従
って、開口部を向いた放射線検出器6aと、開口部を向
いていない放射線検出器6bによって検出されるβ線と
γ線の計数率比の差は少なく、それ故、両放射線検出器
6a,6bのβ線/γ線計数率比を比較することによ
り、汚染物と放射化物を識別することが可能である。This is, as shown in FIG. 4A, a radiation detector 6 in which a γ-ray detector 4 and a β-ray detector 5 are combined.
The same is true for measurement using a and 6b. That is, when the measurement object P having the opening is the inner surface contaminant, the β-ray detector 5 of the radiation detector 6a facing the opening detects the β-ray from the inner surface contaminated surface, and turns to the opening. The γ-ray detecting section 4 of the radiation detector 6a detects a large amount of γ-rays from the inner contaminated surface. On the other hand, the β-ray detector 5 of the radiation detector 1b that is not directed to the opening cannot detect the β-ray because the β-ray is shielded by the measurement object P itself, but the γ-ray has a large material transmission ability. Is not shielded by the measurement object P, and thus is also detected by the γ-ray detection unit 4 of the radiation detector 6b not facing the opening. Accordingly, the ratio of the β-ray counting rate of the β-ray detecting section 5 of the radiation detector 6a facing the opening to the γ-ray counting rate of the γ-ray detecting section 4, and the β of the radiation detector 6b not facing the opening. There will be a difference between the ratio of the count rate of β rays by the line detector 5 and the count rate of γ rays by the γ ray detector 4. On the other hand, as shown in FIG. 5A, when the measurement object P is a radioactive substance, the β-ray counting rate and the γ-ray detection section 4 by the β-ray detection section 5 of the radiation detector 6a facing the opening are shown. Is small, and the difference between the ratio of the count rate of the γ-rays by the γ-ray detector 4 and the count rate of the γ-rays by the β-ray detector 5 of the radiation detector 6b not facing the opening is small. Therefore, the difference in the count rate ratio between β-rays and γ-rays detected by the radiation detector 6a facing the opening and the radiation detector 6b not facing the opening is small, and therefore, both radiation detectors 6a, 6a, By comparing the β- / γ-ray count rate ratio of 6b, it is possible to distinguish between contaminants and radioactive substances.
【0011】[0011]
【実施例】次に、図面を参照しながら本発明の実施例を
説明する。Next, an embodiment of the present invention will be described with reference to the drawings.
【0012】図1において、例えば配管のような開口部
を持つ測定対象物Pを中心に置き、その周囲に、開口部
を向く位置に放射線検出器1aを配置し、開口部を向か
ない位置に放射線検出器1bを配置し、それらの周囲を
遮蔽容器2で覆う。放射線検出器1a,1bの出力を信
号処理手段10a,10bにて処理し、得られた信号を
計算機11で演算し、結果を表示する。In FIG. 1, for example, a measurement object P having an opening, such as a pipe, is placed at the center, and a radiation detector 1a is arranged around the measurement object P at a position facing the opening, and at a position not facing the opening. The radiation detectors 1b are arranged, and their surroundings are covered with the shielding container 2. The outputs of the radiation detectors 1a and 1b are processed by the signal processing means 10a and 10b, the obtained signals are calculated by the calculator 11, and the results are displayed.
【0013】図2(a)において、測定対象物Pが例え
ば放射化部のないCo−60による汚染物であった場
合、開口部を向いた放射線検出器1aおよび開口部を向
いていない放射線検出器1bの測定結果の出力表示は、
それぞれ図2(b)のγ線スペクトル20a,20bの
ようになる。同図中、21a,21bは放射線検出器1
a,1bで測定した直接γ線の計数を示し、22a,2
2bは放射線検出器1a,1bで測定した散乱γ線の計
数を示す。なお、γ線スペクトル20aの直接γ線の計
数21aは、γ線スペクトル20bの直接γ線の計数2
1bに規格化して示してある。この図から明らかなよう
に、開口部を向いた放射線検出器1aにより測定される
散乱γ線の計数22aは、開口部を向いていない放射線
検出器1bにより測定される散乱γ線の計数22bより
比較的少ない。In FIG. 2A, when the measurement object P is, for example, a contaminant of Co-60 without an activated portion, the radiation detector 1a facing the opening and the radiation detection not facing the opening are detected. The output display of the measurement result of the device 1b is as follows.
The γ-ray spectra 20a and 20b in FIG. In the figure, 21a and 21b are radiation detectors 1
a and 1b show the counts of the direct gamma rays measured at 22a and 2b.
2b shows the count of scattered γ-rays measured by the radiation detectors 1a and 1b. The direct gamma ray count 21a of the gamma ray spectrum 20a is equal to the direct gamma ray count 2 of the gamma ray spectrum 20b.
1b. As is clear from this figure, the scattered gamma ray count 22a measured by the radiation detector 1a facing the opening is larger than the scattered gamma ray count 22b measured by the radiation detector 1b not facing the opening. Relatively few.
【0014】図3(b)は、測定対象物Pが汚染部のな
い放射化物であった場合の、放射線検出器1a,1bの
γ線スペクトル23a,23bを示す。同図中、24
a,24bは放射線検出器1a,1bで測定した直接γ
線の計数を示し、25a,25bは放射線検出器1a,
1bで測定した散乱γ線の計数を示す。なお、γ線スペ
クトル23aの直接γ線の計数24aは、γ線スペクト
ル23bの直接γ線の計数24bに規格化して示してあ
る。図3の放射化物の場合は、図2に示した汚染物の場
合とは異なり、開口部を向いた放射線検出器1aが測定
する散乱γ線の計数25aの割合と、開口部を向いてい
ない放射線検出器1bが測定する散乱γ線の計数25b
の割合はほぼ等しい。FIG. 3 (b) shows the γ-ray spectra 23a and 23b of the radiation detectors 1a and 1b when the measurement object P is an activated substance having no contaminated portion. In the figure, 24
a and 24b are the direct γ values measured by the radiation detectors 1a and 1b.
The line count is shown, and 25a and 25b are radiation detectors 1a,
The scattered gamma ray count measured in 1b is shown. The direct gamma ray count 24a of the gamma ray spectrum 23a is shown normalized to the direct gamma ray count 24b of the gamma ray spectrum 23b. Unlike the case of the contaminant shown in FIG. 2, in the case of the radioactive material of FIG. 3, the ratio of the scattered γ-ray count 25a measured by the radiation detector 1a facing the opening and the direction of the opening are not directed. Count 25b of scattered γ-rays measured by the radiation detector 1b
Are almost equal.
【0015】図6は、汚染部と放射化部が混在する開口
部を持つ測定対象物において、汚染部と放射化部の割合
を種々に変えて図2(b)に示すγ線スペクトルを測定
し、開口部を向いていない放射線検出器1bで測定した
直接γ線の計数21bと散乱γ線の計数22bの比に対
する、開口部を向いた放射線検出器1aで測定した汚染
部の直接γ線の計数21aと散乱γ線の計数22aの比
の割合を縦軸とし、測定対象物の汚染部の放射能と放射
化部の放射能の比を横軸にとって示した図である。この
図から明らかなように、測定対象物の汚染部の割合が増
すにつれて縦軸の比率は約1から約3.5へ増加する
が、特に、汚染部の放射能/放射化部の放射能の比が約
0.1から約10の領域での変化が急激であるため、汚
染物と放射化物の識別性が良いことが分かる。なお、図
6に示すような散乱γ線と直接γ線の比率の変化は測定
対象物の形状により若干変化するが、測定対象物の測定
に先立ち、図6に示す測定データを用意しておくことに
よって、汚染/放射化を容易に識別することができる。FIG. 6 shows the measurement results of the γ-ray spectrum shown in FIG. 2 (b) of a measurement object having an opening in which a contaminated part and an activated part are mixed, while changing the ratio of the contaminated part and the activated part variously. The ratio of the direct gamma ray count 21b and the scattered gamma ray count 22b measured by the radiation detector 1b not facing the opening to the ratio of the direct gamma ray of the contaminated part measured by the radiation detector 1a facing the opening to the ratio 22b. The ratio of the ratio of the count 21a to the count 22a of the scattered γ-rays is plotted on the vertical axis, and the ratio of the radioactivity of the contaminated portion and the radioactive portion of the object to be measured is plotted on the horizontal axis. As is clear from this figure, the ratio of the vertical axis increases from about 1 to about 3.5 as the ratio of the contaminated portion of the measurement object increases. It can be seen that the discrimination between the contaminant and the radioactive material is good because the change is sharp in the region where the ratio is about 0.1 to about 10. Although the change in the ratio between the scattered γ-rays and the direct γ-rays as shown in FIG. 6 slightly changes depending on the shape of the measurement target, the measurement data shown in FIG. 6 is prepared before the measurement of the measurement target. Thereby, contamination / activation can be easily identified.
【0016】以上の説明からも明らかなように、本実施
例は図1に示すように、測定対象物Pの周囲に開口部を
向く放射線検出器1aと開口部を向かない放射線検出器
1bを配置してγ線スペクトルを測定し、それぞれのγ
線スペクトルから散乱γ線/直接γ線の比を求めて相互
の比率を演算することにより、配管等の開口部を持つ測
定対象物を破壊することなく汚染/放射化の識別を行う
ことができる。As is clear from the above description, in the present embodiment, as shown in FIG. 1, a radiation detector 1a facing the opening and a radiation detector 1b not facing the opening are arranged around the object P to be measured. arranged to measure the γ-ray spectrum, each γ
Calculating the ratio of scattered γ-rays / direct γ-rays from the
By calculating the ratio, contamination / activation can be identified without destroying a measurement object having an opening such as a pipe .
【0017】次に、本発明の他の実施例を説明する。Next, another embodiment of the present invention will be described.
【0018】上述したように、開口部を持つ廃棄物の汚
染/放射化を識別する場合、管状の測定対象物Pに対し
て、放射線検出器を互いに直交して配置してもよいが、
この配置において平板状の廃棄物を測定する場合は、図
7に示すように汚染物と放射化物の識別ができなくな
る。即ち、図7(a)の放射線検出器1aは平板状の汚
染物である測定対象物Sの汚染面を向いており、放射線
検出器1bは測定対象物Sを横から覗く位置、すなわち
放射線検出器1aに直交して配置されている。図7
(b)は放射線検出器1bを汚染面の反対面を覗くよう
に角度θ方向に位置を変化させた場合の、放射線検出器
1aによる汚染面の散乱γ線の計数値/直接γ線の計数
値比に対する、放射線検出器1bによる反対面の散乱γ
線の計数値/直接γ線の計数値比の比率の変化の様子を
示す。この比率は0に近づくほど汚染物であることを示
し、この比率が0より大きくなるにつれて放射化部が増
えることを示す指標である。この図から明らかなよう
に、放射線検出器1bの角度θが60度より大きくなる
と、汚染物としての誤認性が急激に大きくなる。よっ
て、放射線検出器1a,1bを、直交する位置より所定
の角度だけずらして配置することにより、管状の廃棄物
と平板状の廃棄物を選り分けることなく汚染/放射化の
識別をすることができる。As described above, when identifying contamination / activation of waste having an opening, the radiation detectors may be arranged orthogonal to each other with respect to the tubular measurement object P.
When a flat waste is measured in this arrangement, it becomes impossible to discriminate between contaminants and radioactive materials as shown in FIG. That is, the radiation detector 1a in FIG. 7A faces the contaminated surface of the measurement target S, which is a flat contaminant, and the radiation detector 1b positions the measurement target S from the side, that is, radiation detection. It is arranged orthogonal to the vessel 1a. FIG.
(B) shows the sum of the count value of the scattered γ-rays on the contaminated surface and the direct γ-rays by the radiation detector 1a when the position of the radiation detector 1b is changed in the angle θ direction so as to look into the opposite surface of the contaminated surface. Scattering γ of the opposite surface by the radiation detector 1b with respect to the numerical ratio
The state of a change in the ratio of the line count value / direct gamma ray count value ratio is shown. This ratio is an index indicating that the closer to zero, the more contaminant is present, and as this ratio is greater than zero, the number of activated parts increases. As is clear from this figure, when the angle θ of the radiation detector 1b is larger than 60 degrees, the misrecognition as a contaminant sharply increases. Therefore, by arranging the radiation detectors 1a and 1b at a predetermined angle from the orthogonal position, it is possible to discriminate between contamination and activation without selecting tubular waste and flat waste. it can.
【0019】また更に、複雑な形状の廃棄物、例えばT
字管やエルボ管あるいは弁などの汚染/放射化識別測定
に際しては、必ずしも放射線検出器が廃棄物の開口部を
向くとは限らない。図8は、T字管Tに対して多数個の
放射線検出器1a〜1hを、角度を種々に変え全天方向
に配置した実施例を示す。このようにすれば、大型の廃
棄物の場合でも、測定対象物Tの開口部が放射線検出器
1a〜1hを向くように測定対象物を移動することなし
に、汚染/放射化を識別することができる。Still further, waste having a complicated shape, for example, T
In the case of contamination / activation identification measurement of a pipe, an elbow or a valve, the radiation detector does not always face the opening of the waste. FIG. 8 shows an embodiment in which a large number of radiation detectors 1a to 1h are arranged in various directions at various angles with respect to the T-tube T. In this way, even if the waste is large, contamination / activation can be identified without moving the measurement target so that the opening of the measurement target T faces the radiation detectors 1a to 1h. Can be.
【0020】また、図9に示すように、1台の放射線検
出器1aを用い、これを全天方向に移動できる駆動部
(図示せず)により駆動し、複数回の測定を行うことに
より、複雑な形状の廃棄物の汚染/放射化の識別を行う
ことができる。As shown in FIG. 9, a single radiation detector 1a is driven by a driving unit (not shown) that can move in all directions, and measurement is performed a plurality of times. The identification of contamination / activation of waste in complex shapes can be performed.
【0021】以上の実施例では、放射線検出器としてγ
線スペクトルを測定する放射線検出器を用い、散乱γ線
の計数値と直接γ線の計数値との比率に基づいて汚染/
放射化を識別する方法について説明したが、本発明はこ
れに限定されるものではなく、γ線検出部とβ線検出部
とを組み合わせた放射線検出器を用いることもできる。
即ち、図10に示すように、γ線検出部4とβ線検出
部5とを組み合わせた放射線検出器6a,6bを用い、
これらを測定対象物Pの周りに適度の角度をおいて配置
し、それらの出力を信号処理手段10a,10bにて処
理し、得られた信号を計算機11で演算し、結果を表示
する。In the above embodiment, γ is used as the radiation detector.
Using a radiation detector that measures the X-ray spectrum, the contamination /
Although the method of identifying activation has been described, the present invention is not limited to this, and a radiation detector combining a γ-ray detector and a β-ray detector may be used.
That is, as shown in FIG. 10, radiation detectors 6a and 6b combining a γ-ray detector 4 and a β-ray detector 5 are used,
These are arranged at an appropriate angle around the measuring object P, their outputs are processed by the signal processing means 10a and 10b, the obtained signals are calculated by the calculator 11, and the results are displayed.
【0022】図4(a)において、開口部を持つ測定対
象物Pが放射化部のない汚染物であった場合、開口部を
向いた放射線検出器6aのβ線検出部5によるβ線計数
率と、γ線検出部4によるγ線計数率の比率は、図4
(b)の曲線7aのようになる。また、開口部を向いて
いない放射線検出器6bのβ線検出部5によるβ線計数
率と、γ線検出部4によるγ線計数率の比率は、図4
(b)の曲線7bのようになる。これは、開口部を向い
た放射線検出器6aのβ線検出部5によって検出される
β線に対して、開口部を向いていない放射線検出器6b
のβ線検出部5は、β線が測定対象物P自体によって遮
蔽されるために検出できないからである。In FIG. 4 (a), when the measurement object P having an opening is a contaminant having no activation part, β-ray counting by the β-ray detection part 5 of the radiation detector 6a facing the opening. The ratio between the rate and the γ-ray counting rate by the γ-ray detector 4 is shown in FIG.
A curve 7a of FIG. In addition, the ratio of the β-ray counting rate of the β-ray detecting section 5 of the radiation detector 6b not facing the opening to the γ-ray counting rate of the γ-ray detecting section 4 is shown in FIG.
A curve 7b in FIG. This is because the β-rays detected by the β-ray detection unit 5 of the radiation detector 6a facing the opening correspond to the radiation detector 6b not facing the opening.
This is because the β-ray detector 5 cannot detect β-rays because the β-rays are shielded by the measurement object P itself.
【0023】また、図5(a)において、開口部を持つ
測定対象物Pが汚染部のない放射化物であった場合、開
口部を向いた放射線検出器6aのβ線検出部5によるβ
線計数率と、γ線検出部4によるγ線計数率の比率は、
図5(b)の曲線8aのようになる。また、開口部を向
いていない放射線検出器6bのβ線検出部5によるβ線
計数率と、γ線検出部4によるγ線計数率の比率は、図
5(b)の曲線8bのようになる。In FIG. 5 (a), when the measurement object P having an opening is a radioactive material having no contaminated portion, the β-ray detector 5 of the radiation detector 6a facing the opening detects β.
The ratio between the line counting rate and the γ-ray counting rate by the γ-ray detecting unit 4 is
A curve 8a in FIG. 5B is obtained. The ratio between the β-ray counting rate of the β-ray detecting section 5 of the radiation detector 6b not facing the opening and the γ-ray counting rate of the γ-ray detecting section 4 is as shown by a curve 8b in FIG. Become.
【0024】図4(b)と図5(b)とを比較すれば明
らかなように、開口部を持った測定対象物Pが内面汚染
物であった場合、開口部を向いた放射線検出器6aのβ
線/γ線計数率の比は、開口部を向いていない放射線検
出器6bのβ線/γ線計数率の比と比較して、測定対象
物Pの口径に関わらず差が大きいのに対して、測定対象
物Pが放射化物であった場合は、β線/γ線計数率比の
差は測定対象物Pの口径に関わらず差が小さい。As is apparent from a comparison between FIG. 4B and FIG. 5B, when the object P having an opening is an inner surface contaminant, the radiation detector facing the opening is used. Β of 6a
The ratio of the X-ray / γ-ray count rate is
Compared to the ratio of the β-ray / γ-ray counting rate of the output device 6b, the difference is large regardless of the diameter of the measurement target P, but when the measurement target P is an activated substance, the β-ray / Γ-ray count rate ratio
The difference is small regardless of the diameter of the measurement object P.
【0025】なお、開口部を持つ測定対象物Pに対し、
開口部を向いた放射線検出器6aと、開口部を向いてい
ない放射線検出器6bのβ線/γ線計数率比の比率を弁
別指標とすると、図11に示すように、開口部を持った
測定対象物Pの汚染部の割合が増すにつれて、弁別指標
は1から18へ増加し、特に汚染部放射能/放射化部放
射能の比が0.1から100の領域での変化が顕著であ
る。したがって、測定対象物の測定に先立ち、図11に
示す測定データを用意しておくことにより、開口部を持
った放射性廃棄物の汚染/放射化放射能を高い識別性能
で容易に識別することができる。It should be noted that, for a measurement object P having an opening,
When the ratio of the β-ray / γ-ray count rate ratio of the radiation detector 6a facing the opening to the radiation detector 6b not facing the opening is used as a discrimination index, as shown in FIG. The discrimination index increases from 1 to 18 as the proportion of the contaminated portion of the measuring object P increases, and in particular, the contaminated portion radioactivity / activated portion release
The change is remarkable in the range of the emissivity of 0.1 to 100. Therefore, prior to the measurement of the object to be measured, FIG.
By preparing the measurement data shown , contamination / activation radioactivity of radioactive waste having an opening can be easily identified with high identification performance.
【0026】このように、本実施例においては、β線検
出部とγ線検出部とを組み合わせた放射線検出器を使用
し、これを開口部を向いた位置と、開口部を向いていな
い位置に配置してβ線とγ線を測定し、それらの出力を
信号処理手段にて処理し、得られた信号を計算機で演算
することによって、開口部を持つ放射性廃棄物を破壊す
ることなく、汚染/放射化放射能の識別が可能である。As described above, in this embodiment, a radiation detector in which a β-ray detector and a γ-ray detector are combined is used, and the radiation detector is positioned at a position facing the opening and at a position not facing the opening. To measure β-rays and γ-rays, process their output by signal processing means, and calculate the obtained signal by a computer, without destroying radioactive waste having an opening, The contamination / activation radioactivity can be distinguished.
【0027】なお、図12に示すように、β線検出部5
とγ線検出部4とを組み合わせた放射線検出器6a,6
bを直交して配置し、これらを使用して平板状の廃棄物
Sを測定する場合、図12(b)に示すように、弁別指
標が検出器の角度θによって変化し、θ=90°付近で
低下するため、平板状廃棄物Sの汚染部と放射化部が識
別できなくなることがある。それを避けるためには、放
射線検出器6a,6bの配置角度を90°付近からずら
せておけばよい。Note that, as shown in FIG.
Radiation detectors 6a and 6 in which the radiation detectors 6 and
12b are arranged orthogonally, and when these are used to measure the flat waste S, as shown in FIG. 12B, the discrimination index changes depending on the angle θ of the detector, and θ = 90 °. Since the temperature decreases in the vicinity, the contaminated portion and the activated portion of the flat waste S may not be distinguished. In order to avoid this, the arrangement angles of the radiation detectors 6a and 6b may be shifted from around 90 °.
【0028】また、β線検出部とγ線検出部とを組み合
わせた放射線検出器を使用する場合においても、図8の
場合と同様に、多数個の放射線検出器を、角度を種々に
変え全天方向に配置してもよく、あるいは図9の場合と
同様に、1台の放射線検出器を用い、これを全天方向に
移動できる駆動部(図示せず)により駆動して、複数回
の測定を行うことにより、複雑な形状の廃棄物の汚染/
放射化の識別を行うことができる。Also, in the case of using a radiation detector in which a β-ray detector and a γ-ray detector are combined, as in the case of FIG. Alternatively, as in the case of FIG. 9, a single radiation detector may be used and driven by a driving unit (not shown) capable of moving in all directions to perform a plurality of times. By performing the measurement, the contamination /
Activation can be identified.
【0029】[0029]
【発明の効果】以上説明したように、本発明によれば、
放射線検出器を、開口部を持つ廃棄物の開口部を向く位
置および開口部を向かない位置に配置して、γ線スペク
トルまたはγ線とβ線を測定することにより、測定対象
物を形状別に弁別することなく汚染物と放射化物の識別
が可能となり、作業効率の低下と作業員の被曝を招くこ
となく、多種多様かつ多量の廃棄物の測定が可能にな
る。As described above, according to the present invention,
Position the radiation detector so that it faces the waste
Position it so that the, Gamma spec
Tor or gamma and beta raysBy measuring, the measurement target
Discrimination of contaminants and radioactive materials without discriminating objects by shape
Can lead to a decrease in work efficiency and exposure of workers.
Measurement of various and large amounts of wasteWhat
You.
【図1】本発明の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.
【図2】(a)は放射線検出器の角度による汚染物の散
乱γ線の相違を示す概略図であり、(b)はγ線のエネ
ルギー分布を示すグラフである。2A is a schematic diagram showing a difference in scattered γ-rays of contaminants depending on an angle of a radiation detector, and FIG. 2B is a graph showing an energy distribution of γ-rays.
【図3】(a)は放射線検出器の角度による放射化物の
散乱γ線の相違を示す概略図であり、(b)はγ線のエ
ネルギー分布を示すグラフである。FIG. 3A is a schematic diagram showing a difference in scattered γ-rays of a radioactive substance depending on an angle of a radiation detector, and FIG. 3B is a graph showing an energy distribution of γ-rays.
【図4】(a)は放射線検出器の角度による汚染物のβ
線とγ線の比率の相違を示す概略図であり、(b)は測
定対称物の口径に対するβ線計数率/γ線計数率比率の
関係を示すグラフである。FIG. 4 (a) is a view of β of a contaminant according to the angle of a radiation detector.
It is the schematic which shows the difference of the ratio of a line and a gamma ray, and (b) is a graph which shows the relationship of the beta-ray count rate / gamma-ray count rate ratio with respect to the aperture of the object to be measured.
【図5】(a)は放射線検出器の角度による放射化物の
β線とγ線の比率の相違を示す概略図であり、(b)は
測定対称物の口径に対するβ線計数率/γ線計数率比率
の関係を示すグラフである。5 (a) is a schematic diagram showing the difference in the ratio of β-rays and γ-rays of the radioactive substance depending on the angle of the radiation detector, and FIG. 5 (b) is the β-ray counting rate / γ-rays with respect to the aperture of the measurement object. It is a graph which shows the relationship of a count rate ratio.
【図6】廃棄物の汚染部および放射化部の割合を変えて
散乱γ線の割合を測定した結果を表すグラフである。FIG. 6 is a graph showing the result of measuring the ratio of scattered γ-rays while changing the ratio of a contaminated portion and an activated portion of waste.
【図7】(a)は放射線検出器の角度と平板状の測定対
称物の関係を示す概略図であり、(b)は放射線検出器
の配置角度と散乱γ線の割合の関係を示すグラフであ
る。FIG. 7A is a schematic diagram showing a relationship between an angle of a radiation detector and a plate-shaped symmetric object, and FIG. 7B is a graph showing a relationship between an arrangement angle of the radiation detector and a ratio of scattered γ rays. It is.
【図8】本発明において、放射線検出器を全天方向に複
数配置した実施例を示す説明図である。FIG. 8 is an explanatory diagram showing an embodiment in which a plurality of radiation detectors are arranged in all directions in the present invention.
【図9】本発明において、全天方向に移動できる放射線
検出器による測定方法を説明する説明図である。FIG. 9 is an explanatory diagram illustrating a measurement method using a radiation detector that can move in all directions in the present invention.
【図10】本発明の他の実施例を示す平面図である。FIG. 10 is a plan view showing another embodiment of the present invention.
【図11】測定対象物の汚染部と放射化部の割合を変え
た場合における弁別指標の変化の様子を示すグラフであ
る。FIG. 11 is a graph showing how the discrimination index changes when the ratio of the contaminated part to the activated part of the measurement object is changed.
【図12】(a)は放射線検出器の角度と平板状の測定
対称物の関係を示す概略図であり、(b)は放射線検出
器の配置角度と弁別指標の関係を示すグラフである。12A is a schematic diagram showing the relationship between the angle of a radiation detector and a flat symmetric object, and FIG. 12B is a graph showing the relationship between the arrangement angle of the radiation detector and a discrimination index.
【図13】(a)〜(c)はそれぞれ従来技術の平板状
廃棄物の汚染/放射化識別装置を示す概略図である。FIGS. 13 (a) to 13 (c) are schematic views showing a prior art apparatus for discriminating contamination / activation of flat waste.
【図14】(a),(b)はそれぞれ従来技術の平板状
廃棄物の汚染/放射化識別装置を示す概略図である。14 (a) and 14 (b) are schematic diagrams showing a conventional plate waste contamination / activation identification device, respectively.
1a〜1h…放射線検出器 2……遮蔽容器 4……γ線検出部 5……β線検出部 6a,6b…放射線検出器 10a,10b…信号処理手段 11……計算機 1a to 1h radiation detector 2 shielding container 4 gamma ray detector 5 beta ray detector 6a, 6b radiation detector 10a, 10b signal processing means 11 computer
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−308590(JP,A) 特開 昭63−70186(JP,A) 実開 昭60−48176(JP,U) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-308590 (JP, A) JP-A-63-70186 (JP, A) Jpn.
Claims (2)
放射線検出器からの信号を分析するシステムと、この分
析された信号を演算し、評価し、表示する計算機とを用
いて、開口部を持つ放射性廃棄物の汚染/放射化放射能
を識別する方法において、前記放射線検出器により前記放射性廃棄物の開口部方向
からのγ線スペクトルおよび開口部以外の方向からのγ
線スペクトルを測定する工程と、 前記開口部方向からのγ線スペクトルより散乱γ線と直
接γ線の比を求める工程と、 前記開口部以外の方向からのγ線スペクトルより散乱γ
線と直接γ線の比を求める工程と、 前記開口部方向からの散乱γ線/直接γ線の比に対する
前記開口部以外の方向からの散乱γ線/直接γ線の比の
比率を算出する工程と、 この算出された比率に基づいて前記放射性廃棄物が汚染
物か放射化物かを識別する工程とを有する ことを特徴と
する開口部を持つ放射性廃棄物の汚染/放射化放射能識
別方法。An opening is formed by using a radiation detector for detecting radiation, a system for analyzing a signal from the radiation detector, and a computer for calculating, evaluating and displaying the analyzed signal. A method for identifying contamination / activation radioactivity of a radioactive waste, comprising:
Spectrum from γ and γ from directions other than the aperture
Measuring the X-ray spectrum, and directly calculating the scattered γ-rays from the γ-ray spectrum from the opening direction.
A step of determining a ratio of tangential γ-rays, and scattering γ from a γ-ray spectrum from a direction other than the opening
A step of determining the ratio of the line and direct γ-rays, for the ratio of the scattered γ ray / direct γ-rays from the opening direction
Of the ratio of scattered γ-rays / direct γ-rays from directions other than the opening
Calculating a ratio, and the radioactive waste is contaminated based on the calculated ratio.
Pollution / emission of radioactivity identification method of radioactive waste having an opening; and a step of identifying whether things or radiation products.
放射線検出器からの信号を分析するシステムと、この分
析された信号を演算し、評価し、表示する計算機とを用
いて、開口部を持つ放射性廃棄物の汚染/放射化放射能
を識別する方法において、前記放射線検出器により前記放射性廃棄物の開口部方向
からのβ線およびγ線を測定し、その測定比を求める工
程と、 前記放射線検出器により前記放射性廃棄物の開口部以外
の方向からのβ線およびγ線を測定し、その測定比を求
める工程と、 前記開口部方向からのβ線/γ線の測定比と前記開口部
以外の方向からのβ線/γ線の測定比との比率を算出す
る工程と、 この算出された比率から、予め作成された開口部を持つ
放射性廃棄物における汚染物の放射能と放射化物の放射
能の割合による前記比率の変化曲線に基づいて 前記放射
性廃棄物が汚染物か放射化物かを識別する工程とを有す
ることを特徴とする開口部を持つ放射性廃棄物の汚染/
放射化放射能識別方法。 2. A radiation detector for detecting radiation.
A system that analyzes the signal from the radiation detector
Calculates, evaluates, and displays the analyzed signal.
Of radioactive waste with openings / activation radioactivity
In the method of identifying the direction of the opening of the radioactive waste by the radiation detector
To measure β- and γ-rays from
And degree, the other opening of the radioactive waste by the radiation detector
Β and γ rays from different directions, and determine the measurement ratio
And the measurement ratio of β-ray / γ-ray from the opening direction and the opening
Calculate the ratio with the measurement ratio of β-ray / γ-ray from directions other than
And an opening created in advance from the calculated ratio.
Radioactivity of contaminants and radioactive emissions in radioactive waste
The radiation based on the change curve of the ratio according to the ratio of the power
Identifying whether waste is contaminant or radioactive
Of radioactive waste with openings characterized by the following:
Activation radioactivity identification method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3213733A JP2736189B2 (en) | 1991-08-26 | 1991-08-26 | Radioactive waste contamination / activation radioactive identification method with openings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3213733A JP2736189B2 (en) | 1991-08-26 | 1991-08-26 | Radioactive waste contamination / activation radioactive identification method with openings |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0682559A JPH0682559A (en) | 1994-03-22 |
JP2736189B2 true JP2736189B2 (en) | 1998-04-02 |
Family
ID=16644104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3213733A Expired - Fee Related JP2736189B2 (en) | 1991-08-26 | 1991-08-26 | Radioactive waste contamination / activation radioactive identification method with openings |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2736189B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6059557B2 (en) * | 2013-02-25 | 2017-01-11 | 株式会社日立製作所 | Radiation measurement system |
JP6475931B2 (en) * | 2014-07-31 | 2019-02-27 | 株式会社日立製作所 | Radioactive substance monitoring device and radioactive substance monitoring method |
KR101657577B1 (en) * | 2014-11-24 | 2016-09-21 | 한국수력원자력 주식회사 | Measurement device and method of total gamma activity for clearance |
JP6472402B2 (en) * | 2016-03-08 | 2019-02-20 | 株式会社日立パワーソリューションズ | Radioactive waste management system and radiological waste management method |
CN109490023A (en) * | 2018-11-09 | 2019-03-19 | 中国核动力研究设计院 | A kind of activity metering unit for the sampling of gas on-line continuous |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58140741A (en) * | 1982-02-16 | 1983-08-20 | Fuji Photo Film Co Ltd | Formation of color image |
JP2565877B2 (en) * | 1986-09-11 | 1996-12-18 | 株式会社東芝 | Radioactive waste sorter |
JP2563341B2 (en) * | 1987-06-10 | 1996-12-11 | 株式会社東芝 | Contamination type determination device |
-
1991
- 1991-08-26 JP JP3213733A patent/JP2736189B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0682559A (en) | 1994-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3936638A (en) | Radiology | |
WO2011046078A1 (en) | Non-destructive examination method and device | |
CN101539556B (en) | Integrating system and integrating method for radioactive substance detection and X-ray radiation imaging | |
CN1779451A (en) | A method and device for backscattering safe detection of liquids with radioactive sources | |
JP6524484B2 (en) | Radiation measurement method and radiation measurement apparatus | |
JP2736189B2 (en) | Radioactive waste contamination / activation radioactive identification method with openings | |
CA1160364A (en) | Device for determining the proportions by volume of a multiple-component mixture by irradiation with several gamma lines | |
JPH01227050A (en) | Method and apparatus for measuring density and others of object | |
US4483817A (en) | Method and apparatus for mapping the distribution of chemical elements in an extended medium | |
JP5450356B2 (en) | Radiation detection method | |
CN201196635Y (en) | Integration system used for active material detection and X ray radiation imaging | |
JPH01152390A (en) | Fast neutron detector | |
JP2736186B2 (en) | Pollution / activation radioactivity identification device | |
JP7079426B2 (en) | Gamma ray detector | |
JPH04235379A (en) | Measuring method of radioactivity | |
JPH04194772A (en) | Radioactivity measuring device | |
CN201196636Y (en) | Integration system used for active material detection and X ray radiation imaging | |
JPS5977346A (en) | Material elemental composition analyzer | |
JPH06103279B2 (en) | Component analysis method | |
JP2736184B2 (en) | Radioactivity identification method for radioactive waste | |
JPH0644043B2 (en) | Semiconductor radiation detector | |
JP2007240253A (en) | Device and method for detecting crack | |
JPS63308590A (en) | Contamination mode discriminating instrument | |
JPH03183985A (en) | Radiation measuring and analyzing device | |
JPS62168080A (en) | Measuring instrument for radiation concentration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19971209 |
|
LAPS | Cancellation because of no payment of annual fees |