[go: up one dir, main page]

JP2734755B2 - Method for producing high-temperature high-strength silicon nitride sintered body - Google Patents

Method for producing high-temperature high-strength silicon nitride sintered body

Info

Publication number
JP2734755B2
JP2734755B2 JP2193390A JP19339090A JP2734755B2 JP 2734755 B2 JP2734755 B2 JP 2734755B2 JP 2193390 A JP2193390 A JP 2193390A JP 19339090 A JP19339090 A JP 19339090A JP 2734755 B2 JP2734755 B2 JP 2734755B2
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
weight
spinel
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2193390A
Other languages
Japanese (ja)
Other versions
JPH0477363A (en
Inventor
慎二 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2193390A priority Critical patent/JP2734755B2/en
Publication of JPH0477363A publication Critical patent/JPH0477363A/en
Application granted granted Critical
Publication of JP2734755B2 publication Critical patent/JP2734755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は窒化珪素焼結体の製造方法に関し、詳しくは
高温時の強度に優れた窒化珪素焼結体の製造方法に関す
る。本発明は窒化珪素製ガスタービンエンジンを製造す
る場合などに利用できる。
Description: TECHNICAL FIELD The present invention relates to a method for producing a silicon nitride sintered body, and more particularly, to a method for producing a silicon nitride sintered body having excellent strength at high temperatures. INDUSTRIAL APPLICABILITY The present invention can be used, for example, when manufacturing a silicon nitride gas turbine engine.

[従来の技術] 例えば特開昭59−131579号公報に開示されているよう
に、窒化珪素粉末70〜94重量%と、酸化イットリウム粉
末2重量%以上およびスピネル粉末2重量%以上でかつ
酸化イットリウム粉末とスピネル粉末の合計が6〜30重
量%である混合粉末を成形後、非酸化性雰囲気下で加熱
する方法が知られている。そしてこの方法によれば、液
相焼結となりスピネルは窒化珪素内に固溶体として吸収
されるので、粒界が強化され高強度の焼結体が得られ
る、としている。
[Prior Art] For example, as disclosed in JP-A-59-131579, 70-94% by weight of silicon nitride powder, 2% by weight or more of yttrium oxide powder and 2% by weight or more of spinel powder and yttrium oxide A method is known in which a mixed powder in which the total of the powder and the spinel powder is 6 to 30% by weight is molded and then heated in a non-oxidizing atmosphere. According to this method, since liquid phase sintering is performed and spinel is absorbed as a solid solution in silicon nitride, grain boundaries are strengthened and a high-strength sintered body is obtained.

また発明協会公開技報88−5661号には、酸化イットリ
ウムとスピネルとをそれぞれ0.5〜1.8重量%以下の量含
む混合粉末から窒化珪素焼結体を製造する方法が開示さ
れている。そしてこの方法では、焼結助剤の量が少ない
ので、高温での強度低下を防止できるとしている。
Japanese Patent Publication No. 88-5661 discloses a method for producing a silicon nitride sintered body from a mixed powder containing yttrium oxide and spinel in amounts of 0.5 to 1.8% by weight or less. According to this method, since the amount of the sintering aid is small, a reduction in strength at high temperatures can be prevented.

[発明が解決しようとする課題] 上記した従来の製造方法では、スピネルが焼結時に液
相焼結開始温度を1500〜1600℃に下げる作用を有し、焼
結が容易となる利点がある。しかしこのような利点を得
るためには、酸化イットリウムとスピネルとを重量比で
ほぼ1対1の割合で用いる必要があるが、このようにす
ると焼結に必要な量以上のスピネルが添加されるため、
焼結体の粒界は非晶質となりやすい。このため1200℃以
上では高温強度が急激に低下するという不具合が生じて
いた。したがって1300〜1400℃にもなるガスタービンエ
ンジン部品などに窒化珪素セラミックスを用いることは
従来困難であった。
[Problems to be Solved by the Invention] In the above-mentioned conventional manufacturing method, there is an advantage that spinel has a function of lowering a liquid phase sintering start temperature to 1500 to 1600 ° C during sintering, and sintering becomes easy. However, in order to obtain such advantages, it is necessary to use yttrium oxide and spinel at a weight ratio of about 1: 1. In this case, spinel is added in an amount more than necessary for sintering. For,
The grain boundaries of the sintered body tend to be amorphous. For this reason, at a temperature of 1200 ° C. or more, there has been a problem that the high-temperature strength sharply decreases. Therefore, it has conventionally been difficult to use silicon nitride ceramics for gas turbine engine parts, which can reach 1300 to 1400 ° C.

本発明はこのような不具合を解決するものであり、高
温で高強度を有する窒化珪素焼結体を製造することを目
的とする。
The present invention is intended to solve such a problem, and has an object to produce a silicon nitride sintered body having high strength at a high temperature.

[課題を解決するための手段] 本発明者は焼結助剤としての希土類元素の酸化物とス
ピネルとの配合割合を鋭意検討した。そして、スピネル
の配合量が従来の常識以下の微量の限られた範囲にある
場合に、焼結体の耐酸化性が著しく向上し、高温強度に
優れることを発見して本発明を完成したものである。
[Means for Solving the Problems] The present inventors have studied diligently the compounding ratio of a rare earth element oxide and spinel as a sintering aid. And when the compounding amount of the spinel is in a limited range of a trace amount less than the conventional common sense, the oxidation resistance of the sintered body is remarkably improved, and it has been discovered that the present invention is excellent in high-temperature strength, thereby completing the present invention. It is.

すなわち本発明の高温高強度窒化珪素焼結体の製造方
法は、窒化珪素(Si3N4)粉末91.5〜96.99重量%と、希
土類元素の酸化物粉末3〜8重量%およびスピネル(Mg
Al2O4)粉末0.01〜0.5重量%とを混合し、成形後非酸化
性雰囲気下1700〜1850℃で常圧焼結することを特徴とす
る。
That is, the method for producing a high-temperature and high-strength silicon nitride sintered body of the present invention comprises a silicon nitride (Si 3 N 4 ) powder of 91.5 to 96.99% by weight, a rare earth element oxide powder of 3 to 8% by weight and spinel (Mg
Al 2 O 4 ) powder is mixed with 0.01 to 0.5% by weight, and after forming, is sintered under normal pressure at 1700 to 1850 ° C. in a non-oxidizing atmosphere.

希土類元素の酸化物としては、窒化珪素の焼結助剤と
して機能するものであれば用いることができ、酸化イッ
トリウム(Y2O3)、酸化スカンジウム(Sc2O3)、酸化
イッテルビウム(Yb2O3)などを用いることができる。
この希土類元素の酸化物により柱状結晶が成長して、ア
スペクト比の大きなβ−Si3N4が生成する。
As the rare earth element oxide, any one that can function as a sintering aid for silicon nitride can be used, and yttrium oxide (Y 2 O 3 ), scandium oxide (Sc 2 O 3 ), and ytterbium oxide (Yb 2 O 3 ) can be used.
Columnar crystals grow by the oxide of the rare earth element, and β-Si 3 N 4 having a large aspect ratio is generated.

この希土類元素の酸化物粉末は、全体の3〜8重量%
配合される。3重量%未満であると緻密な焼結が困難と
なり、焼結体の密度が低下するとともに強度も低下す
る。また8重量%を超えて配合されると、過剰となって
高温強度が低下する。
This rare earth element oxide powder accounts for 3 to 8% by weight of the whole.
Be blended. If the content is less than 3% by weight, dense sintering becomes difficult, and the density and strength of the sintered body decrease. If the content is more than 8% by weight, the content becomes excessive and the high-temperature strength decreases.

希土類元素の酸化物のみでは、常圧焼結が困難であ
る。そこでスピネル(MgAl2O4)が微量添加される。こ
れにより液相焼結となり、常圧で焼結できるようにな
る。ここで、スピネルは全体に0.01〜0.5重量%配合さ
れる。0.01重量%未満では常圧焼結が困難となり、0.5
重量%を超えて配合すると焼結体の耐酸化性が低下して
高温強度に劣るようになる。
Atmospheric pressure sintering is difficult only with rare earth element oxides. Therefore, a small amount of spinel (MgAl 2 O 4 ) is added. As a result, liquid phase sintering is performed, and sintering can be performed at normal pressure. Here, the spinel is blended in a total amount of 0.01 to 0.5% by weight. At less than 0.01% by weight, normal pressure sintering becomes difficult,
If it is added in excess of weight%, the oxidation resistance of the sintered body is reduced, and the high-temperature strength is deteriorated.

上記希土類元素の酸化物粉末とスピネル粉末は、91.5
〜96.99重量%の窒化珪素粉末と混合され、所望の形状
に成形される。この成形方法としては、静水圧加圧成
形、射出成形、泥漿鋳込み成形など従来用いられている
成形方法で成形することができる。
The rare earth oxide powder and the spinel powder are 91.5%
~ 96.99% by weight of silicon nitride powder is mixed and formed into a desired shape. As the molding method, molding can be performed by a conventionally used molding method such as hydrostatic pressure molding, injection molding, and slurry casting.

得られた成形体は、必要であれば乾燥後、非酸化性雰
囲気下1700〜1850℃で常圧焼結される。酸化性雰囲気下
では焼結しないため、不活性ガス雰囲気下あるいは真空
条件下で成形する必要がある。この焼結は常圧で行なわ
れ、焼結温度は1700〜1850℃である。そして常圧焼結温
度が1700℃より低いと焼結体の緻密化が充分に進行せ
ず、機械的物性値の低下を招く。また1850℃より高くな
ると、窒化珪素の分解などが生じるようになるので好ま
しくない。
The obtained compact is dried, if necessary, and then sintered under normal pressure at 1700 to 1850 ° C. in a non-oxidizing atmosphere. Since sintering is not performed in an oxidizing atmosphere, it is necessary to mold under an inert gas atmosphere or a vacuum condition. This sintering is performed at normal pressure, and the sintering temperature is 1700-1850 ° C. If the normal-pressure sintering temperature is lower than 1700 ° C., the densification of the sintered body does not sufficiently proceed, resulting in a decrease in mechanical properties. On the other hand, when the temperature is higher than 1850 ° C., decomposition of silicon nitride or the like occurs, which is not preferable.

[作用] 本発明の製造方法では、希土類元素の酸化物によりア
スペクト比の大きなβ−Si3N4が生成するため、焼結体
が緻密となり強度が向上する。そして微量のスピネルに
より液相焼結となり、常圧焼結が可能となる。またスピ
ネルは微量であるため、粒界に形成される非晶質部分が
少ない。したがって非晶質部分の耐酸化性が向上し、高
温強度も向上するものと推察される。
[Function] In the manufacturing method of the present invention, β-Si 3 N 4 having a large aspect ratio is generated by the oxide of the rare earth element, so that the sintered body becomes dense and the strength is improved. Then, liquid phase sintering is performed by a small amount of spinel, and normal pressure sintering becomes possible. Further, since the spinel is very small, the amorphous portion formed at the grain boundary is small. Therefore, it is assumed that the oxidation resistance of the amorphous portion is improved and the high-temperature strength is also improved.

[実施例] 以下、実施例により具体的に説明する。[Examples] Hereinafter, specific examples will be described.

(実施例1) 第1表にも示すように、平均粒径0.2μmの高純度窒
化珪素(Si3N4)の粉末が96.8重量%、平均粒径0.1μm
の酸化イットリウム(Y2O3)粉末が3.0重量%、平均粒
径0.05μmのスピネル(MgAl2O4)粉末が0.2重量%とな
るように各粉末を混合し、静水圧300MPaの負荷にて角棒
状に成形した。そして1820℃の温度で、窒素ガス雰囲気
中にて常圧焼結した。
Example 1 As shown in Table 1, 96.8% by weight of high-purity silicon nitride (Si 3 N 4 ) powder having an average particle diameter of 0.2 μm was used, and the average particle diameter was 0.1 μm.
Yttrium oxide (Y 2 O 3 ) powder was mixed at 3.0% by weight and spinel (MgAl 2 O 4 ) powder having an average particle size of 0.05 μm at 0.2% by weight. It was shaped into a square bar. Then, normal pressure sintering was performed at a temperature of 1820 ° C. in a nitrogen gas atmosphere.

得られた焼結体をJIS規格による曲げ試験片形状に加
工し、室温、1300℃および1400℃の3水準の条件で、空
気中にてそれぞれ4点曲げ強度(JISR1601)を測定し
た。試料数は10本である。またアルキメデス法により密
度を測定し結果を第1表に示す。
The obtained sintered body was processed into a bending test piece shape according to JIS standard, and the four-point bending strength (JISR1601) was measured in air at three levels of room temperature, 1300 ° C. and 1400 ° C. The number of samples is 10. The density was measured by the Archimedes method, and the results are shown in Table 1.

(実施例2〜9、比較例1〜4) 希土類元素の酸化物として、他に酸化スカンジウム
(Sc2O3)と酸化イッテルビウム(Yb2O3)を選び、原料
粉末の種類、配合比率および焼結温度を第1表に示すよ
うに種々変化させたこと以外は実施例1と同様にして、
それぞれの焼結体を製造し、それぞれ同様に試験して結
果を第1表に示す。
(Examples 2 to 9 and Comparative Examples 1 to 4) Scandium oxide (Sc 2 O 3 ) and ytterbium oxide (Yb 2 O 3 ) were also selected as oxides of rare earth elements, and the type, blending ratio and Except that the sintering temperature was variously changed as shown in Table 1, the same as in Example 1,
Each sintered body was manufactured and tested in the same manner, and the results are shown in Table 1.

(試験例) 第1表の実施例4および比較例4で得られた焼結体に
ついて、それぞれ大気中にて1400℃で100時間加熱する
静的酸化試験を行ない、加熱後の重量と加熱前の重量の
差より酸化増量を求めた。その結果、比較例4の焼結体
では15mg/cm2の増量であったのに対し、実施例4の焼結
体では1mg/cm2と酸化増量が1/15に低減されていた。こ
れは、酸化イットリウムに比べてスピネルの量が極端に
少ないので、粒界の厚さが減少した分耐酸化性が向上し
たものと推定される。
(Test Example) The sintered bodies obtained in Example 4 and Comparative Example 4 in Table 1 were each subjected to a static oxidation test in which they were heated at 1400 ° C. for 100 hours in the atmosphere, and the weight after heating and before heating were measured. Was determined from the difference in the weight of the samples. As a result, while the weight gain of the sintered body of Comparative Example 4 was increased by 15 mg / cm 2 , the weight gain of oxidation was reduced to 1 mg / cm 2 and 1/15 in the sintered body of Example 4. This is presumably because the amount of spinel is extremely small as compared with yttrium oxide, and the oxidation resistance is improved by the reduced thickness of the grain boundary.

(評価) 実施例1〜9で得られた焼結体では、1400℃において
も500MPa以上の高い曲げ強度を有している。そして希土
類元素の酸化物の種類の差はほとんどないこともかる。
(Evaluation) The sintered bodies obtained in Examples 1 to 9 have a high bending strength of 500 MPa or more even at 1400 ° C. It can also be said that there is almost no difference between the types of rare earth element oxides.

しかし酸化イットリウムの配合量が少ない比較例1お
よび比較例4で得られた焼結体では、緻密な焼結が行な
われず、焼結体密度が小さく強度も小さい。さらに比較
例4で得られた焼結体ではスピネルが多いために、比較
例1に比べて高温強度がさらに低下している。また比較
例2で得られた焼結体では、酸化イットリウムおよびス
ピネルが 多過ぎるために高温強度が低下し、比較例3で得られた
焼結体ではスピネルが不足するために焼結性が低下し、
密度および強度が低下している。
However, in the sintered bodies obtained in Comparative Examples 1 and 4 in which the amount of yttrium oxide is small, dense sintering is not performed, the sintered body density is small, and the strength is small. Furthermore, since the sintered body obtained in Comparative Example 4 has a large amount of spinel, the high-temperature strength is further reduced as compared with Comparative Example 1. Further, in the sintered body obtained in Comparative Example 2, yttrium oxide and spinel contained The high-temperature strength is reduced due to too much, and the sintered body obtained in Comparative Example 3 has insufficient spinel, resulting in reduced sinterability,
Density and strength are reduced.

[発明の効果] すなわち本発明の窒化珪素焼結体の製造方法によれ
ば、従来と同様の工数で、耐酸化性に優れ、かつ1300〜
1400℃における高温強度に優れた焼結体を確実に製造す
ることができる。
[Effects of the Invention] That is, according to the method for manufacturing a silicon nitride sintered body of the present invention, the number of steps is the same as that of the conventional method, the oxidation resistance is excellent, and 1300 to
A sintered body having excellent high-temperature strength at 1400 ° C. can be reliably produced.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化珪素(Si3N4)粉末91.5〜96.99重量%
と、希土類元素の酸化物粉末3〜8重量%およびスピネ
ル(MgAl2O4)粉末0.01〜0.5重量%とを混合し、成形後
非酸化性雰囲気下1700〜1850℃で常圧焼結することを特
徴とする高温高強度窒化珪素焼結体の製造方法。
1. Silicon nitride (Si 3 N 4 ) powder 91.5 to 96.99% by weight
If, oxide powder 3-8 wt% and spinel of rare earth elements (MgAl 2 O 4) to a 0.01 to 0.5 wt% powder mixture, to pressureless sintering under from 1,700 to 1,850 ° C. a non-oxidizing atmosphere after forming A method for producing a high-temperature high-strength silicon nitride sintered body, characterized by the following.
JP2193390A 1990-07-20 1990-07-20 Method for producing high-temperature high-strength silicon nitride sintered body Expired - Fee Related JP2734755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2193390A JP2734755B2 (en) 1990-07-20 1990-07-20 Method for producing high-temperature high-strength silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2193390A JP2734755B2 (en) 1990-07-20 1990-07-20 Method for producing high-temperature high-strength silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH0477363A JPH0477363A (en) 1992-03-11
JP2734755B2 true JP2734755B2 (en) 1998-04-02

Family

ID=16307142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2193390A Expired - Fee Related JP2734755B2 (en) 1990-07-20 1990-07-20 Method for producing high-temperature high-strength silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2734755B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680470A (en) * 1992-07-17 1994-03-22 Sumitomo Electric Ind Ltd Method for manufacturing silicon nitride sintered body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131579A (en) * 1983-01-19 1984-07-28 日産自動車株式会社 Silicon nitride sintered body

Also Published As

Publication number Publication date
JPH0477363A (en) 1992-03-11

Similar Documents

Publication Publication Date Title
JP2842723B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JP2734755B2 (en) Method for producing high-temperature high-strength silicon nitride sintered body
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
US5545362A (en) Production method of sintered silicon nitride
JP2687632B2 (en) Method for producing silicon nitride sintered body
JPH07330436A (en) Silicon nitride heat resistant member and method for manufacturing the same
JP2980342B2 (en) Ceramic sintered body
JP2710865B2 (en) Manufacturing method of silicon nitride sintered body
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JPH1179848A (en) Silicon nitride sintered body
JP2534213B2 (en) Method for producing silicon nitride based sintered body
JP2692353B2 (en) Method for producing high-temperature high-strength silicon nitride sintered body
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JP2746761B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JPS6346029B2 (en)
JP3236739B2 (en) Silicon nitride sintered body and method for producing the same
JPH06116045A (en) Silicon nitride sintered compact and its production
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JPH07115936B2 (en) Method for manufacturing silicon nitride sintered body
JP2910360B2 (en) Method for producing silicon nitride sintered body
JP3236733B2 (en) Silicon nitride sintered body
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees