JP2728271B2 - Method for producing spherical oxide particles - Google Patents
Method for producing spherical oxide particlesInfo
- Publication number
- JP2728271B2 JP2728271B2 JP63245386A JP24538688A JP2728271B2 JP 2728271 B2 JP2728271 B2 JP 2728271B2 JP 63245386 A JP63245386 A JP 63245386A JP 24538688 A JP24538688 A JP 24538688A JP 2728271 B2 JP2728271 B2 JP 2728271B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- oxide particles
- liquid
- water
- ethanol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Silicon Compounds (AREA)
Description
【発明の詳細な説明】 発明の技術分野 本発明は、均一な粒径を有する球状金属酸化物粒子を
製造する方法に関する。Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing spherical metal oxide particles having a uniform particle size.
発明の技術的背景並びにその問題点 アルコール溶媒中で、アルキルシリケートをアンモニ
アおよび水と接触させて0.05〜2μmのシリカ粒子を製
造する方法がW.Stber等により開示されている[J.col
loid & Interface Sci,26,(1968)参照]。Technical background of the invention and its problems A method for producing silica particles of 0.05 to 2 μm by contacting an alkyl silicate with ammonia and water in an alcohol solvent is disclosed by W. Stber et al. [J. col.
loid & Interface Sci, 26 , (1968)].
さらに、金属アルコキシドを有機溶媒に溶解して得た
溶液と、水および分散剤からなる溶液とを混合し、金属
アルコキシドを加水分解して微細なセラミック粉末を製
造する方法も知られている(特開昭60-166203号公報参
照)。またエタノール、アンモニア水およびケイ酸エチ
ルからなる混合液を用いた場合の反応条件に対するシリ
カ球成長の経過を、粒径分布をもとにして観測した報告
もなされている(「粉体及び粉末冶金」第23巻、第4
号、第137〜142頁参照)。Further, a method is also known in which a solution obtained by dissolving a metal alkoxide in an organic solvent and a solution comprising water and a dispersant are mixed, and the metal alkoxide is hydrolyzed to produce fine ceramic powder (particularly known). See JP-A-60-166203). In addition, it has been reported that the progress of silica sphere growth with respect to reaction conditions in the case of using a mixed solution comprising ethanol, aqueous ammonia and ethyl silicate was observed based on the particle size distribution ("Powder and powder metallurgy"). 23, 4
Pp. 137-142).
しかしながら、上記のような従来のアルコール溶媒・
アルキルシリケート・アンモニア・水系の溶液中におけ
るシリカ粒子製造法においては、粒子の成長のコントロ
ールおよび粒径分布のコントロールが容易でなく、また
粒子の二次的な凝集も起こり易いという問題点があり、
このような方法は、粒子径の揃ったシリカ粒子を工業的
に製造する方法としては適していない。However, conventional alcoholic solvents such as those described above
In the method for producing silica particles in an alkyl silicate / ammonia / water-based solution, there is a problem that control of particle growth and control of particle size distribution are not easy, and secondary aggregation of particles is also likely to occur.
Such a method is not suitable as a method for industrially producing silica particles having a uniform particle diameter.
また、特開昭60-166203号公報には、加水分解によっ
て生成した粒子の凝集を抑制するために、分散剤を使用
する方法が開示されている。この公報に記載された方法
は、極めて微細なシリカ粒子の合成には非常に適した方
法であるが、反面比較的粒径が大きく、かつ粒径の揃っ
た酸化物粒子の合成には不適当である。JP-A-60-166203 discloses a method in which a dispersant is used to suppress aggregation of particles generated by hydrolysis. The method described in this publication is a method very suitable for synthesizing extremely fine silica particles, but is unsuitable for synthesizing oxide particles having a relatively large particle size and uniform particle size. It is.
さらに、これら従来知られている一工程による酸化物
粒子の製法では、希望する粒径、特に比較的大きい粒子
の酸化物粒子を得るには長時間を要し、しかも粒径の均
一性に欠けるという問題点があった。Furthermore, in these conventionally known methods for producing oxide particles by one step, it takes a long time to obtain oxide particles having a desired particle size, particularly relatively large particles, and lacks uniformity in particle size. There was a problem.
発明の目的 本発明は、上記のような従来技術に伴う問題点を解消
しようとするものであって、粒子の凝集が少なく、均一
な粒径を有する高純度の球状酸化物粒子を効率よく製造
する方法の提供を目的としている。Object of the Invention The present invention is intended to solve the problems associated with the prior art as described above, and efficiently produces high-purity spherical oxide particles having a small particle agglomeration and a uniform particle size. It is intended to provide a way to do so.
発明の概要 本発明に係る球状酸化物粒子の製造方法は、核粒子が
分散した分散液中で、保護コロイドの存在下に、金属ア
ルコキシドを加水分解し、該加水分解生成物を該核粒子
に沈着させて粒子成長させることを特徴としている。SUMMARY OF THE INVENTION The method for producing spherical oxide particles according to the present invention comprises, in a dispersion in which core particles are dispersed, hydrolyzing a metal alkoxide in the presence of a protective colloid, and converting the hydrolysis product into the core particles. It is characterized by deposition and particle growth.
発明の具体的説明 本発明は、金属アルコキシドを加水分解し、酸化物粒
子を製造する方法であって、金属アルコキシドの加水分
解反応を、核粒子が分散した分散液中で保護コロイドを
共存させながら行なうことにより、金属アルコキシドの
加水分解生成物を核粒子に沈着させて粒子成長させる球
状酸化物の製造方法である。DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for producing metal oxide particles by hydrolyzing metal alkoxides, wherein the hydrolysis reaction of metal alkoxides is carried out in the presence of a protective colloid in a dispersion in which core particles are dispersed. This is a method for producing a spherical oxide in which a hydrolysis product of a metal alkoxide is deposited on core particles to grow the particles.
本発明の方法において、金属アルコキシドは、核粒子
が分散したアルコール溶媒中で加水分解される。In the method of the present invention, the metal alkoxide is hydrolyzed in an alcohol solvent in which core particles are dispersed.
この金属アルコキシドを加水分解する際に用いられる
アルコール溶媒中には、通常、アルコール、水およびア
ンモニアが含有されている。The alcohol solvent used for hydrolyzing the metal alkoxide usually contains alcohol, water and ammonia.
本発明で金属アルコキシドの加水分解の際に使用され
るアルコール溶媒の量は、金属アルコキシドに対して、
通常は重量比で1〜50倍、好ましくは2〜20倍である。The amount of the alcohol solvent used at the time of hydrolysis of the metal alkoxide in the present invention, based on the metal alkoxide,
Usually, the weight ratio is 1 to 50 times, preferably 2 to 20 times.
金属アルコキシドを加水分解するために添加する水の
量は、金属アルコキシドに対してモル比で通常は4倍以
上であるが、特に本発明においては、モル比で5〜100
倍程度にすることが好ましい。The amount of water added to hydrolyze the metal alkoxide is usually at least 4 times the molar ratio to the metal alkoxide, but in particular, in the present invention, the molar ratio is 5 to 100.
Preferably, it is about twice.
またアンモニアは、加水分解時のアルコール溶媒のpH
値を10〜13の範囲内に保持できるような量で添加され
る。Ammonia is the pH of the alcohol solvent during hydrolysis.
It is added in such an amount that the value can be kept in the range of 10-13.
上記のようにして行なわれる加水分解の際の温度は、
通常は10〜100℃である。The temperature during the hydrolysis performed as described above is
Usually it is 10-100 ° C.
本発明で使用される金属アルコキシドは、 M(OR)n で表わすことができる。上記式において、nは、金属M
の価数を表わし、Mは、Be,Al,P,Si,Sc,Ti,V,Cr,Fe,Ni,
Zn,Ga,Ge,As,Se,Y,Zr,Nb,In,Sn,Sb,Te,Hf,Ta,W,Pb,B,V
O,Bi,CeおよびCuのうちいずれかの原子を表わす。ま
た。Rは、アルキル基であり、通常は、炭素数が1〜5
のアルキル基、好ましくは炭素数2〜3のアルキル基を
表わす。The metal alkoxide used in the present invention can be represented by M (OR) n . In the above formula, n is a metal M
Where M is Be, Al, P, Si, Sc, Ti, V, Cr, Fe, Ni,
Zn, Ga, Ge, As, Se, Y, Zr, Nb, In, Sn, Sb, Te, Hf, Ta, W, Pb, B, V
Represents any atom of O, Bi, Ce and Cu. Also. R is an alkyl group, usually having 1 to 5 carbon atoms.
, Preferably an alkyl group having 2 to 3 carbon atoms.
本発明の製造方法において用いられるアルコール溶媒
は、金属アルコキシドを溶解するアルコールの内から適
宜選択して使用することができるが、一般にアルコール
を構成するアルキル基の炭素数が多いと得られる粒子の
粒度分布がブロードとなる傾向があり、従って本発明に
おいては炭素数1〜6のアルキルアルコールが好ましく
使用され、これらのアルコールのうちでも特に好ましい
アルコールは、炭素数1〜3のメタノール、エタノー
ル、プロパノールである。The alcohol solvent used in the production method of the present invention can be appropriately selected from alcohols that dissolve the metal alkoxide, and is generally used when the number of carbon atoms of the alkyl group constituting the alcohol is large. The distribution tends to be broad, and therefore, in the present invention, alkyl alcohols having 1 to 6 carbon atoms are preferably used. Among these alcohols, particularly preferred alcohols are methanol, ethanol, and propanol having 1 to 3 carbon atoms. is there.
本発明は、上記のような金属アルコキシドのアルコー
ル溶液中で、保護コロイド存在下に、金属アルコキシド
を加水分解する。The present invention hydrolyzes a metal alkoxide in an alcohol solution of a metal alkoxide as described above in the presence of a protective colloid.
本発明において使用される保護コロイドとしては、核
粒子および得られる球状酸化物粒子を液中に均一に分散
させ、さらに核粒子および得られる球状酸化物粒子の凝
集を防止することができる物質の中から適宜選定するこ
とができる。このような物質の例としては、ゼラチン、
カゼインソーダ、グロブリン、ヘモグロビン、アルブミ
ン、アラビアゴム、デンプン、デキストリン、プロタル
ビン酸、アルギン酸ソーダ、リサルビン酸、ポリビニル
アルコール等を挙げることができる。このような保護コ
ロイドを形成する物質は、単独で、あるいは組み合わせ
て使用することができる。As the protective colloid used in the present invention, among the substances capable of uniformly dispersing the core particles and the obtained spherical oxide particles in a liquid and further preventing aggregation of the core particles and the obtained spherical oxide particles. Can be selected as appropriate. Examples of such substances include gelatin,
Examples include casein soda, globulin, hemoglobin, albumin, gum arabic, starch, dextrin, protalbic acid, sodium alginate, risarbic acid, and polyvinyl alcohol. The substances forming such protective colloids can be used alone or in combination.
上記のような保護コロイドは、得られる球状酸化物粒
子に対して、 0.05≦(保護コロイド/粒子)×100≦13重量%とな
るように使用することが好ましい。保護コロイドの量が
0.05重量%未満であると粒子の凝集を有効に防止するこ
とができないことがあり、他方13重量%を超えるとかえ
って粒子が凝集しやすくなる。保護コロイドは、核粒子
の分散液に予め加えることもできるし、あるいは金属ア
ルコキシドの添加の際に、金属アルコキシドと共に添加
することもできる。The protective colloid as described above is preferably used such that 0.05 ≦ (protective colloid / particle) × 100 ≦ 13% by weight based on the obtained spherical oxide particles. The amount of protective colloid
If the amount is less than 0.05% by weight, it may not be possible to effectively prevent the aggregation of the particles, while if it exceeds 13% by weight, the particles are likely to aggregate. The protective colloid can be added in advance to the dispersion of the core particles, or can be added together with the metal alkoxide when adding the metal alkoxide.
本発明で使用される核粒子としては、たとえば金属酸
化物の粒子、金属水酸化物の粒子および樹脂粒子を挙げ
ることができる。これらの核粒子は、単独であるいは組
合わせて使用することができる。また、核粒子が金属酸
化物の粒子あるいは金属水酸化物の粒子である場合、添
加する金属アルコキシドは、核粒子と同種の金属元素を
有する金属アルコキシドでもよいし、また異種元素を有
する金属アルコキシドであってもかまわない。本発明に
おいて使用される核粒子の粒径は、0.05〜9.0μmの範
囲内にあることが好ましく、さらに粒度分布の揃った粒
子を使用することが好ましい。Examples of the core particles used in the present invention include metal oxide particles, metal hydroxide particles, and resin particles. These core particles can be used alone or in combination. When the core particles are metal oxide particles or metal hydroxide particles, the metal alkoxide to be added may be a metal alkoxide having the same kind of metal element as the core particles, or a metal alkoxide having a different element. It doesn't matter. The particle size of the core particles used in the present invention is preferably in the range of 0.05 to 9.0 μm, and more preferably particles having a uniform particle size distribution are used.
なお、本発明において、核粒子としては、金属アルコ
キシドを上述のようなアルコール溶媒中で加水分解して
0.2〜0.3μmの粒子を得る一般の方法によって製造され
た粒子を使用することもできる。この方法によって得ら
れる核粒子は、製造段階で核粒子が既にアルコール溶媒
中に良好に分散しているので新たに液中に分散させる必
要がなく、本発明においては非常に好ましく使用するこ
とができる。さらに本発明の方法によって製造された球
状酸化物粒子を核粒子として使用することもできる。In the present invention, as the core particles, the metal alkoxide is hydrolyzed in the alcohol solvent as described above.
Particles produced by a general method for obtaining particles of 0.2 to 0.3 μm can also be used. The core particles obtained by this method do not need to be newly dispersed in a liquid because the core particles are already well dispersed in the alcohol solvent at the production stage, and can be used very preferably in the present invention. . Further, spherical oxide particles produced by the method of the present invention can be used as core particles.
このようにして得られた球状酸化物粒子の標準偏差
(SD)は、通常0.01〜0.20μmの範囲内にある。さらに
後述する式により算出される均一係数(CV)は、通常は
1.0〜2.0の範囲内にある。The standard deviation (SD) of the spherical oxide particles thus obtained is usually in the range of 0.01 to 0.20 μm. Further, the uniformity coefficient (CV) calculated by the equation described below is usually
It is in the range of 1.0 to 2.0.
さらに本発明に係る製造方法によって得られた球状酸
化物粒子は、凝集率が4.0%以下であり、非常に凝集し
にくいとの特性を有している。Further, the spherical oxide particles obtained by the production method according to the present invention have an agglomeration ratio of 4.0% or less, and have a characteristic that they are extremely difficult to agglomerate.
発明の効果 本発明に係る球状粒子の製造方法によれば、球状酸化
物粒子を、核粒子が分散した分散液中で保護コロイドの
存在下に、金属アルコキシドを加水分解し、その加水分
解生成物を該核粒子に沈着させて粒子成長させることに
より製造しているので、得られる球状粒子の凝集が少な
く、均一な粒径を有する高純度の球状酸化物粒子を効率
よく製造することができる。Effect of the Invention According to the method for producing spherical particles according to the present invention, spherical oxide particles, in the presence of a protective colloid in a dispersion in which core particles are dispersed, hydrolyze a metal alkoxide, and the hydrolysis product Is deposited on the core particles to grow the particles, so that high-purity spherical oxide particles having a uniform particle size and less aggregation of the resulting spherical particles can be efficiently produced.
以下本発明を実施例によりさらに詳しく説明するが、
本発明はこれら実施例に限定されるものではない。Hereinafter, the present invention will be described in more detail with reference to Examples.
The present invention is not limited to these examples.
実施例1 エタノール351gに水5.5gと28%アンモニア水78gとを
混合したのち、撹拌しながらこの混合液の液温を15℃に
保持し、次いで28%エチルシリケート14.5gをエタノー
ル351gで希釈した液を前記混合液に加えた。さらに2時
間撹拌を続けて平均粒径0.35μmの核粒子が分散した核
粒子分散液Iを得た。Example 1 After mixing 5.5 g of water and 78 g of 28% ammonia water in 351 g of ethanol, the mixture was kept at 15 ° C. while stirring, and then 14.5 g of 28% ethyl silicate was diluted with 351 g of ethanol. The liquid was added to the mixture. Stirring was further continued for 2 hours to obtain a core particle dispersion I in which core particles having an average particle size of 0.35 μm were dispersed.
撹拌下、液温を35℃、そして液のpH値を12.5に保持し
た核粒子分散液I 457gに、エタノール362gと水706gと28
%アンモニア水579gとゼラチン0.3gとの混合液、およ
び、28%エチルシリケート1537gをエタノール362gで希
釈した液を、同時に19時間かけ、反応中の液のpH値を1
1.8に維持しながら徐々に添加して加水分解反応を行な
い、核粒子上に加水分解物が沈着して成長した球状酸化
物粒子が分散した液を得た。Under stirring, 457 g of ethanol, 706 g of water and 28 g of water were added to 457 g of the nuclear particle dispersion I having a liquid temperature of 35 ° C. and a pH of 12.5.
A mixture of 579 g of aqueous ammonia solution and 0.3 g of gelatin and a liquid obtained by diluting 1537 g of 28% ethyl silicate with 362 g of ethanol were simultaneously applied for 19 hours, and the pH value of the liquid during the reaction was raised to 1
A hydrolysis reaction was carried out by gradually adding while maintaining at 1.8, to obtain a liquid in which spherical oxide particles in which the hydrolyzate was deposited and grown on the core particles were dispersed.
実施例2 実施例1で得られた球状酸化物粒子が分散した液2499
gにエタノール2696gと水20gと28%アンモニア水538gと
を添加して混合したのち、撹拌しながら液温を35℃、そ
してpH値を12.4に保持して核粒子分散液IIを得た。Example 2 Liquid 2499 in which the spherical oxide particles obtained in Example 1 were dispersed
After adding and mixing 2696 g of ethanol, 20 g of water, and 538 g of 28% aqueous ammonia to g, the liquid temperature was maintained at 35 ° C. and the pH value was maintained at 12.4 with stirring to obtain a nuclear particle dispersion liquid II.
この核粒子分散液IIに、エタノール191gと水501gと28
%アンモニア水305gとゼラチン6.8gとの混合液、およ
び、28%エチルシリケート810gをエタノール191gで希釈
した液を同時に15時間かけ、反応中の液のpH値を12.0に
維持しながら徐々に添加して加水分解反応を行ない、核
粒子上に加水分解物が沈着して成長した球状酸化物粒子
が分散した液を得た。191 g of ethanol, 501 g of water and 28
A mixture of 305 g of aqueous ammonia and 6.8 g of gelatin and a solution of 810 g of 28% ethyl silicate diluted with 191 g of ethanol were simultaneously added over 15 hours, and gradually added while maintaining the pH value of the solution during the reaction at 12.0. A hydrolysis reaction was carried out to obtain a liquid in which the hydrolyzate was deposited on the core particles and the spherical oxide particles that grew were dispersed.
実施例3 実施例2で得られた球状酸化物粒子が分散した液を遠
心分離し、上澄み液を捨てて、残った沈澱物に水を加え
て全量を1527gとし充分撹拌した。この液から832g取
り、これにエタノール3697gと水784gと28%アンモニア
水924gとを加えて混合したのち、撹拌しながら液温を65
℃、そして液のpH値を12.4に保持して核粒子分散液III
を得た。Example 3 A liquid in which the spherical oxide particles obtained in Example 2 were dispersed was centrifuged, the supernatant was discarded, and water was added to the remaining precipitate to make a total amount of 1527 g, followed by sufficient stirring. Take 832 g of this solution, add 3697 g of ethanol, 784 g of water, and 924 g of 28% aqueous ammonia and mix them.
° C, and the pH value of the liquid is maintained at 12.4, and the nuclear particle dispersion liquid III is maintained.
I got
この核粒子分散液IIIに、エタノール151gと水751gと2
8%アンモニア水962gとゼラチン5.0gとの混合液、およ
び、28%エチルシリケート641gをエタノール151gで希釈
した液を同時に15時間かけ、反応液のpH値を11.9に維持
しながら徐々に添加して加水分解反応を行ない、核粒子
上に加水分解物が沈着して成長した球状酸化物粒子が分
散した液を得た。To this core particle dispersion III, 151 g of ethanol, 751 g of water and 2
A mixture of 962 g of 8% aqueous ammonia and 5.0 g of gelatin and a solution obtained by diluting 641 g of 28% ethyl silicate with 151 g of ethanol were simultaneously added for 15 hours, and gradually added while maintaining the pH value of the reaction solution at 11.9. A hydrolysis reaction was performed to obtain a liquid in which the hydrolyzate was deposited on the core particles and the spherical oxide particles that grew were dispersed.
実施例4 実施例3で得られた球状酸化物粒子が分散した液を遠
心分離し上澄み液を捨てて、残った沈澱物に水を加えて
全量を1430gとし充分撹拌した。この液から874g取り、
これにエタノール3884gと水824gと28%アンモニア水971
gとを混合したのち、撹拌しながら液温を65℃、そして
液のpH値を12.3に保持して核粒子分散液IVを得た。Example 4 The liquid in which the spherical oxide particles obtained in Example 3 were dispersed was centrifuged, and the supernatant was discarded. Water was added to the remaining precipitate to make the total amount to 1430 g, followed by sufficient stirring. Take 874g from this liquid,
3884 g of ethanol, 824 g of water and 971 of 28% ammonia water
g, and then, while stirring, the liquid temperature was kept at 65 ° C., and the pH value of the liquid was kept at 12.3 to obtain a nuclear particle dispersion liquid IV.
この核粒子分散液IVに、エタノール124gと水888gと28
%アンモニア水789gとゼラチン16.3gとの混合液、およ
び、28%エチルシリケート526gをエタノール124gで希釈
した液を同時に13時間かけ、反応液のpH値を11.7に維持
しながら徐々に添加して球状酸化物粒子が分散した液を
得た。124 g of ethanol, 888 g of water and 28
A mixture of 789 g of aqueous ammonia 789 g and gelatin 16.3 g, and a liquid obtained by diluting 526 g of 28% ethyl silicate with 124 g of ethanol were simultaneously added for 13 hours, and gradually added while maintaining the pH value of the reaction solution at 11.7. A liquid in which oxide particles were dispersed was obtained.
実施例5 実施例4で得られた球状酸化物粒子が分散した液を遠
心分離し上澄み液を捨てて、残った沈澱物に水を加えて
全量を1363gとし充分撹拌した。この液から896g取り、
これにエタノール3983gと水845gと28%アンモニア水995
gとを混合したのち、撹拌しながら液温を65℃、そして
液のpH値を12.5に保持して核粒子分散液Vを得た。Example 5 The liquid in which the spherical oxide particles obtained in Example 4 were dispersed was centrifuged, the supernatant was discarded, and water was added to the remaining precipitate to make a total amount of 1363 g, followed by sufficient stirring. Take 896g from this liquid,
To this, 3983 g of ethanol, 845 g of water, and 995 of 28% ammonia water
After mixing, the liquid temperature was maintained at 65 ° C. and the pH value of the liquid was maintained at 12.5 with stirring to obtain a nuclear particle dispersion liquid V.
この核粒子分散液Vに、エタノール110gと水1174gと2
8%アンモニア水699gおよびゼラチン26.1gとの混合液
と、28%エチルシリケート466gをエタノール110gで希釈
した液を同時に12時間かけ、反応中のpH値を11.5に維持
しながら徐々に添加して加水分解反応を行ない、核粒子
上に加水分解物が沈着して成長した球状酸化物粒子が分
散した液を得た。110 g of ethanol, 1174 g of water, 2
A mixture of 699 g of 8% aqueous ammonia and 26.1 g of gelatin and a solution obtained by diluting 466 g of 28% ethyl silicate with 110 g of ethanol were simultaneously added for 12 hours, and gradually added while maintaining the pH value at 11.5 during the reaction. A decomposition reaction was performed to obtain a liquid in which spherical oxide particles that grew by depositing a hydrolyzate on the core particles were dispersed.
実施例6 核粒子分散液Iに添加するエタノール362gと水706gと
28%アンモニア水579gとゼラチン0.3gとの混合液を、エ
タノール362gと水706gと28%アンモニア水579gおよびポ
リビニルアルコール0.43gとの混合液に代えた以外は、
実施例1と同様にして球状酸化物粒子が分散した液を得
た。Example 6 362 g of ethanol and 706 g of water added to the core particle dispersion I
Except that the mixture of 579 g of 28% aqueous ammonia and 0.3 g of gelatin was replaced with a mixture of 362 g of ethanol, 706 g of water, 579 g of 28% aqueous ammonia and 0.43 g of polyvinyl alcohol,
A liquid in which spherical oxide particles were dispersed was obtained in the same manner as in Example 1.
実施例7 核粒子分散液IIに添加するエタノール191gと水501gと
28%アンモニア水305gとゼラチン6.8gとの混合液を、エ
タノール191gと水519gと28%アンモニア水305gおよびポ
リビニルアルコール6.8gとの混合液に代えた以外は、実
施例2と同様にして球状酸化物粒子が分散した液を得
た。Example 7 191 g of ethanol and 501 g of water added to the nuclear particle dispersion liquid II
Spherical oxidation was performed in the same manner as in Example 2 except that the mixture of 305 g of 28% aqueous ammonia and 6.8 g of gelatin was replaced with a mixture of 191 g of ethanol, 519 g of water, 305 g of 28% aqueous ammonia, and 6.8 g of polyvinyl alcohol. A liquid in which the material particles were dispersed was obtained.
実施例8 核粒子分散液IIIに添加するエタノール151gと水751g
と28%アンモニア水962gとゼラチン5.0gとの混合液を、
エタノール151gと水764gと28%アンモニア水962gおよび
ポリビニルアルコール5.0gとの混合液に代えた以外は、
実施例3と同様にして球状酸化物粒子が分散した液を得
た。Example 8 151 g of ethanol and 751 g of water added to the core particle dispersion liquid III
And a mixture of 962 g of 28% aqueous ammonia and 5.0 g of gelatin,
Except that a mixture of 151 g of ethanol, 764 g of water, 962 g of 28% ammonia water and 5.0 g of polyvinyl alcohol was used.
In the same manner as in Example 3, a liquid in which spherical oxide particles were dispersed was obtained.
比較例1 核粒子分散液Iに添加するエタノール362gと水706gと
28%アンモニア水579gとゼラチン0.3gとの混合液を、エ
タノール362gと水706gと28%アンモニア水579gとの混合
液に代えた以外は、実施例1と同様にして球状酸化物粒
子が分散した液を得た。Comparative Example 1 362 g of ethanol and 706 g of water added to the core particle dispersion I
Spherical oxide particles were dispersed in the same manner as in Example 1 except that the mixture of 579 g of 28% aqueous ammonia and 0.3 g of gelatin was replaced with a mixture of 362 g of ethanol, 706 g of water, and 579 g of 28% aqueous ammonia. A liquid was obtained.
実施例および比較例によって得られた球状酸化物粒子
について、以下の評価を行なった。The following evaluations were performed on the spherical oxide particles obtained in Examples and Comparative Examples.
(1) 平均粒径(Dp,μm):走査型電子顕微鏡の顕
微鏡写真により測定した。(1) Average particle size (Dp, μm): Measured by a scanning electron microscope photomicrograph.
(2) 標準偏差(SD,μm):1と同様にして算出し
た。(2) Standard deviation (SD, μm): Calculated in the same manner as 1.
(3) 均一係数(Cv):次式によりCvを求めた。(3) Uniformity coefficient (Cv): Cv was determined by the following equation.
Cv=(SD/Dp)×100 (4) 凝集率:走査型電子顕微鏡の顕微鏡写真の球状
酸化物粒子400個について、凝集している球状酸化物粒
子の個数の総数400個に対する百分率を凝集率とした。Cv = (SD / Dp) × 100 (4) Aggregation ratio: For 400 spherical oxide particles in a scanning electron microscope photo, the percentage of the total number of aggregated spherical oxide particles of 400 is referred to as the aggregation ratio. And
結果を表1に示す。 Table 1 shows the results.
Claims (1)
ドの存在下に、金属アルコキシドを加水分解し、該加水
分解生成物を該核粒子に沈着させて核粒子を成長させる
ことを特徴とする球状酸化物粒子の製造方法。The present invention is characterized in that a metal alkoxide is hydrolyzed in a dispersion in which core particles are dispersed in the presence of a protective colloid, and the hydrolysis product is deposited on the core particles to grow the core particles. A method for producing spherical oxide particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63245386A JP2728271B2 (en) | 1988-09-29 | 1988-09-29 | Method for producing spherical oxide particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63245386A JP2728271B2 (en) | 1988-09-29 | 1988-09-29 | Method for producing spherical oxide particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0292810A JPH0292810A (en) | 1990-04-03 |
JP2728271B2 true JP2728271B2 (en) | 1998-03-18 |
Family
ID=17132888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63245386A Expired - Lifetime JP2728271B2 (en) | 1988-09-29 | 1988-09-29 | Method for producing spherical oxide particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2728271B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992006403A1 (en) * | 1990-10-02 | 1992-04-16 | Catalysts & Chemicals Industries Co., Ltd. | Liquid crystal display device |
US7482382B2 (en) * | 2004-05-19 | 2009-01-27 | The Texas A&M University System | Process for preparing nano-sized metal oxide particles |
JP5201655B2 (en) | 2006-10-05 | 2013-06-05 | 独立行政法人産業技術総合研究所 | Method for producing core-shell type metal oxide fine particle dispersion and dispersion thereof |
JP5077941B2 (en) | 2006-10-10 | 2012-11-21 | 独立行政法人産業技術総合研究所 | Core-shell type cerium oxide fine particles or dispersion containing the same and method for producing them |
JP5392697B2 (en) | 2008-02-07 | 2014-01-22 | 独立行政法人産業技術総合研究所 | Core-shell type zinc oxide fine particles or dispersion containing the same, their production method and use |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61220726A (en) * | 1985-03-27 | 1986-10-01 | Ngk Spark Plug Co Ltd | Granulation method for powdered inorganic material |
JPS6389408A (en) * | 1986-10-02 | 1988-04-20 | Catalysts & Chem Ind Co Ltd | Production of black particles |
JPS62275005A (en) * | 1986-02-12 | 1987-11-30 | Catalysts & Chem Ind Co Ltd | Production of monodisperse particle |
-
1988
- 1988-09-29 JP JP63245386A patent/JP2728271B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0292810A (en) | 1990-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11504311A (en) | Method for producing weakly agglomerated nanoscalar particles | |
JPH0816003B2 (en) | Method for producing inorganic oxide | |
JP2728271B2 (en) | Method for producing spherical oxide particles | |
JP3364261B2 (en) | Method for producing metal oxide fine particles | |
JP4493320B2 (en) | Method for producing silica sol and silica sol | |
JPH0920903A (en) | Production of monodisperse gold grain powder | |
CN110947979B (en) | A method for solvothermal synthesis of ultrafine single crystal nickel powder | |
JPH0825747B2 (en) | Magnetite particles and method for producing the same | |
JP2880173B2 (en) | Method for producing particles | |
CN109879909B (en) | Preparation method of dialkyl phosphinate with large particle size | |
JP3746301B2 (en) | Method for producing spherical silica particles | |
CN112846213B (en) | Preparation method of low-oxygen high-dispersion nano spherical cobalt powder | |
JPS5855204B2 (en) | Method for producing platinum powder for printing paste | |
JP2849799B2 (en) | Stabilized niobium oxide sol and method for producing the same | |
JPS62275005A (en) | Production of monodisperse particle | |
JPH03218915A (en) | Production of silica powder | |
JPH0351644B2 (en) | ||
JP3051322B2 (en) | Niobium oxide sol | |
JPS6291421A (en) | Method for manufacturing zirconium oxide fine particles | |
KR100435427B1 (en) | Method for producing spherical barium hydroxide titanate fine particles | |
JPS62226816A (en) | Production of fine zirconium oxide particle | |
KR100450223B1 (en) | Preparation method of monosized bariumtitanate particles | |
JP2571222B2 (en) | Method for producing conductive filler | |
JP3556277B2 (en) | Method for producing metal oxide particles | |
CN115945696A (en) | A kind of front silver silver powder prepared based on solvothermal method and its method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071212 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081212 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081212 Year of fee payment: 11 |