JP2728763B2 - Carbon fiber mesh for reinforcement and method for producing the same - Google Patents
Carbon fiber mesh for reinforcement and method for producing the sameInfo
- Publication number
- JP2728763B2 JP2728763B2 JP2100379A JP10037990A JP2728763B2 JP 2728763 B2 JP2728763 B2 JP 2728763B2 JP 2100379 A JP2100379 A JP 2100379A JP 10037990 A JP10037990 A JP 10037990A JP 2728763 B2 JP2728763 B2 JP 2728763B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- strength
- mesh
- fiber mesh
- inorganic plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims description 161
- 239000004917 carbon fiber Substances 0.000 title claims description 161
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 145
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 230000002787 reinforcement Effects 0.000 title 1
- 239000000463 material Substances 0.000 claims description 36
- 239000003822 epoxy resin Substances 0.000 claims description 22
- 229920000647 polyepoxide Polymers 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 18
- 230000003014 reinforcing effect Effects 0.000 claims description 14
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 13
- 238000010030 laminating Methods 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 24
- 238000000034 method Methods 0.000 description 18
- 238000006073 displacement reaction Methods 0.000 description 15
- 239000012779 reinforcing material Substances 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 239000004570 mortar (masonry) Substances 0.000 description 7
- 229920002239 polyacrylonitrile Polymers 0.000 description 7
- 239000004568 cement Substances 0.000 description 6
- 239000008119 colloidal silica Substances 0.000 description 6
- 239000004576 sand Substances 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 239000011882 ultra-fine particle Substances 0.000 description 6
- 239000011398 Portland cement Substances 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- 239000004566 building material Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 238000009940 knitting Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004513 sizing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical group C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 2
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000012744 reinforcing agent Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 1
- ZQISRDCJNBUVMM-YFKPBYRVSA-N L-histidinol Chemical compound OC[C@@H](N)CC1=CNC=N1 ZQISRDCJNBUVMM-YFKPBYRVSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical group OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002576 ketones Chemical group 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Chemical group 0.000 description 1
Landscapes
- Chemical Or Physical Treatment Of Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、主として建築材料として、屋根、床や外壁
等に用いられているモルタル、コンクリート等のセメン
ト系材料硬化体の補強材としての炭素繊維メッシュ及び
その製造方法、さらにこの炭素繊維メッシュを補強材と
した炭素繊維補強無機質板に関する。The present invention mainly relates to a carbon fiber mesh as a reinforcing material for a hardened cementitious material such as mortar or concrete used for a roof, a floor or an outer wall as a building material, and The present invention relates to a method for producing the same, and a carbon fiber reinforced inorganic plate using the carbon fiber mesh as a reinforcing material.
従来の技術 炭素繊維は、その優れた機械的性質、例えば比強度、
比弾性率等や化学的安定性により、広い分野においてそ
の有用性が認識され大量に使用されてきている。しか
し、炭素繊維は単独で用いられることは少なく、一般に
複合材料の補強材として使用されることが多い。2. Description of the Related Art Carbon fibers have excellent mechanical properties, such as specific strength,
Due to its specific elastic modulus and chemical stability, its usefulness has been recognized in a wide range of fields and has been used in large quantities. However, carbon fibers are rarely used alone, and are generally used as reinforcing materials for composite materials.
一方、セメント系材料はその硬化体の圧縮強度が強
く、安価であるため主として土木建築の分野で大量に使
用されている材料である。しかし、引張り強度が弱く脆
いために各種補強材料と共に使用されることが多い。近
年では補強材料として、炭素繊維が注目されており、軽
量で耐久性があり高強度、高剛性な材料として、各種炭
素繊維で補強した炭素繊維強化セメント(CFRC)が知ら
れている。On the other hand, a cement-based material is a material that is used in large quantities mainly in the field of civil engineering and construction because its hardened body has high compressive strength and is inexpensive. However, they are often used together with various reinforcing materials because of their low tensile strength and brittleness. In recent years, carbon fiber has attracted attention as a reinforcing material, and carbon fiber reinforced cement (CFRC) reinforced with various carbon fibers has been known as a lightweight, durable, high-strength, and high-rigidity material.
炭素繊維とセメント系材料の両者を複合化した炭素繊
維強化セメント(Carbon Fiber Reinforced Cement Com
posites、以下CFRCと称する)は、その繊維の優れた機
械的・化学的性質のため、これまでのセメント系材料硬
化体では発現し得なかった強度特性、変形特性、弾性特
性、高耐久性等の性質をもつ新高級建築用材料として期
待され、近年フリーアクセスフロアー(床材)やカーテ
ンウオール(壁材)として使用されている。Carbon fiber reinforced cement (Carbon Fiber Reinforced Cement Com
posites (hereinafter referred to as CFRC) is a fiber that has excellent mechanical and chemical properties, so that its strength properties, deformation properties, elastic properties, and high durability, etc., which could not be exhibited by the hardened cementitious materials so far. It is expected to be used as a new high-grade building material having the properties described above, and has recently been used as a free access floor (floor material) and a curtain wall (wall material).
ところで一般に、複合材料においてはその材料特性を
決定する要因の中で、特に界面強度が重要であるといわ
れている。けれども、炭素繊維にはセメント系材料との
接着性が悪いという化学的な性質がある。そのため界面
強度は弱く、炭素繊維の高強度、高弾性率をセメント系
材料硬化体中で十分に発揮することはできない。この問
題を解決する手段として、エポキシ樹脂エマルジョンと
コロイダルシリカをブレンドした樹脂で炭素繊維束を被
覆含浸する方法が報告されている(特開昭63−203876号
公報)。In general, it is said that interfacial strength is particularly important among the factors that determine the material properties of a composite material. However, carbon fibers have a chemical property of poor adhesion to cementitious materials. Therefore, the interface strength is weak, and the high strength and high elastic modulus of the carbon fiber cannot be sufficiently exhibited in the cured cement-based material. As a means for solving this problem, a method of coating and impregnating a carbon fiber bundle with a resin obtained by blending an epoxy resin emulsion and colloidal silica has been reported (Japanese Patent Application Laid-Open No. 63-203876).
しかし従来、炭素繊維を連続繊維状態の炭素繊維束と
して用いる場合には、炭素繊維束を編むことにより炭素
繊維束の交点を補強した後に、エポキシ樹脂等で被覆含
浸し硬化してメッシュ状にして用いる方法や、炭素繊維
束をエポキシ樹脂やポリエステル樹脂等で含浸した後表
面に硅砂等を付着させて表面に凹凸をつけたりして用い
る方法が主におこなわれている。However, conventionally, when carbon fibers are used as a carbon fiber bundle in a continuous fiber state, after knitting the carbon fiber bundle to reinforce the intersections of the carbon fiber bundle, coating and impregnating with an epoxy resin or the like and curing to form a mesh. The main method is to use a method of impregnating a carbon fiber bundle with an epoxy resin, a polyester resin, or the like, and then attaching silica sand or the like to the surface to make the surface uneven.
これらは、炭素繊維とセメント系材料硬化体との界面
強度を補うため、機械的なアンカー効果による定着を期
待したものとなる。そして、その定着強度はセメント系
材料硬化体のせん断強度に依存したものである。けれど
も、このように加工された炭素繊維メッシュの交点強度
はメッシュの格子内のセメント系材料硬化体のせん断強
度を一般に上回るため、定着部の応力集中によりセメン
ト系材料硬化体はせん断破壊することとなっている。These are expected to fix by the mechanical anchor effect in order to supplement the interface strength between the carbon fiber and the hardened cementitious material. The fixing strength depends on the shear strength of the hardened cementitious material. However, since the intersection strength of the carbon fiber mesh processed in this way generally exceeds the shear strength of the hardened cementitious material in the mesh lattice, the hardened cementitious material is subject to shear failure due to stress concentration at the anchoring portion. Has become.
そのため、高強度の炭素繊維を使用した場合には、CF
RCにおける炭素繊維の強度発現率は低くなり、炭素繊維
の高強度、高弾性は、効果を発揮しない結果となる。ま
た、炭素繊維を編んだりして炭素繊維を2次加工するこ
とは、炭素繊維メッシュのコストを大幅に上げる要因と
なる。さらに、補強材料である炭素繊維を引張り方向に
向かって編んだり、捻糸することは繊維をわん曲させる
こととなり、補強材料の見かけ上の弾性率を下げる結果
となるため、高弾性な炭素繊維を用いる場合には効果的
ではない。Therefore, when using high-strength carbon fiber, CF
The strength expression rate of the carbon fiber in the RC decreases, and the high strength and high elasticity of the carbon fiber result in no effect. In addition, knitting or secondary processing of carbon fiber is a factor that greatly increases the cost of the carbon fiber mesh. Furthermore, knitting or twisting carbon fiber as a reinforcing material in the tensile direction causes the fiber to bend, resulting in a reduction in the apparent elastic modulus of the reinforcing material. It is not effective when is used.
発明が解決しようとする課題 本発明はCFRCの高強度、高剛性化のために機械的なア
ンカー効果だけを期待したものでない炭素繊維メッシュ
を提供することと、簡易な一工程で製造する方法を提供
することによって、CFRCにおける炭素繊維の強度発現率
を向上させると同時に、炭素繊維メッシュの加工コスト
を低減してセメント系材料硬化体のせん断破壊や炭素繊
維メッシュのコスト高という上述の問題点を解決せんと
するものである。Problem to be Solved by the Invention The present invention provides a carbon fiber mesh that does not expect only a mechanical anchor effect for high strength and high rigidity of CFRC, and a method of manufacturing in one simple step. By providing the carbon fiber mesh in CFRC, the strength of the carbon fiber mesh can be improved, and at the same time, the cost of the carbon fiber mesh can be reduced to solve the above-mentioned problems of shear fracture of the hardened cementitious material and the high cost of the carbon fiber mesh. It is to be solved.
また、このように界面接着力を制御した炭素繊維メッ
シュをセメント系材料硬化体無機質板の補強材として用
いることにより、炭素繊維の高強度、高弾性という特性
を十分にいかした炭素繊維補強無機質板を提供するもの
である。In addition, by using a carbon fiber mesh with controlled interfacial adhesion as a reinforcing material for a cured cementitious material inorganic plate, a carbon fiber reinforced inorganic plate that takes full advantage of the high strength and high elastic properties of carbon fibers Is provided.
課題を解決するための手段および作用 本発明の補強用炭素繊維メッシュは、平均粒径1〜10
0nmのSiO2粒子を含有したエポキシ樹脂を被覆含浸して
なる炭素繊維束を、直線状態を保持したまま交点のみを
接着させて直交してなるものである。Means and Action for Solving the Problems The reinforcing carbon fiber mesh of the present invention has an average particle size of 1 to 10
A carbon fiber bundle formed by coating and impregnating an epoxy resin containing SiO 2 particles of 0 nm is orthogonally formed by bonding only intersections while maintaining a linear state.
さらには平均粒径1〜100nmのSiO2粒子を含有したエ
ポキシ樹脂で炭素繊維束を被覆含浸し、処理後の炭素繊
維束を直交状態を保持したまま一方向に平行に並べ、そ
れらを未硬化の状態で直交する方向に重ね合わせ、交点
部分を接触させた状態で硬化させることを特徴とする補
強用炭素繊維の製造方法、及び前記の補強用炭素繊維メ
ッシュを、セメント系材料硬化体を主成分とする無機質
板中に含有していることを特徴とする高性能な炭素繊維
補強無機質板である。Furthermore, the carbon fiber bundle is coated and impregnated with an epoxy resin containing SiO 2 particles with an average particle size of 1 to 100 nm, and the treated carbon fiber bundle is arranged in one direction parallel while maintaining the orthogonal state, and they are uncured The method for manufacturing a reinforcing carbon fiber, characterized in that it is cured in a state where the intersections are in contact with each other, and the reinforcing carbon fiber mesh is mainly composed of a cured cementitious material, A high-performance carbon fiber reinforced inorganic plate characterized by being contained in an inorganic plate as a component.
本発明における炭素繊維メッシュは、その表面を被覆
しているSiO2超微粒子を含有するエポキシ樹脂とセメン
ト系材料硬化体と炭素繊維との接着性が良好であるた
め、炭素繊維−セメント系材料硬化体間の界面強度が向
上している。Carbon fiber mesh in the present invention, since adhesion between the epoxy resin and the cementitious material cured product and carbon fibers containing SiO 2 ultrafine particles covering the surface thereof is good, carbon fiber - cementitious material cured The interfacial strength between the bodies is improved.
そのため、炭素繊維メッシュの交点には機械的なアン
カー効果を期待するための交点強度は必要なく、作業性
を確保できるだけの交点接着強度があればよいことにな
る。この炭素繊維メッシュは、炭素繊維束を引張り荷重
がかかる方向に配向することによりセメント系材料硬化
体無機質板の補強が可能となる。Therefore, the intersection of the carbon fiber meshes does not need the intersection strength for expecting the mechanical anchor effect, but only needs to have the intersection adhesion strength enough to ensure the workability. The carbon fiber mesh can reinforce the hardened cementitious material inorganic plate by orienting the carbon fiber bundle in a direction in which a tensile load is applied.
この炭素繊維メッシュを製造する工程は、例えばプリ
プレグ法にて炭素繊維束を被覆含浸して枠状のフレーム
に巻採り、炭素繊維束を平行に並べる工程と、次に、そ
のフレームを90度回転させることにより、平行に並べた
炭素繊維束と直交する方向に被覆含浸した炭素繊維束を
重ね合わせるようにして、巻取り炭素繊維メッシュを製
造する工程とからなる。The process of manufacturing the carbon fiber mesh includes, for example, coating and impregnating a carbon fiber bundle by a prepreg method, winding the same into a frame-shaped frame, arranging the carbon fiber bundle in parallel, and then rotating the frame by 90 degrees. And thereby producing a wound carbon fiber mesh such that the carbon fiber bundles impregnated with the coating are superposed on each other in a direction orthogonal to the carbon fiber bundles arranged in parallel.
巻取る時のテンションを制御することにより、炭素繊
維メッシュの交点強度を制御することが可能である。ま
た別な方法として、プリプレグ法にて炭素繊維束を被覆
含浸した後、2列に平行に並べた突起物に炭素繊維束を
S字型に引っかけるようにして、平面状に炭素繊維束が
平行に並ぶ様に配列させ、この2つの未硬化の状態で直
交させて重ね合わせ、その状態で硬化させる工程からな
るものである。By controlling the tension at the time of winding, the intersection strength of the carbon fiber mesh can be controlled. As another method, the carbon fiber bundle is coated and impregnated by the prepreg method, and then the carbon fiber bundle is hooked in an S-shape on the protrusions arranged in two rows in parallel, so that the carbon fiber bundle is parallel to the plane. And the two uncured states are superimposed orthogonally on each other, and cured in that state.
この様な簡易な方法を用いて炭素繊維メッシュを製造
すると、界面強度向上のための表面被膜とメッシュの交
点接着処理を同一樹脂、同一工程で行なうことが可能で
あるため、加工コストも低減できるという経済的な効果
も生まれる。炭素繊維のような比較的高価な材料を使用
する場合には、2次加工コストを低減して炭素繊維メッ
シュを製造することも重要な要素である。When a carbon fiber mesh is manufactured by using such a simple method, it is possible to perform the intersection bonding treatment of the surface coating and the mesh for improving the interfacial strength in the same resin and the same process, so that the processing cost can be reduced. The economic effect is also born. When a relatively expensive material such as carbon fiber is used, it is also an important factor to reduce the secondary processing cost and manufacture the carbon fiber mesh.
本発明の炭素繊維メッシュの形状は、x軸方向、y軸
方向に炭素繊維がほぼ直交したものであり、炭素繊維量
は補強するセメント系材料硬化体の形状、物性等により
決められる。また、炭素繊維メッシュを形成する炭素繊
維束の断面形状はセメント系材料硬化体との接着面積を
大きくするため、楕円形のものが望ましい。しかし、補
強位置によっては丸型、角形のものでも良く断面形状は
特に限定されるものではない。The shape of the carbon fiber mesh of the present invention is such that the carbon fibers are substantially orthogonal to the x-axis direction and the y-axis direction, and the amount of the carbon fibers is determined by the shape, physical properties, etc. of the hardened cementitious material. Further, the cross-sectional shape of the carbon fiber bundle forming the carbon fiber mesh is desirably elliptical in order to increase the bonding area with the cured cement-based material. However, the shape may be round or square depending on the reinforcing position, and the cross-sectional shape is not particularly limited.
本発明に用いられるSiO2超微粒子は活性なコロイダル
シリカであり、平均粒径が1〜100nmの範囲のものであ
る。平均粒径が100nmより大きい場合には、セメント系
材料硬化体との界面接着力が低下するため好ましくな
い。平均粒径が1nmより小さい場合には、凝集力が強い
ためエポキシ樹脂とのブレンドが困難であり、エポキシ
樹脂中で凝集し反応性がおちることとなる。エポキシ樹
脂中のSiO2超微粒子の分析は、Transmission Electron
Microscope(TEM)等により可能である。The ultrafine SiO 2 particles used in the present invention are active colloidal silica, and have an average particle diameter in the range of 1 to 100 nm. If the average particle size is larger than 100 nm, the interfacial adhesive strength with a cured cementitious material is undesirably reduced. When the average particle size is smaller than 1 nm, it is difficult to blend with the epoxy resin because of a strong cohesive force, and the coagulation occurs in the epoxy resin to lower the reactivity. The analysis of ultrafine SiO 2 particles in epoxy resin is conducted by Transmission Electron
It is possible with a microscope (TEM) or the like.
用いられるエポキシ樹脂には、ビスフェノールA型、
ビスフェノールF型、ビスフェノールAD型、ノボラック
型等があり、ウレタン、タール、フェノール、キシレ
ン、クマロン、ケトン等で変性したものでもよい。エポ
キシ樹脂の使用方法は、各種乳化剤を添加してO/W型エ
マルジョンにして用いる事が好ましい。The epoxy resin used is bisphenol A type,
There are bisphenol F type, bisphenol AD type, novolak type and the like, and those modified with urethane, tar, phenol, xylene, coumarone, ketone and the like may be used. The epoxy resin is preferably used as an O / W emulsion by adding various emulsifiers.
硬化剤としては、アミン系、ポリアミンアミド系、酸
および酸無水物系等の公知のものが使用できる。エポキ
シ樹脂の硬化時には、各種硬化促進剤を添加する場合も
ある。また、SiO2超微粒子の分散時に、分散性を向上さ
せるため、必要に応じて界面活性剤、カップリング剤等
を少量加えてもよい。Known curing agents such as amine-based, polyamine-amide-based, acid and acid anhydride-based curing agents can be used. At the time of curing the epoxy resin, various curing accelerators may be added. In addition, when dispersing the SiO 2 ultrafine particles, a small amount of a surfactant, a coupling agent or the like may be added as needed to improve the dispersibility.
用いる炭素繊維は、ポリアクリルニトリル(PAN)繊
維を原料としたPAN系炭素繊維、石炭、石油系タール・
ピッチを原料としたピッチ系炭素繊維のいずれのもので
もよく、炭素繊維の表面はエポキシ樹脂との接着性が向
上するため、X線光電子分光法(X−ray photoelectro
n spectroscopy)による表面分析で酸素原子/炭素原子
比(O/C)が0.07以上に酸化処理の施されているものが
好ましい。酸化処理の方法としては、電解酸化法、プラ
ズマ酸化法等公知の方法を用いることが可能である。The carbon fiber used is polyacrylonitrile (PAN) fiber as raw material, coal, petroleum tar,
Any of pitch-based carbon fibers using pitch as a raw material may be used. Since the surface of the carbon fibers has improved adhesion to epoxy resin, X-ray photoelectron spectroscopy (X-ray photoelectron spectroscopy)
It is preferable that the surface is subjected to an oxidation treatment so as to have an oxygen atom / carbon atom ratio (O / C) of 0.07 or more by surface analysis by n spectroscopy). As a method of the oxidation treatment, a known method such as an electrolytic oxidation method or a plasma oxidation method can be used.
サイジング処理はあってもなくてもよいが、サイジン
グ処理をする場合にはエポキシ樹脂マトリックス用のエ
ポキシ基を含むサイジング剤を用いることが好ましい。
炭素繊維の形態は、連続繊維状のものが好ましい。The sizing treatment may or may not be performed, but when the sizing treatment is performed, it is preferable to use a sizing agent containing an epoxy group for an epoxy resin matrix.
The form of the carbon fiber is preferably a continuous fiber.
一方、モルタルやコンクリート等を主成分とするパネ
ルに、前記の処理を施した炭素繊維メッシュを補強材と
して用いることにより、通常の炭素繊維メッシュに比
べ、炭素繊維の強度特性を生かした高強度高弾性な炭素
繊維補強無機質板を提供することができる。On the other hand, by using a carbon fiber mesh treated as described above as a reinforcing material for a panel mainly composed of mortar, concrete, or the like, compared to a normal carbon fiber mesh, high strength and high strength utilizing the strength characteristics of carbon fiber are achieved. An elastic carbon fiber reinforced inorganic plate can be provided.
この炭素繊維補強無機質板は、炭素繊維とセメント系
材料硬化体との界面の接着性が非常に良好であるため、
編み込んだり、交点の接着処理だけを施したアンカー効
果による定着だけの炭素繊維メッシュに比べて、炭素繊
維補強無機質板に加わる応力は炭素繊維とセメント系材
料硬化体との界面層を通じて緩やかに炭素繊維に伝わ
る。そのため、セメント系材料硬化体への応力の集中が
低減でき、セメント系材料硬化体中で炭素繊維の高強
度、高弾性を利用することが可能となり、建築材料とし
ての力学的性質、及び信頼性を向上する。Since the carbon fiber reinforced inorganic plate has a very good adhesive property at the interface between the carbon fiber and the cured cementitious material,
The stress applied to the carbon fiber reinforced inorganic plate is gradual through the interface layer between the carbon fiber and the hardened cementitious material, compared to the carbon fiber mesh that is only anchored by the anchor effect that is woven or subjected to the bonding process at the intersections. It is transmitted to. Therefore, the concentration of stress on the hardened cementitious material can be reduced, and the high strength and high elasticity of carbon fiber can be utilized in the hardened cementitious material, and the mechanical properties and reliability as a building material To improve.
さらに、交点の接着処理は従来のアンカー効果だけを
期待したものと違い、作業性だけを確保できるだけの強
度があれば良いため、炭素繊維メッシュの製造は容易で
あり加工コストを低減すると同時に、補強するセメント
系材料硬化体の強度、形状に応じて補強炭素繊維の量、
配向を簡単に変えることが可能である。Furthermore, unlike the conventional method that only requires the anchor effect, the bonding at the intersection only needs to have enough strength to ensure only the workability, so the production of carbon fiber mesh is easy, reducing the processing cost and reinforcing at the same time. Strength of hardened cementitious material, amount of reinforcing carbon fiber according to the shape,
The orientation can be easily changed.
実施例 実施例1 PAN系の炭素繊維束(強度:285kg/mm2、弾性率:21.5t/
mm2、繊度:0.86g/m、密度:1.81g/cm3、12,000フィラメ
ント;英ハイソル・グラフィル社製)を、プリプレグ法
にてコロイダルシリカを用いてSiO2超微粒子(平均粒
径:10nm)を10wt%を含むO/W型エポキシ樹脂エマルジョ
ン(主剤:エピコート828;油化シェル製)で被覆含浸し
た。EXAMPLES Example 1 PAN-based carbon fiber bundle (strength: 285 kg / mm 2 , elastic modulus: 21.5 t /
mm 2 , fineness: 0.86 g / m, density: 1.81 g / cm 3 , 12,000 filaments; manufactured by Hisol Graphil, UK) and SiO 2 ultrafine particles (average particle size: 10 nm) using colloidal silica by prepreg method Was coated and impregnated with an O / W type epoxy resin emulsion containing 10 wt% (base material: Epicoat 828; manufactured by Yuka Shell).
被覆含浸後、炭素繊維束を直線状態に保持したまま格
子状のフレームに一方向に平行に巻取り、次に炭素繊維
束を未硬化の状態で直交する方向に同様に巻取って、交
点部分を付着させた状態で巻取った炭素繊維束を80℃で
硬化させて炭素繊維メッシュを作成した。この炭素繊維
メッシュを、モルタル(W/C=0.42、S/C=0.5、普通ポ
ルトランドセメント、8号硅砂)の補強材として用い
た。After the coating impregnation, the carbon fiber bundle is wound up in one direction parallel to the lattice frame while keeping the carbon fiber bundle in a straight line state, and then the carbon fiber bundle is similarly wound up in an uncured state in a direction orthogonal to the intersection point, Was wound at 80 ° C. to form a carbon fiber mesh. This carbon fiber mesh was used as a reinforcing material for mortar (W / C = 0.42, S / C = 0.5, ordinary Portland cement, No. 8 silica sand).
炭素繊維補強無機質板の形状は、500(横)×500
(縦)×18(高さ)mmとし、炭素繊維メッシュをかぶり
2mmとして最下面に補強した。炭素繊維補強無機質板中
の炭素繊維の体積%(Vf)は1.82%となるようにした。The shape of the carbon fiber reinforced inorganic plate is 500 (horizontal) x 500
(Vertical) x 18 (height) mm and cover with carbon fiber mesh
Reinforced on the bottom surface as 2mm. The volume% (Vf) of the carbon fibers in the carbon fiber reinforced inorganic plate was set to 1.82%.
4週間の水中養生後、4点支持による中央載荷試験に
て載荷速度を0.5mm/minとし、無機質板に加わる荷重、
及び載荷点直下での変位を連続的に測定した。載荷部は
50mmφ、支持部は30×30mmとした。実験結果を表1に示
した。また、第1図には荷重−変位曲線を示した。実験
結果より、載荷点直下での変位が4mm程度で最大荷重103
9.6kgfを示しており、強度、剛性共に優れた炭素繊維補
強無機質板であることが判る。After curing in water for 4 weeks, the loading speed was set to 0.5 mm / min in the central loading test with four points of support, and the load applied to the inorganic plate,
And the displacement immediately below the loading point were measured continuously. The loading section is
The diameter was 50 mm, and the support was 30 × 30 mm. Table 1 shows the experimental results. FIG. 1 shows a load-displacement curve. The experimental results show that the displacement just below the loading point is about 4 mm and the maximum load is 103
It showed 9.6 kgf, indicating that the carbon fiber reinforced inorganic plate was excellent in both strength and rigidity.
実施例2 実施例1と同様のPAN系の炭素繊維束を、プリプレグ
法にてコロイダルシリカを用いてSiO2超微粒子(平均粒
径:80nm)を10wt%含むO/W型エポキシ樹脂エマルジョン
(主剤:エピコート828;油化シェル製)で被覆含浸し
た。Example 2 The same PAN-based carbon fiber bundle as in Example 1 was prepared by using a colloidal silica by a prepreg method and using an O / W type epoxy resin emulsion containing 10 wt% of SiO 2 ultrafine particles (average particle size: 80 nm) (base material). : Epicoat 828; manufactured by Yuka Shell).
被覆含浸後、炭素繊維束を直線状態に保持したまま格
子状のフレームに一方向に平行に巻取り、次に炭素繊維
束を未硬化の状態で直交する方向に同様に巻取って、交
点部分を付着させた状態で巻取った炭素繊維束を80℃で
硬化させて炭素繊維メッシュを作成した。この炭素繊維
メッシュを、モルタル(W/C=0.42、S/C=0.5、普通ポ
ルトランドセメント、骨材:8号硅砂)の補強材として用
いた。After the coating impregnation, the carbon fiber bundle is wound up in one direction parallel to the lattice frame while keeping the carbon fiber bundle in a straight line state, and then the carbon fiber bundle is similarly wound up in an uncured state in a direction orthogonal to the intersection point, Was wound at 80 ° C. to form a carbon fiber mesh. This carbon fiber mesh was used as a reinforcing material for mortar (W / C = 0.42, S / C = 0.5, ordinary Portland cement, aggregate: No. 8 silica sand).
炭素繊維強化パネルの形状は、500(横)×500(縦)
×18(高さ)mmとし、炭素繊維メッシュをかぶり2mmと
して最下面に補強した。炭素繊維補強無機質板中の炭素
繊維の体積%(Vf)は1.82%となるようにした。The shape of the carbon fiber reinforced panel is 500 (horizontal) x 500 (vertical)
× 18 (height) mm, and a carbon fiber mesh with a cover of 2 mm was reinforced on the lowermost surface. The volume% (Vf) of the carbon fibers in the carbon fiber reinforced inorganic plate was set to 1.82%.
4週間の水中養生後、4点支持による中央載荷にて載
荷速度は、0.5mm/minとし、無機質板に加わる荷重、及
び載荷点直下での変位を連続的に測定した。載荷部は50
mmφ、支持部は30×30mmとした。実験結果を表1に示し
た。また、第1図には荷重−変位曲線を示した。実験結
果より、載荷点直下での変位が4mm程度で最大荷重956.4
kgfを示すことが判った。これより、コロイダルシリカ
中のSiO2超微粒子の平均粒径を変化させることにより、
炭素繊維補強無機質板の強度が変化し、制御できること
がわかる。After curing for 4 weeks in water, the loading speed was 0.5 mm / min with a central loading by four points, and the load applied to the inorganic plate and the displacement immediately below the loading point were continuously measured. Loading section is 50
mmφ, and the support part was 30 × 30 mm. Table 1 shows the experimental results. FIG. 1 shows a load-displacement curve. The experimental results show that the displacement immediately below the loading point is about 4 mm and the maximum load is 956.4
It was found to show kgf. Than this, by changing the average particle diameter of SiO 2 ultrafine particles in the colloidal silica,
It can be seen that the strength of the carbon fiber reinforced inorganic plate changes and can be controlled.
実施例3 実施例1と同様のPAN系の炭素繊維束を、プリプレグ
法にてコロイダルシリカを用いてSiO2超微粒子(平均粒
径:10nm)を10wt%含むO/W型エポキシ樹脂エマルジョン
(主剤:エピコート828;油化シェル製)で被覆含浸し
た。Example 3 The same PAN-based carbon fiber bundle as in Example 1 was prepared by using a colloidal silica by a prepreg method and using an O / W epoxy resin emulsion containing 10 wt% of SiO 2 ultrafine particles (average particle size: 10 nm) (base material). : Epicoat 828; manufactured by Yuka Shell).
被覆含浸後、炭素繊維束を直線状態に保持したまま格
子状のフレームに一方向に平行に巻取り、次に炭素繊維
束を未硬化の状態で直交する方向に同様に巻取って、交
点部分を付着させた状態で巻取った炭素繊維束を80℃で
硬化させて炭素繊維ネットを作成した。この炭素繊維メ
ッシュを、モルタル(W/C=0.42、S/C=0.5、普通ポル
トランドセメント、8号硅砂)の補強材として用いた。After the coating impregnation, the carbon fiber bundle is wound up in one direction parallel to the lattice frame while keeping the carbon fiber bundle in a straight line state, and then the carbon fiber bundle is similarly wound up in an uncured state in a direction orthogonal to the intersection point, Was wound at 80 ° C. to form a carbon fiber net. This carbon fiber mesh was used as a reinforcing material for mortar (W / C = 0.42, S / C = 0.5, ordinary Portland cement, No. 8 silica sand).
炭素繊維補強無機質板の形状は、500(横)×500
(縦)×18(高さ)mmとし、炭素繊維メッシュをかぶり
2mmとして最下面に補強した。炭素繊維補強無機質板中
の炭素繊維の体積%(Vf)は0.73%となるようにした。The shape of the carbon fiber reinforced inorganic plate is 500 (horizontal) x 500
(Vertical) x 18 (height) mm and cover with carbon fiber mesh
Reinforced on the bottom surface as 2mm. The volume% (Vf) of the carbon fibers in the carbon fiber reinforced inorganic plate was set to 0.73%.
4週間の水中養生後、4点支持による中央載荷にて、
載荷速度を0.5mm/minとし、無機質板に加わる荷重、及
び載荷点直下での変位を連続的に測定した。載荷部は50
mmφ、支持部は30×30mmとした。実験結果を表1に示し
た。また、第1図には荷重−変位曲線を示した。After underwater curing for 4 weeks, with a central load supported by 4 points,
At a loading speed of 0.5 mm / min, the load applied to the inorganic plate and the displacement immediately below the loading point were continuously measured. Loading section is 50
mmφ, and the support part was 30 × 30 mm. Table 1 shows the experimental results. FIG. 1 shows a load-displacement curve.
実験結果より、載荷点直下での変位が15mm程度で最大
荷重512.8kgfを示すことがわかる。このことより、補強
炭素繊維量を変化させることにより、炭素繊維補強無機
質板の強度、剛性共に変化し制御できることがわかる。From the experimental results, it can be seen that the displacement immediately below the loading point shows a maximum load of 512.8 kgf when the displacement is about 15 mm. From this, it is understood that by changing the amount of the reinforcing carbon fiber, both the strength and the rigidity of the carbon fiber reinforced inorganic plate can be changed and controlled.
比較例1 PAN系の炭素繊維束(強度:430kg/mm2、弾性率:23.5t/
mm2、繊度:0.83g/m、密度:1.76g/cm3、12,000フィラメ
ント;旭日本カーボン社製)を、縦糸には6,000フィラ
メントを2本用いて、直線状の横糸(12,000フィラメン
ト)を交互に上下から挟み込むようにしてメッシュ状に
編み込み(からみ織り)、交点を拘束したメッシュ状の
縦糸、横糸共に12,000フィラメントの炭素繊維ネットを
作成した。Comparative Example 1 PAN-based carbon fiber bundle (strength: 430 kg / mm 2 , elastic modulus: 23.5 t /
mm 2 , fineness: 0.83 g / m, density: 1.76 g / cm 3 , 12,000 filaments; Asahi Nippon Carbon Co., Ltd.), two 6,000 filaments for the warp, and alternate linear wefts (12,000 filaments) A carbon fiber net of 12,000 filaments was formed for both the warp and the weft in a mesh shape in which the intersections were constrained.
この炭素繊維メッシュを、アセトンで希釈したエポキ
シ樹脂(主剤:アラルダイトGY−260;チバガイギー社
製、硬化剤:ジシアンジアミド;チバガイギー社製)を
被覆含浸した。この炭素繊維メッシュを140℃で硬化さ
せて、モルタル(W/C=0.42、S/C=0.5、普通ポルトラ
ンドセメント、8号硅砂)の補強材として用いた。The carbon fiber mesh was coated and impregnated with an epoxy resin diluted with acetone (main agent: Araldite GY-260; manufactured by Ciba Geigy, curing agent: dicyandiamide; manufactured by Ciba Geigy). This carbon fiber mesh was cured at 140 ° C. and used as a reinforcing material for mortar (W / C = 0.42, S / C = 0.5, ordinary Portland cement, No. 8 silica sand).
炭素繊維補強無機質板の形状は、500(横)×500
(縦)×18(高さ)mmとし、炭素繊維メッシュをかぶり
2mmとして最下面に補強した。炭素繊維補強無機質板中
の炭素繊維の体積%(Vf)は1.82%となるようにした。The shape of the carbon fiber reinforced inorganic plate is 500 (horizontal) x 500
(Vertical) x 18 (height) mm and cover with carbon fiber mesh
Reinforced on the bottom surface as 2mm. The volume% (Vf) of the carbon fibers in the carbon fiber reinforced inorganic plate was set to 1.82%.
4週間の水中養生後、4点支持による中央載荷にて載
荷速度は、0.5mm/minとし、無機質板に加わる荷重、及
び載荷点での変位を連続的に測定した。載荷部は50mm
φ、支持部は30×30mmとした。実験結果を表1に示し
た。また、第1図には荷重−変位曲線を示した。その結
果、炭素繊維メッシュの交点による機械的な定着だけを
考慮した、従来法による炭素繊維メッシュを補強材とし
た炭素繊維補強無機質板の力学的特性は、実施例1、2
記載の炭素繊維補強無機質板に比べ、炭素繊維強度、補
強炭素繊維量が上回っているにもかかわらず、強度、剛
性共に同程度であることがわかる。After curing in water for 4 weeks, the loading speed was 0.5 mm / min at the center loading by four points support, and the load applied to the inorganic plate and the displacement at the loading point were continuously measured. Loading section is 50mm
φ, the support part was 30 × 30 mm. Table 1 shows the experimental results. FIG. 1 shows a load-displacement curve. As a result, the mechanical characteristics of the carbon fiber reinforced inorganic plate using the carbon fiber mesh as a reinforcing material according to the conventional method, taking into account only the mechanical fixing at the intersection of the carbon fiber meshes, are shown in Examples 1 and 2.
Although the carbon fiber strength and the amount of the reinforcing carbon fiber are higher than those of the described carbon fiber reinforced inorganic plate, both the strength and the rigidity are comparable.
比較例2 PAN系の炭素繊維束(強度:430kg/mm2、弾性率:23.5t/
mm2、繊度:0.83g/m、密度:1.76g/cm3、12,000フィラメ
ント;旭日本カーボン社製)を、縦糸には6,000フィラ
メントを2本用いて、直線状の横糸(12,000フィラメン
ト)を交互に上下から挟み込むようにしてメッシュ状に
編み込み(からみ織り)、交点を拘束したメッシュ状の
縦糸、横糸共に12,000フィラメントの炭素繊維ネットを
作成した。この炭素繊維メッシュを、アセトンで希釈し
たエポキシ樹脂(主剤:アラルダイトGY−260;チバガイ
ギー社製、硬化剤:ジシアンジアミド;チバガイギー社
製)を被覆含浸した。Comparative Example 2 PAN-based carbon fiber bundle (strength: 430 kg / mm 2 , elastic modulus: 23.5 t /
mm 2 , fineness: 0.83 g / m, density: 1.76 g / cm 3 , 12,000 filaments; Asahi Nippon Carbon Co., Ltd.), two 6,000 filaments for the warp, and alternate linear wefts (12,000 filaments) A carbon fiber net of 12,000 filaments was formed for both the warp and the weft in a mesh shape in which the intersections were constrained. The carbon fiber mesh was coated and impregnated with an epoxy resin diluted with acetone (main agent: Araldite GY-260; manufactured by Ciba Geigy, curing agent: dicyandiamide; manufactured by Ciba Geigy).
この炭素繊維メッシュを140℃で硬化させて、モルタ
ル(W/C=0.42、S/C=0.5、普通ポルトランドセメン
ト、8号硅砂)の補強剤として用いた。炭素繊維補強無
機質板の形状は、500(横)×500(縦)×18(高さ)mm
とし、炭素繊維メッシュをかぶり2mmとして最下面に補
強した。炭素繊維補強無機質板中の炭素繊維の体積%
(Vf)は1.17%となるようにした。This carbon fiber mesh was cured at 140 ° C. and used as a reinforcing agent for mortar (W / C = 0.42, S / C = 0.5, ordinary Portland cement, No. 8 silica sand). The shape of the carbon fiber reinforced inorganic plate is 500 (horizontal) x 500 (vertical) x 18 (height) mm
The carbon fiber mesh was covered at 2 mm to reinforce the lowermost surface. Volume% of carbon fiber in carbon fiber reinforced inorganic plate
(Vf) was set to 1.17%.
4週間の水中養生後、4点支持による中央載荷にて載
荷速度は、0.5mm/minとし、無機質板に加わる荷重、及
び載荷点での変位を連続的に測定した。載荷部は50mm
φ、支持部は30×30mmとした。実験結果を表1に示し
た。また、第1図には荷重−変位曲線を示した。その結
果、炭素繊維メッシュの交点による機械的な定着だけを
考慮した、従来法による炭素繊維メッシュを補強剤とし
た炭素繊維補強無機質板の力学的特性は、実施例3記載
の炭素繊維補強無機質板に比べ、炭素繊維強度、補強炭
素繊維量が上回っているにもかかわらず、強度、剛性共
に同程度であることがわかる。After curing in water for 4 weeks, the loading speed was 0.5 mm / min at the center loading by four points support, and the load applied to the inorganic plate and the displacement at the loading point were continuously measured. Loading section is 50mm
φ, the support part was 30 × 30 mm. Table 1 shows the experimental results. FIG. 1 shows a load-displacement curve. As a result, the mechanical properties of the carbon fiber reinforced inorganic plate using the carbon fiber mesh according to the conventional method as a reinforcing agent, taking into account only the mechanical fixation at the intersections of the carbon fiber mesh, are as follows. It can be seen that both the strength and the rigidity are almost the same despite the fact that the carbon fiber strength and the amount of the reinforcing carbon fiber are higher than those of the above.
以上、実施例により、SiO2超微粒子を含有したエポキ
シ樹脂で炭素繊維束の表面被覆と炭素繊維束間の交点接
着処理を施してある補強用炭素繊維メッシュは、セメン
ト系材料硬化体との接着性が良いため、セメント系材料
硬化体の補強材料として適し、そのため炭素繊維の強度
特性をいかした高性能な炭素繊維補強無機質板ができ
る。 As described above, according to the examples, the reinforcing carbon fiber mesh which has been subjected to the intersection coating between the surface coating of the carbon fiber bundle and the carbon fiber bundle with the epoxy resin containing ultrafine SiO 2 particles is bonded to the cementitious material cured product. Because of its good properties, it is suitable as a reinforcing material for a cured cementitious material, so that a high-performance carbon fiber reinforced inorganic plate utilizing the strength characteristics of carbon fibers can be obtained.
発明の効果 本発明によれば、セメント系材料硬化体と接着性が良
く、作業性も確保された補強用炭素繊維メッシュを得る
ことが可能となった。そのため、従来の機械的な定着だ
けを考慮した炭素繊維メッシュを用いた場合に比べ、炭
素繊維の特性を十分に、且つ容易に利用することが可能
となり、炭素繊維補強無機質板の機械的物性が向上し
た。Effects of the Invention According to the present invention, it has become possible to obtain a reinforcing carbon fiber mesh that has good adhesiveness to a cured cementitious material and has high workability. Therefore, compared to the case of using a carbon fiber mesh that only considers the conventional mechanical fixing, the characteristics of the carbon fiber can be sufficiently and easily used, and the mechanical properties of the carbon fiber reinforced inorganic plate can be improved. Improved.
第1図は、炭素繊維補強無機質板の中央載荷による荷重
と載荷点直下での炭素繊維補強無機質板の変位との関係
を示した図である。曲線には実施例1の結果、曲線
には実施例2の結果、曲線には実施例3の結果、曲線
には比較例1の結果、曲線には比較例2の結果をそ
れぞれ示した。FIG. 1 is a diagram showing the relationship between the load due to the central loading of the carbon fiber reinforced inorganic plate and the displacement of the carbon fiber reinforced inorganic plate just below the loading point. The curve shows the result of Example 1, the curve shows the result of Example 2, the curve shows the result of Example 3, the curve shows the result of Comparative Example 1, and the curve shows the result of Comparative Example 2.
フロントページの続き (72)発明者 山田 寛次 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式會社第1技術研究所内 (56)参考文献 特開 昭63−144153(JP,A) 特公 平4−2715(JP,B2)Continuation of the front page (72) Inventor Kanji Yamada 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Pref. 4-2715 (JP, B2)
Claims (3)
エポキシ樹脂を被覆含浸してなる炭素繊維束を、直線状
態を保持したまま交点のみを接着させてなる補強用炭素
繊維メッシュ。1. A reinforcing carbon fiber mesh comprising carbon fiber bundles coated and impregnated with an epoxy resin containing SiO 2 particles having an average particle size of 1 to 100 nm, and only intersections are adhered while maintaining a linear state.
エポキシ樹脂で炭素繊維束を束被覆含浸し、処理後の炭
素繊維束を直線状態に保持したまま一方向に平行に並
べ、それらを未硬化の状態で直交する方向に重ね合わ
せ、交点部分を接触させた状態で硬化させる事を特徴と
する補強用炭素繊維メッシュの製造方法。2. A carbon fiber bundle is coated and impregnated with an epoxy resin containing SiO 2 particles having an average particle size of 1 to 100 nm, and the treated carbon fiber bundle is arranged in one direction parallel while being kept in a linear state, A method of manufacturing a reinforcing carbon fiber mesh, comprising laminating them in an uncured state in a direction orthogonal to each other and curing them in a state where the intersections are in contact.
質板中に、請求項1記載の補強用炭素繊維メッシュを含
有していることを特徴とする炭素繊維補強無機質板。3. A carbon fiber reinforced inorganic plate comprising the reinforcing carbon fiber mesh according to claim 1 in an inorganic plate mainly comprising a hardened cementitious material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2100379A JP2728763B2 (en) | 1990-04-18 | 1990-04-18 | Carbon fiber mesh for reinforcement and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2100379A JP2728763B2 (en) | 1990-04-18 | 1990-04-18 | Carbon fiber mesh for reinforcement and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH042876A JPH042876A (en) | 1992-01-07 |
JP2728763B2 true JP2728763B2 (en) | 1998-03-18 |
Family
ID=14272385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2100379A Expired - Lifetime JP2728763B2 (en) | 1990-04-18 | 1990-04-18 | Carbon fiber mesh for reinforcement and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2728763B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69410050T2 (en) * | 1993-10-13 | 1998-11-12 | Mitsubishi Chem Corp | Cut strands of carbon fibers and thus reinforced hydraulic composite materials |
US5648407A (en) * | 1995-05-16 | 1997-07-15 | Minnesota Mining And Manufacturing Company | Curable resin sols and fiber-reinforced composites derived therefrom |
WO2016117435A1 (en) | 2015-01-19 | 2016-07-28 | 帝人株式会社 | Cement-reinforcing fiber material |
CN111995840A (en) * | 2019-11-18 | 2020-11-27 | 西南大学 | A kind of preparation method of new epoxy resin |
CN114620989B (en) * | 2022-03-15 | 2023-03-17 | 日照弗尔曼新材料科技有限公司 | Quick-setting inorganic waterproof plugging agent and preparation method thereof |
-
1990
- 1990-04-18 JP JP2100379A patent/JP2728763B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH042876A (en) | 1992-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4297409A (en) | Manufacture of articles from an organic material and a water-hardenable mass | |
JP4368796B2 (en) | Inorganic matrix fabric apparatus and method | |
US4689084A (en) | Composite material for construction purposes based on pozzuolanas and glass fibers and processes for manufacturing same | |
KR101737557B1 (en) | Earthquake-proof reinforcement and flame-retarded complex reinforcement method for concrete structure | |
JP2001020147A (en) | Mesh woven fabric for reinforcement and method for reinforcing material | |
WO2007106122A2 (en) | Reinforcement fibers and methods of making and using same | |
JP2728763B2 (en) | Carbon fiber mesh for reinforcement and method for producing the same | |
EP2440504B1 (en) | Cementitious mortar and method for improved reinforcement of building structures | |
KR101777823B1 (en) | An Adhesive Composition for Reinforcement of Concrete Structure Using Fiber and Epoxy Resin Mixtures and Reinforcement of Concrete Structure Edge Using Radial Shape FRP Anchor Thereof | |
US4902537A (en) | Method for surface treatment of carbon fibers for reinforcement | |
KR101730935B1 (en) | Textile Sheet For Structure Reignforcement Having Multi Punction | |
JP3019492B2 (en) | Fiber reinforced hydraulic inorganic material and method for producing the same | |
JPH084284Y2 (en) | Concrete structure | |
JPH08325050A (en) | Carbon fiber reinforced cement molded product, method for producing the same, and molded product reinforced by the molded product | |
JPH0726343Y2 (en) | Carbon fiber reinforced inorganic board | |
JP2735293B2 (en) | Inorganic moldings reinforced with reticulated moldings | |
JP2995826B2 (en) | Three-dimensional reinforcing material | |
JPH10249844A (en) | Fiber-reinforced polymer cement composition and its forming method | |
JPH02243547A (en) | Net-like molded product | |
JP2756068B2 (en) | Carbon fiber and cement composite for cement reinforcement | |
Ozdemir et al. | Experimental Study on Angular Flexural Performance of Multiaxis Three Dimensional (3D) Polymeric Carbon Fiber/Cementitious Concretes. Polymers 2021, 13, 3073 | |
JPH0664954A (en) | Fiber-trinforcde cement-based composite material | |
JPH036241A (en) | High strength, high modulus hybrid prepreg | |
JPH05311536A (en) | Netty fibrous structure | |
JP2996143B2 (en) | Carbon fiber sheet for reinforcing concrete structures |