[go: up one dir, main page]

JP2734365B2 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor

Info

Publication number
JP2734365B2
JP2734365B2 JP6017297A JP1729794A JP2734365B2 JP 2734365 B2 JP2734365 B2 JP 2734365B2 JP 6017297 A JP6017297 A JP 6017297A JP 1729794 A JP1729794 A JP 1729794A JP 2734365 B2 JP2734365 B2 JP 2734365B2
Authority
JP
Japan
Prior art keywords
powder
temperature coefficient
resistance
intermediate layer
electrophotographic photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6017297A
Other languages
Japanese (ja)
Other versions
JPH07225487A (en
Inventor
延男 大出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6017297A priority Critical patent/JP2734365B2/en
Publication of JPH07225487A publication Critical patent/JPH07225487A/en
Application granted granted Critical
Publication of JP2734365B2 publication Critical patent/JP2734365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電子写真感光体に関し、
更に詳しくは導電性支持体と光導電層との間に中間層を
設けた電子写真感光体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photoreceptor,
More specifically, the present invention relates to an electrophotographic photoreceptor having an intermediate layer provided between a conductive support and a photoconductive layer.

【0002】[0002]

【従来の技術】近年、電子写真感光体として有機系の電
子写真感光体が複写機や、レーザビームプリンタ用の感
光体として広く使用されている。なかでも、特性の設計
度の自由度が広く、かつ高感度である感光体として、光
導電層が電荷発生層と電荷輸送層より成る機能分離型の
有機電子写真感光体が多く使用されつつある。
2. Description of the Related Art In recent years, an organic electrophotographic photosensitive member has been widely used as an electrophotographic photosensitive member for a copying machine or a laser beam printer. Among them, a function-separated type organic electrophotographic photoreceptor in which a photoconductive layer is composed of a charge generation layer and a charge transport layer is increasingly used as a photoreceptor having a high degree of freedom in design of characteristics and high sensitivity. .

【0003】電荷発生層は主に電荷発生物質と接着剤に
よって形成されており、電荷発生物質としてフタロシア
ニン顔料、ビスアゾ顔料等がよく使用されている。一
方、電荷輸送層は電荷輸送物質と接着剤によって形成さ
れており、電荷輸送物質としてヒドラゾン化合物、スチ
リル化合物など種々の化合物が使用されている。これら
電荷発生層、電荷輸送層は、それぞれの成分が溶剤に分
散あるいは溶解されて、アルミニウム等の導電性支持体
上に塗布されて形成される。
The charge generation layer is mainly formed of a charge generation material and an adhesive, and phthalocyanine pigments, bisazo pigments, and the like are often used as the charge generation material. On the other hand, the charge transport layer is formed by a charge transport material and an adhesive, and various compounds such as a hydrazone compound and a styryl compound are used as the charge transport material. The charge generation layer and the charge transport layer are formed by dispersing or dissolving the respective components in a solvent and coating the dispersion on a conductive support such as aluminum.

【0004】また、導電性支持体の表面性状などにより
かぶりを防止するため、あるいは、帯電時に、導電性支
持体からの電荷注入によって生じる感光体の帯電能力の
低下を防止するため、光導電層と導電性支持体の間に絶
縁性の中間層を設けることが行われている(たとえば特
開平1−238677号公報に記載された感光体の中間
層)。中間層として、ポリアミド、ポリビニールアルコ
ール、ポリビニールブチラール、エポキシ樹脂などの高
分子化合物が使用される。
Further, in order to prevent fogging due to the surface properties of the conductive support, or to prevent deterioration of the charging ability of the photoreceptor caused by charge injection from the conductive support during charging, a photoconductive layer is used. An insulating intermediate layer is provided between the photoconductor and the conductive support (for example, an intermediate layer of a photoreceptor described in JP-A-1-238677). As the intermediate layer, a polymer compound such as polyamide, polyvinyl alcohol, polyvinyl butyral, and epoxy resin is used.

【0005】このように導電性支持体と光導電層との間
に中間層を有する電子写真感光体において、中間層は導
電性支持体から光導電層への電荷注入を制御する役割を
持っている。従って、電子写真感光体の帯電性能を劣化
させない抵抗値を持ち、かつ、ある程度の感度を持た
せ、残留電位もある程度以下に下げるだけの導電性を持
つ必要がある。
In such an electrophotographic photosensitive member having an intermediate layer between the conductive support and the photoconductive layer, the intermediate layer has a role of controlling charge injection from the conductive support to the photoconductive layer. I have. Therefore, it is necessary to have a resistance value that does not deteriorate the charging performance of the electrophotographic photoreceptor, a certain level of sensitivity, and a conductivity sufficient to reduce the residual potential to a certain level or less.

【0006】従って、中間層の抵抗はある範囲にあるこ
とが望ましい。ところが、電子写真感光体の特性はそれ
を使用する装置の仕様により異なるため、中間層の抵抗
値は明確に限定することはできない。しかし、中間層の
固有抵抗値が1015Ω・cm以上では残留電位が大きく
なる問題が発生し、104 Ω・cm以下では帯電能力が
低すぎる問題が生ずるようである。
Therefore, it is desirable that the resistance of the intermediate layer be in a certain range. However, since the characteristics of an electrophotographic photosensitive member vary depending on the specifications of an apparatus using the same, the resistance value of the intermediate layer cannot be clearly limited. However, when the specific resistance value of the intermediate layer is 10 15 Ω · cm or more, a problem that the residual potential becomes large occurs. When the specific resistance value is 10 4 Ω · cm or less, a problem that the charging ability is too low seems to occur.

【0007】[0007]

【発明が解決しようとする課題】従来、中間層として前
述のように絶縁性の高分子化合物が用いられているが、
これら高分子化合物を中間層とした感光体では、中間層
の膜厚が適正であれば、常温常湿環境下では良好な特性
を示すものもあるが、低温低湿環境下では中間層である
高分子物質の電気抵抗が大きくなり、その結果、感光層
から導電性支持体への電荷の注入が阻害され、感度低下
や、残留電位の増加が生じてくる。
Conventionally, an insulating polymer compound has been used as the intermediate layer as described above.
Some photoconductors using these polymer compounds as an intermediate layer exhibit good characteristics under normal temperature and normal humidity environment if the thickness of the intermediate layer is appropriate, but the intermediate layer under high temperature and low humidity environment The electric resistance of the molecular substance increases, and as a result, injection of charges from the photosensitive layer to the conductive support is hindered, resulting in a decrease in sensitivity and an increase in residual potential.

【0008】例えば、ポリアミド樹脂を中間層に使用し
た場合、ランニング試験を行うと、適度な湿度下で残留
電位の上昇は生じないが、低湿度下では残留電位上昇が
起こる。これは、適度な湿度下では、本来絶縁体である
ポリアミド樹脂の分子鎖中のアミド結合に水分子が吸着
し、これによって、ポリアミド樹脂に適度な導電性が与
えられていることによると思われる。従って、低湿度下
では本来の絶縁体の状態になり、残留電位の上昇が起こ
ると考えられる。
For example, when a polyamide resin is used for the intermediate layer, when a running test is performed, the residual potential does not rise at a moderate humidity, but rises at a low humidity. This seems to be because under moderate humidity, water molecules are adsorbed to the amide bond in the molecular chain of the polyamide resin which is originally an insulator, thereby giving the polyamide resin an appropriate conductivity. . Therefore, it is considered that the insulator becomes an original insulator under low humidity, and the residual potential increases.

【0009】また、高温高湿環境下では中間層の吸水等
により、中間層の電気抵抗が減少して電荷の注入に対す
る阻止効果が弱くなり、感光体の帯電能力が低下するな
どの問題点があった。さらに、中間層のこれらの特性に
加え、光導電層自体においても、低温では光に対する感
度が低くなることや、高温では帯電能力が低下するなど
の温度特性があり、これらの総合的な結果として、感光
体の帯電能力や、感度などが各種環境下では大きく変動
し、かぶりや印字濃度の変動などの好ましくない現象が
生じていた。
Further, in a high-temperature and high-humidity environment, the electric resistance of the intermediate layer is reduced due to water absorption of the intermediate layer, so that the effect of preventing charge injection is weakened, and the charging ability of the photoreceptor is reduced. there were. Furthermore, in addition to these characteristics of the intermediate layer, the photoconductive layer itself has temperature characteristics such as low sensitivity to light at low temperatures and a decrease in charging ability at high temperatures. In addition, the charging ability and sensitivity of the photoreceptor fluctuate greatly in various environments, and undesired phenomena such as fogging and fluctuation in print density have occurred.

【0010】本発明の目的は従来の中間層を改善し、種
々の環境下で良好な特性を示す電子写真感光体を提供す
ることにある。
An object of the present invention is to provide an electrophotographic photoreceptor which improves the conventional intermediate layer and exhibits good characteristics under various environments.

【0011】[0011]

【課題を解決するための手段】前述した問題点は中間層
の各種温湿度下での電気的特性の変化、および、光導電
層の温度特性により生じていると考えられる。本発明者
らは導電性支持体から、中間層を経由して、光導電層へ
注入される電荷を制御することで感光体の特性を制御す
る方法を検討した結果、本発明に到達した。
It is considered that the above-mentioned problems are caused by changes in the electrical characteristics of the intermediate layer under various temperatures and humidity, and by the temperature characteristics of the photoconductive layer. The present inventors have studied a method for controlling the characteristics of the photoconductor by controlling the charge injected from the conductive support to the photoconductive layer via the intermediate layer, and have reached the present invention.

【0012】即ち、導電性支持体上に光導電層が形成さ
れた電子写真感光体において、導電性支持体と光導電層
との間に、正抵抗温度係数の粉末と負抵抗温度係数の粉
末を含む中間層を設けることによって前述の問題点を解
決することができることを見いだした。そして、特に、
正抵抗温度係数の粉末はチタン酸バリウムBaTiO3
を主成分とする粉末であり、負抵抗温度係数の粉末は酸
化コバルトCoO、酸化ニッケルNiO、酸化マンガン
MnO、酸化鉄FeOのうちの少なくとも1種を主成分
とする粉末である場合に湿度や温度に対して良好な特性
が得られることが解った。
That is, in an electrophotographic photosensitive member having a photoconductive layer formed on a conductive support, a powder having a positive resistance temperature coefficient and a powder having a negative resistance temperature coefficient are provided between the conductive support and the photoconductive layer. It has been found that the above-mentioned problem can be solved by providing an intermediate layer containing. And, in particular,
Barium titanate BaTiO 3 powder with positive temperature coefficient of resistance
If the powder having a negative resistance temperature coefficient is a powder mainly containing at least one of cobalt oxide CoO, nickel oxide NiO, manganese oxide MnO, and iron oxide FeO, humidity and temperature It was found that good characteristics were obtained with respect to.

【0013】最初、中間層に用いる正抵抗温度係数を持
つBaTiO3 を主成分とする粉末について説明する。
BaTiO3 はシリコンSi、アルミニウムAlニッ
ケルNi、コバルトCo、クロムCr、マンガンMn、
ランタンLaサマリウムSm、ジスプロシウムDy、
イットリウムYの少なくとも1種類を微量不純物として
含むことによって半導体化し、その固有抵抗はキュリー
点付近で大きく増加するという特異な性質を示す(正抵
抗温度係数 略してPTC特性と呼ばれる)セラミック
となる。そのPTC特性は添加される不純物量、あるい
はセラミックを作成する時の焼成条件により変化する。
また、キュリー点はBa原子の一部を他の原子で置換す
るか、あるいは、Ti原子の一部を他の原子で置換する
ことによって変えることができる。
First, the powder mainly composed of BaTiO3 having a temperature coefficient of positive resistance used for the intermediate layer will be described.
BaTiO3 is silicon Si, aluminum Al , nickel Ni, cobalt Co, chromium Cr, manganese Mn,
Lantern La , samarium Sm, dysprosium Dy,
A ceramic is produced by including at least one kind of yttrium Y as a trace impurity, and the ceramic has a unique property that its specific resistance is greatly increased near the Curie point (positive temperature coefficient, abbreviated as PTC characteristic). The PTC characteristics vary depending on the amount of impurities to be added or the firing conditions when producing the ceramic.
The Curie point can be changed by substituting a part of Ba atom with another atom or substituting a part of Ti atom with another atom.

【0014】BaTiO3 に前記不純物の一種、例え
ば、Mnを添加した場合、固有抵抗は120℃近辺で大
きく変わる。電子写真感光体では使用される温度域が1
0〜40℃程度であるから、固有抵抗が変化する温度と
して、0℃以下くらいが望ましい。
When one of the impurities, for example, Mn, is added to BaTiO 3 , the specific resistance greatly changes around 120 ° C. The temperature range used for the electrophotographic photoreceptor is 1
Since the temperature is about 0 to 40 ° C., the temperature at which the specific resistance changes is preferably about 0 ° C. or less.

【0015】BaTiO3 のキュリー点を下げるには、
Ba原子の一部をストロンチウムSr、カルシウムC
a、マグネシウムMgあるいは鉛Pbのうちの少くとも
1つの原子で置換するか、Ti原子の一部をジルコニウ
ムZr、あるいは、スズSnで置換すればよい。例え
ば、Ba原子の30%をSrで置換することで、固有抵
抗の変化する温度は−10℃程度になり、0℃での固有
抵抗は数百キロオーム程度で、40℃での固有抵抗は数
十メガオームのセラミックを作成することができる。
To lower the Curie point of BaTiO3,
Some of the Ba atoms are strontium Sr and calcium C
a, magnesium Mg or lead Pb may be replaced by at least one atom, or a part of Ti atoms may be replaced by zirconium Zr or tin Sn. For example, by replacing 30% of Ba atoms with Sr, the temperature at which the specific resistance changes becomes about −10 ° C., the specific resistance at 0 ° C. is about several hundred kilohms, and the specific resistance at 40 ° C. Ten megaohm ceramics can be made.

【0016】次に、上記のBaTiO3 を主成分とする
セラミックの粉末と共に用いられる負抵抗温度係数の粉
末について説明する。負抵抗温度係数の粉末として、C
oO、NiO、MnO、FeOを主成分とするセラミッ
クの粉末を使用することができる。これらはそれぞれの
金属を1価の金属で置き換えることにより負抵抗温度係
数のセラミックになっている。1例としてNiOについ
て説明する。NiOの場合はNiOの1部をリチウムL
iで置換することにより、負抵抗温度係数のセラミック
が得られる。これは2価のNiを1価のLiで置換する
ことで、Liの数に近い正孔が結晶中に導入され、Ni
OがP型の半導体化するからである。
Next, a powder having a negative resistance temperature coefficient used together with the ceramic powder containing BaTiO3 as a main component will be described. As powder with negative temperature coefficient of resistance , C
Ceramic powder mainly composed of oO, NiO, MnO, and FeO can be used. These are ceramics having a negative resistance temperature coefficient by replacing each metal with a monovalent metal. NiO will be described as an example. In the case of NiO, a part of NiO is lithium L
By substituting with i, a ceramic having a negative temperature coefficient of resistance can be obtained. This is because divalent Ni is replaced by monovalent Li, so that holes close to the number of Li are introduced into the crystal, and Ni
This is because O becomes a P-type semiconductor.

【0017】本発明の請求項3の中間層は正抵抗温度係
数のセラミックの粉末と負抵抗温度係数のセラミックの
粉末、及び接着剤から形成されている。そのため、抵抗
値は湿度の影響を余り受けることがない。これは上記粉
末は吸水性が無いためである。従って、前述のポリアミ
ド樹脂の様なことはない。
According to a third aspect of the present invention, the intermediate layer is formed of a ceramic powder having a positive temperature coefficient of resistance, a ceramic powder having a negative temperature coefficient of resistance, and an adhesive. Therefore, the resistance value is not significantly affected by humidity. This is because the powder has no water absorption. Therefore, there is nothing like the above-mentioned polyamide resin.

【0018】また、光導電層の温度特性であるが、通常
の光導電層では低温で感度が低く、高温で感度が高くな
る特性を有する場合が多い。従って、電子写真用感光体
の温度特性を小さくするためには、正抵抗温度係数の粉
末を使用して中間層の抵抗値を温度上昇と共に大きくす
ることが必要となる。
As for the temperature characteristics of the photoconductive layer, an ordinary photoconductive layer often has a characteristic that the sensitivity is low at a low temperature and the sensitivity is high at a high temperature. Therefore, in order to reduce the temperature characteristics of the electrophotographic photoreceptor, it is necessary to increase the resistance value of the intermediate layer as the temperature rises by using powder having a positive resistance temperature coefficient.

【0019】通常の正抵抗温度係数のセラミックは一般
に抵抗の温度変化が大きい、前述のBaTiO3 系のセ
ラミックを例にとると、0℃での固有抵抗は数百キロオ
ーム程度で、40℃での抵抗は数十メガオームと抵抗の
温度変化がきわめて大きい。このように、光導電層の感
度の温度特性以上に、セラミックの抵抗の温度変化が大
きいと、正抵抗温度係数のセラミックと接着剤だけから
なる中間層では、その中間層の抵抗の温度特性をある程
度可能であるが、充分広い温度範囲での制御がむずかし
くなる。
A ceramic having a normal temperature coefficient of positive resistance generally has a large temperature change in resistance. Taking the above-mentioned BaTiO 3 -based ceramic as an example, the specific resistance at 0 ° C. is about several hundred kilohms, and that at 40 ° C. The resistance is several tens of megaohms and the temperature change of the resistance is extremely large. As described above, when the temperature change of the resistance of the ceramic is larger than the temperature characteristic of the sensitivity of the photoconductive layer, the temperature characteristic of the resistance of the intermediate layer in the intermediate layer consisting of only the ceramic having a positive resistance temperature coefficient and the adhesive is changed. Although possible to some extent, control over a sufficiently wide temperature range becomes difficult.

【0020】正抵抗温度係数のセラミックを使用したと
きの抵抗の温度変化はセラミックの組成により小さく抑
えることが可能であるが、同時に、他の特性、例えば固
有抵抗が大きく変化する温度、即ち、キュリー点が変動
したり、固有抵抗値自体が全体的に変動するなどの特性
変化も生じてしまい、必要な特性のセラミックを得るた
め、多くの労力を必要とする。
The temperature change of the resistance when a ceramic having a positive temperature coefficient of resistance is used can be suppressed to a small value by the composition of the ceramic, but at the same time, the temperature at which other characteristics, for example, the specific resistance greatly changes, that is, the Curie temperature Characteristic changes, such as a change in the point and a change in the specific resistance value as a whole, also occur, and much labor is required to obtain a ceramic having the required characteristics.

【0021】一方、本発明の中間層は、正抵抗温度係数
の粉末と負抵抗温度係数の粉末を含有するため、正抵抗
温度係数のセラミックによる急な温度変化が抑えられ、
かなりの温度範囲で抵抗の温度係数を制御できる。従っ
て、光導電層の特性が異なった複数の電子写真用感光体
を作成する場合でも、前述の粉末の混合比率を変えるこ
とで、比較的、簡単に、感度の温度特性が優れた電子写
真用感光体を実現できる。
On the other hand, since the intermediate layer according to the present invention contains a powder having a positive resistance temperature coefficient and a powder having a negative resistance temperature coefficient, a sudden temperature change due to a ceramic having a positive resistance temperature coefficient can be suppressed.
The temperature coefficient of the resistor can be controlled over a considerable temperature range. Therefore, even if a plurality of electrophotographic photoconductors having different characteristics of the photoconductive layer are prepared, by changing the mixing ratio of the above-described powder, the temperature characteristics of the sensitivity can be relatively easily and easily improved. A photoconductor can be realized.

【0022】本発明の中間層は、バインダー中に正抵抗
温度係数の粉末と負抵抗温度係数の粉末を分散して塗料
(中間層塗料)とし、これを導電性支持体に塗布して形
成することができる。
The intermediate layer of the present invention is formed by dispersing a powder having a positive resistance temperature coefficient and a powder having a negative resistance temperature coefficient in a binder to form a coating material (intermediate layer coating material) and applying it to a conductive support. be able to.

【0023】正抵抗温度係数の粉末として、前述のMn
を添加したBa0.7 Sr0.3 TiO3 セラミック、及
び、負抵抗温度係数の粉末として、Liで置換したNi
Oを用いた場合について説明する。最初に、正抵抗温度
係数のセラミックであるが、このセラミックは焼成条件
によってその特性が変わるが、おおよそ、0℃において
約105 、40℃において約108 Ω・cm程度の抵抗
値を示す。これを粗粉砕し、その後ボールミルを用いて
更に細かく粉砕して粉末が得られる。Li置換のNiO
はLiの置換量、焼成温度によって抵抗値は異なるが0
℃において105、40℃において104 Ω・cm程度
の抵抗値を示す。中間層塗料は、光導電層の温度特性に
合わせて、これらの粉末の混合比率を決め、バインダー
中に分散混合することで、作成できる。この中間層塗料
を導電性支持体上に塗布し、乾燥することで中間層を形
成できる。
As the powder having a positive temperature coefficient of resistance, the above-mentioned Mn is used.
Ba 0.7 Sr 0.3 TiO 3 ceramic to which Ni has been added, and Ni substituted with Li as a powder having a negative temperature coefficient of resistance.
The case where O is used will be described. First, although the ceramic has a positive temperature coefficient of resistance, the characteristics of the ceramic vary depending on the firing conditions. However, the ceramic exhibits a resistance of about 10 5 at 0 ° C. and about 10 8 Ω · cm at 40 ° C. This is roughly pulverized and then further finely pulverized using a ball mill to obtain a powder. Li-substituted NiO
Is 0, although the resistance value varies depending on the Li substitution amount and the firing temperature.
It shows a resistance value of about 10 5 at ° C and about 10 4 Ω · cm at 40 ° C. The intermediate layer paint can be prepared by determining the mixing ratio of these powders according to the temperature characteristics of the photoconductive layer and dispersing and mixing the powder in a binder. This intermediate layer paint is applied on a conductive support and dried to form an intermediate layer.

【0024】ここで用いるバインダーの樹脂は成膜性が
あり、導電性支持体への接着性があれば、特にその種類
は制限されない。ただし、樹脂の種類、セラミックと樹
脂の混合比率により、中間層の抵抗値、及び温湿度特性
は異なる。
The type of the binder resin used herein is not particularly limited as long as it has a film-forming property and has an adhesive property to a conductive support. However, the resistance value of the intermediate layer and the temperature / humidity characteristics differ depending on the type of the resin and the mixing ratio of the ceramic and the resin.

【0025】例えば、ポリビニールブチラール樹脂を使
用した場合、樹脂の比率が80体積%を越えると抵抗値
も大きく、抵抗の温度特性も正抵抗温度特性を示さなく
なり、中間層として望ましくない。この材料の組合せの
場合、樹脂比率は10〜70体積%であることが望まし
い。
For example, when a polyvinyl butyral resin is used, if the ratio of the resin exceeds 80% by volume, the resistance value is large, and the temperature characteristic of the resistance does not show the positive temperature characteristic, which is not desirable as an intermediate layer. In the case of this combination of materials, the resin ratio is desirably 10 to 70% by volume.

【0026】本発明の中間層を用いた電子写真感光体が
種々の環境下で安定した特性を示すのは、光導電層の感
度が低くなる低温域では、中間層の抵抗が小さくなって
導電性支持体からの電荷注入が比較的生じ易くなり、そ
のため低温時の感光体の感度低下が防止され、また、光
導電層の感度が大きくなる高温域では、中間層の抵抗が
大きくなって導電性支持体からの電荷注入がある程度抑
えられ、そのため高温時の感光体の感度上昇が約制され
ることによると考えられる。さらに、本発明の請求項
2,3の電子写真感光体では、湿度の影響を受けにく
い。これは中間層に使われるセラミックが湿度に対して
は安定した抵抗を示すことによる。
The electrophotographic photoreceptor using the intermediate layer of the present invention exhibits stable characteristics under various environments because the resistance of the intermediate layer becomes small in the low temperature range where the sensitivity of the photoconductive layer becomes low. Charge injection from the photoconductive support is relatively easy to occur, which prevents a decrease in the sensitivity of the photoconductor at low temperatures, and in a high-temperature region where the sensitivity of the photoconductive layer increases, the resistance of the intermediate layer increases and the conductivity increases. It is considered that the charge injection from the photosensitive support is suppressed to some extent, and therefore, the increase in the sensitivity of the photoreceptor at a high temperature is suppressed. Further, the electrophotographic photoreceptor of the present invention is hardly affected by humidity. This is because the ceramic used for the intermediate layer has a stable resistance to humidity.

【0027】次に、本発明に用いられる導電性支持体に
ついて説明する。導電性支持体としては従来使用されて
いる物質、例えば、アルミニウム、銅、ステンレスなど
の金属、あるいは金、パラジウム、導電性のカーボンな
どを蒸着、あるいは塗布したプラスチックなどのドラム
を用いることが出来る。
Next, the conductive support used in the present invention will be described. As the conductive support, it is possible to use a conventionally used material, for example, a metal such as aluminum, copper, and stainless steel, or a drum made of plastic or the like on which gold, palladium, conductive carbon, or the like is deposited or applied.

【0028】また、中間層の上に形成される光導電層の
電荷発生層に用いられる電荷発生物質としては、例え
ば、無金属フタロシアニン顔料、あるいは金属フタロシ
アニン顔料などのフタロシアニン顔料、アントラキノン
顔料、モノアゾ、ビスアゾ顔料等の公知の材料が挙げら
れる。そして、単独、あるいは2種以上混合して使用す
ることができる。
Examples of the charge generation material used in the charge generation layer of the photoconductive layer formed on the intermediate layer include metal-free phthalocyanine pigments, phthalocyanine pigments such as metal phthalocyanine pigments, anthraquinone pigments, monoazo, and the like. Known materials such as bisazo pigments may be used. And it can be used alone or in combination of two or more.

【0029】光導電層の電荷輸送層に用いられる材料と
しては、例えば、ヒドラゾン化合物、カルバゾール化合
物、オキサジアゾール化合物、インドール化合物、ピラ
ゾリン化合物などの公知の材料が挙げられる。
Examples of materials used for the charge transport layer of the photoconductive layer include known materials such as hydrazone compounds, carbazole compounds, oxadiazole compounds, indole compounds, and pyrazoline compounds.

【0030】電荷発生層、電荷輸送層を形成する場合、
造膜性のある高分子物質、例えば、ポリカーボネート、
ポリエステル、アクリル樹脂などを、ジクロルメタン、
クロルベンゼン、テトラヒドロフランなどの溶剤に溶解
し、この高分子物質の溶液に、前述の電荷発生物質、電
荷輸送物質を混合して塗料とし、前記中間層を形成した
導電性支持体上に順次、塗布、乾燥して形成される。
When forming a charge generation layer and a charge transport layer,
Polymeric material with film forming properties, for example, polycarbonate,
Polyester, acrylic resin, etc., dichloromethane,
It is dissolved in a solvent such as chlorobenzene or tetrahydrofuran, and the above-mentioned charge generating substance and charge transporting substance are mixed into a solution of the polymer substance to form a paint, which is sequentially coated on the conductive support on which the intermediate layer is formed. , Formed by drying.

【0031】[0031]

【実施例】以下、実施例により本発明を具体的に説明す
るが、これにより本発明は限定されるものではない。
EXAMPLES The present invention will now be described specifically with reference to examples, but the present invention is not limited by these examples.

【0032】〔実施例1〕正抵抗温度係数の粉末とし
て、Mnを0.1モル%添加したBaTi0.8 Sn0.2
3 を用いることとし、以下の方法でこれを製造した。
BaCO3 、TiO2 、SnO2 を前記材料組成になる
よう、所要量を秤量した。次に、前記物質1モルに対し
てMnCO3 を0.1モル秤量し、これらをエタノール
を分散媒として、ボールミルにて10時間混合した。
Example 1 BaTi 0.8 Sn 0.2 containing 0.1 mol% of Mn as a powder having a positive temperature coefficient of resistance.
O 3 was used and was produced by the following method.
BaCO 3 , TiO 2 , and SnO 2 were weighed so as to have the above-mentioned material composition. Next, 0.1 mol of MnCO 3 was weighed with respect to 1 mol of the substance, and these were mixed for 10 hours in a ball mill using ethanol as a dispersion medium.

【0033】ボールミル混合後、この混合物を濾過、乾
燥し、電気炉で、1100℃、2時間仮焼成した。続い
て、これらをらいかい機にて粉砕し、電気炉で1400
℃、5時間焼成した。この焼成物を再びらいかい機にて
粉砕した後、エタノールを分散媒として、φ2のZrO
2 ボールを用い、ボールミル粉砕し、粒子径がほぼ1μ
mの正抵抗温度係数の粉末、Mnが添加されたBaTi
0.8 Sn0.2 3 を作成した。
After mixing in a ball mill, the mixture was filtered, dried, and calcined in an electric furnace at 1100 ° C. for 2 hours. Subsequently, these were pulverized by a grinder and 1400 in an electric furnace.
C. for 5 hours. This calcined product is pulverized again by a refraction machine, and then ZrO 2 of φ2 is used as a dispersion medium with ethanol.
Using 2 balls, ball mill pulverized, particle size almost 1μ
powder with positive temperature coefficient of resistance of m, BaTi with Mn added
0.8 Sn 0.2 O 3 was prepared.

【0034】次に、負抵抗温度係数の粉末として、Fe
の0.1モル%をLiで置換したFeOを用いることと
し、以下の方法で作成した。まず、FeO、LiCO3
を、上記組成となるように秤量し、らいかい機で混合し
た。次に、この混合物を1100℃2時間焼成した。続
いて、上記方法と同じ条件で粉砕して負抵抗温度係数の
粉末を得た。
Next, as a powder having a negative resistance temperature coefficient, Fe
Was prepared by the following method using FeO in which 0.1 mol% of Li was replaced with Li. First, FeO, LiCO 3
Was weighed so as to have the above-mentioned composition, and mixed with a grinder. Next, this mixture was fired at 1100 ° C. for 2 hours. Subsequently, pulverization was performed under the same conditions as in the above method to obtain a powder having a negative resistance temperature coefficient.

【0035】つぎに、前述の正抵抗温度係数のBaTi
0.8 Sn0.2 3 の粉末を70重量部、負抵抗温度係数
のLi置換FeOの粉末を20重量部、ポリアミド粉末
10重量部を秤量し、メタノール中に分散させて、固形
分が50重量%の中間層塗料を作成した。
Next, the aforementioned temperature coefficient of positive resistance of BaTi
70 parts by weight of a powder of 0.8 Sn 0.2 O 3 , 20 parts by weight of a Li-substituted FeO powder having a negative temperature coefficient of resistance, and 10 parts by weight of a polyamide powder were weighed and dispersed in methanol to give a solid content of 50% by weight. An intermediate layer paint was made.

【0036】次に、X型チタニルフタロシアニン4重量
部、ポリビニールブチラール樹脂4重量部、テトラヒド
ロフラン92重量部をペイントシェカーで混合して、電
荷発生塗料を作成した。
Next, 4 parts by weight of X-type titanyl phthalocyanine, 4 parts by weight of polyvinyl butyral resin, and 92 parts by weight of tetrahydrofuran were mixed with a paint shaker to prepare a charge generating paint.

【0037】次に、電荷輸送物質として、4−ジベンジ
ルアミノ−2−メチルベンジルジハイド−1、1−ジフ
ェニルヒドラゾンを15重量部、ポリカーボネート15
重量部をジクロルメタン70重量部に溶解して電荷発生
塗料とした。
Next, 15 parts by weight of 4-dibenzylamino-2-methylbenzyldihydride-1,1-diphenylhydrazone as a charge transporting substance and polycarbonate 15
Parts by weight were dissolved in 70 parts by weight of dichloromethane to obtain a charge generating paint.

【0038】次に前述の塗料を用いて電子写真感光体を
作成した。作成は次のようにした。まず、厚さ1mm、
外形30mm、長さ250mmのアルミニウム製素管上
に、中間層塗料を浸積塗布法にて塗布し、80℃、30
分、乾燥して20μm厚さの中間層を作成した。次に、
電荷発生塗料を同様な方法で中間層上に塗布し、65
℃、30分、乾燥して0.3μm厚さの電荷発生層を形
成した。そして、最後に電荷輸送塗料を用いて、やはり
同様な方法で塗布し、110℃、30分、乾燥して20
μm厚さの電荷輸送層を形成した。図1はこの実施例1
による電子写真感光体の一部断面図である。図におい
て、アルミニウム素管の導電性支持体1に、中間層2、
電荷発生層3、電荷輸送層4が順に形成される。
Next, an electrophotographic photosensitive member was prepared using the above-mentioned paint. The creation was as follows. First, thickness 1mm,
An intermediate layer paint is applied by dip coating onto an aluminum tube having an outer diameter of 30 mm and a length of 250 mm.
And dried to form an intermediate layer having a thickness of 20 μm. next,
The charge generating paint is applied on the intermediate layer in the same manner,
Drying was performed at 30 ° C. for 30 minutes to form a charge generation layer having a thickness of 0.3 μm. Finally, using a charge transport coating, the coating is applied in the same manner and dried at 110 ° C. for 30 minutes.
A charge transport layer having a thickness of μm was formed. FIG. 1 shows the first embodiment.
1 is a partial cross-sectional view of an electrophotographic photosensitive member according to the present invention. In the figure, an intermediate layer 2 and a conductive support 1 of an aluminum tube are provided.
The charge generation layer 3 and the charge transport layer 4 are sequentially formed.

【0039】〔実施例2〕正抵抗温度係数の粉末とし
て、Mnを0.2モル%添加したBa0.7 Sr0.3Ti
3 を用いることとし、実施例1と同様な製造プロセ
ス、即ち、原料を秤量し、混合、仮焼成、粉砕、本焼
成、粉砕して正抵抗温度係数の粉末を作成した。但し、
ここでは、原料としてSnO2 のかわりにSrCO3
用いた。また、負抵抗温度係数の粉末として、Niの
0.1モル%をLiで置換したNiOを用いることに
し、実施例1と同様に粉末を作成した。
Example 2 As a powder having a temperature coefficient of positive resistance, Ba 0.7 Sr 0.3 Ti containing 0.2 mol% of Mn was added.
O 3 was used, and the same production process as in Example 1, that is, the raw materials were weighed, mixed, temporarily calcined, pulverized, main calcined, and pulverized to prepare a powder having a positive resistance temperature coefficient. However,
Here, SrCO 3 was used instead of SnO 2 as a raw material. In addition, NiO in which 0.1 mol% of Ni was replaced with Li was used as the powder having a negative resistance temperature coefficient, and a powder was prepared in the same manner as in Example 1.

【0040】実施例1と同様に、中間層塗料を作成し、
実施例1と同じ導電性支持体、電荷発生塗料、電荷輸送
塗料を用いて、電子写真感光体を作成した。
An intermediate layer paint was prepared in the same manner as in Example 1.
An electrophotographic photoreceptor was prepared using the same conductive support, charge generation paint and charge transport paint as in Example 1.

【0041】〔比較例1〕中間層として、0.2μmの
ポリアミド樹脂を形成した後、実施例1と同様に、電荷
発生層、電荷輸送層を順次塗布し、乾燥して、電子写真
感光体を作成した。
Comparative Example 1 After forming a 0.2 μm polyamide resin as an intermediate layer, a charge generation layer and a charge transport layer were sequentially applied and dried in the same manner as in Example 1 to form an electrophotographic photosensitive member. It was created.

【0042】前述の実施例−1、2、比較例−1で得た
電子写真感光体を電子写真感光体テスター(ジェンテッ
ク株式会社製)を用い、下記の条件で測定した。
The electrophotographic photosensitive members obtained in Examples 1 and 2 and Comparative Example 1 were measured using an electrophotographic photosensitive member tester (manufactured by Gentec Corporation) under the following conditions.

【0043】−4KVのコロナ帯電を行い、表面電位
(V0 )、5秒間暗所放置後の電位(Vd)、及び、ハ
ロゲンランプで1.2μJ/cm2 光量を与えた後の電
位(Vi)を測定し、暗減衰DDR5(Vd/V0 )を
求めた。測定環境の温湿度は、10℃、20%(LL条
件)、24℃、40%(NN条件)、35℃、85%
(HH条件)の条件で行った。
A corona charge of -4 KV was performed, and the surface potential (V 0 ), the potential (Vd) after leaving in a dark place for 5 seconds, and the potential (Vi after giving a light amount of 1.2 μJ / cm 2 with a halogen lamp). ) Was measured to determine the dark decay DDR5 (Vd / V 0 ). Temperature and humidity of the measurement environment are 10 ° C, 20% (LL condition), 24 ° C, 40% (NN condition), 35 ° C, 85%
(HH condition).

【0044】評価結果を図2に示す。図2から明かなご
とく、本発明の電子写真感光体においては各環境下で、
帯電能力、暗減衰、感度などの特性が安定している。
FIG. 2 shows the evaluation results. As is clear from FIG. 2, in the electrophotographic photoreceptor of the present invention, under each environment,
Characteristics such as charging ability, dark decay, and sensitivity are stable.

【0045】[0045]

【発明の効果】以上説明したように、本発明の電子写真
感光体の中間層は、正抵抗温度係数の粉末と負抵抗温度
係数の粉末を含有するため、かなりの範囲で抵抗の温度
係数を制御できる。従って、光導電層の特性が異なった
複数の電子写真用感光体を作成する場合でも、前述の粉
末の混合比率を変えることで、比較的、簡単に、感度の
温度特性が優れた電子写真用感光体を実現できる。
As described above, since the intermediate layer of the electrophotographic photosensitive member of the present invention contains a powder having a positive resistance temperature coefficient and a powder having a negative resistance temperature coefficient, the temperature coefficient of resistance is considerably reduced. Can control. Therefore, even if a plurality of electrophotographic photoconductors having different characteristics of the photoconductive layer are prepared, by changing the mixing ratio of the above-described powder, the temperature characteristics of the sensitivity can be relatively easily and easily improved. A photoconductor can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の実施例の電子写真感光体の一部
断面図である。
FIG. 1 is a partial cross-sectional view of an electrophotographic photosensitive member according to an embodiment of the present invention.

【図2】本発明の実施例1,2と比較例1の評価結果を
示す表である。
FIG. 2 is a table showing evaluation results of Examples 1 and 2 of the present invention and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 導電性支持体 2 中間層 3 電荷発生層 4 電荷輸送層 REFERENCE SIGNS LIST 1 conductive support 2 intermediate layer 3 charge generation layer 4 charge transport layer

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電性支持体上に光導電層が形成された
電子写真感光体において、前記導電性支持体と光導電層
との間に、正抵抗温度係数の粉末と負抵抗温度係数の粉
末を含む中間層を設けたことを特徴とする電子写真感光
体。
1. An electrophotographic photosensitive member having a photoconductive layer formed on a conductive support, wherein a powder having a positive resistance temperature coefficient and a negative resistance temperature coefficient are provided between the conductive support and the photoconductive layer. An electrophotographic photoreceptor comprising an intermediate layer containing a powder.
【請求項2】 前記中間層に含まれる正抵抗温度係数の
粉末はチタン酸バリウムBaTiO3 を主成分とする粉
末であり、負抵抗温度係数の粉末は酸化コバルトCo
O、酸化ニッケルNiO、酸化マンガンMnO、酸化鉄
FeOのうちの少くとも1つを主成分とする粉末である
ことを特徴とする請求項1記載の電子写真感光体。
2. The powder having a temperature coefficient of positive resistance contained in the intermediate layer is a powder containing barium titanate BaTiO 3 as a main component, and the powder having a temperature coefficient of negative resistance is cobalt oxide Co.
2. The electrophotographic photosensitive member according to claim 1, wherein the powder is a powder mainly containing at least one of O, nickel oxide NiO, manganese oxide MnO, and iron oxide FeO.
【請求項3】 前記正抵抗温度係数の粉末と前記負抵抗
温度係数の粉末は、それぞれ半導体化されたセラミック
である請求項2記載の電子写真感光体。
3. The electrophotographic photoreceptor according to claim 2, wherein said powder having a positive resistance temperature coefficient and said powder having a negative resistance temperature coefficient are each a semiconductor ceramic.
【請求項4】 前記正抵抗温度係数の粉末が、シリコン
Si、アルミニウムAlニッケルNi、コバルトC
o、クロムCr、マンガンMn、ランタンLaサマリ
ウムSm、ジスプロシウムDy、イットリウムYの少な
くとも1種類が添加され、かつ、チタン酸バリウムBa
TiO3のチタンTi原子の一部をスズSnあるいはジ
ルコニウムZrのうちの少なくとも一方の原子で置換さ
れたものを含むことを特徴とする請求項3記載の電子写
真感光体。
4. The powder having a temperature coefficient of positive resistance of silicon Si, aluminum Al , nickel Ni, cobalt C
o, at least one of chromium Cr, manganese Mn, lanthanum La , samarium Sm, dysprosium Dy, yttrium Y, and barium titanate Ba
4. The electrophotographic photoreceptor according to claim 3, wherein TiO3 includes a material in which a part of titanium Ti atoms is replaced with at least one of tin Sn and zirconium Zr.
【請求項5】 前記正抵抗温度係数の粉末が、シリコン
Si、アルミニウムAlニッケルNi、コバルトC
o、クロムCr、マンガンMn、ランタンLaサマリ
ウムSm、ジスプロシウムDy、イットリウムYの少な
くとも1種類が添加され、かつ、チタン酸バリウムBa
TiO3のバリウムBa原子の一部をストロンチウムS
r、カルシウムCa、マグネシウムMgあるいは鉛Pb
のうちの少なくとも1つの原子で置換されたものを含む
ことを特徴とする請求項3記載の電子写真感光体。
5. The powder having a temperature coefficient of positive resistance of silicon Si, aluminum Al , nickel Ni, cobalt C
o, at least one of chromium Cr, manganese Mn, lanthanum La , samarium Sm, dysprosium Dy, yttrium Y, and barium titanate Ba
Part of barium Ba atom of TiO3 is replaced with strontium S
r, calcium Ca, magnesium Mg or lead Pb
4. The electrophotographic photoreceptor according to claim 3, wherein the electrophotographic photoreceptor contains a compound substituted with at least one atom of the following.
JP6017297A 1994-02-14 1994-02-14 Electrophotographic photoreceptor Expired - Fee Related JP2734365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6017297A JP2734365B2 (en) 1994-02-14 1994-02-14 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6017297A JP2734365B2 (en) 1994-02-14 1994-02-14 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH07225487A JPH07225487A (en) 1995-08-22
JP2734365B2 true JP2734365B2 (en) 1998-03-30

Family

ID=11940070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6017297A Expired - Fee Related JP2734365B2 (en) 1994-02-14 1994-02-14 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2734365B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6995588B2 (en) * 2017-11-30 2022-01-14 キヤノン株式会社 Electrophotographic photosensitive members, process cartridges and electrophotographic equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210962A (en) * 1988-02-19 1989-08-24 Ricoh Co Ltd Electrophotographic sensitive body
JP2879084B2 (en) * 1990-03-30 1999-04-05 株式会社リコー Electrophotographic photoreceptor
JPH03287275A (en) * 1990-04-03 1991-12-17 Ricoh Co Ltd Electrophotographic sensitive body
JPH04195067A (en) * 1990-11-28 1992-07-15 Hitachi Ltd Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPH07225487A (en) 1995-08-22

Similar Documents

Publication Publication Date Title
JPH0326383B2 (en)
DE3841207C2 (en) Electrophotographic recording material
JPS6357780B2 (en)
JP2734365B2 (en) Electrophotographic photoreceptor
DE69518700T2 (en) Magnetic particles for charging elements, and electrophotographic apparatus, processing unit and imaging process using them
JP2658849B2 (en) Electrophotographic photoreceptor
JPS63159865A (en) Electrophotographic sensitive body
DE4009969C2 (en)
US3791825A (en) Photoconductor in a copolymer binder of vinyl acetate, vinyl laurate and an {60,{62 -ethylenically unsaturated acid
JPS62280864A (en) Organic photosensitive body for electrophotography
JP2727964B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
JP6447062B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JPH01120563A (en) Electrophotographic photoreceptor
JP2868838B2 (en) Electrophotographic photoreceptor
JP2643216B2 (en) Electrophotographic photoreceptor
DE4042427C2 (en) New tetrakis:azo cpds. used as electrophotographic charge generator
JPH06308745A (en) Electrophotographic receptor
JPS589148A (en) Electrophotographic laminated photoreceptor
JP2709368B2 (en) Electrophotographic photoreceptor
JPS62100766A (en) electrophotographic photoreceptor
JPS62280863A (en) Organic photosensitive body for electrophotography
JPS59184350A (en) Photosensitive body
JPH01307762A (en) Electrophotographic sensitive body
JPH01238677A (en) Electrophotographic process
JP2764281B2 (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971125

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees