JP2727886B2 - Horizontal continuous casting method - Google Patents
Horizontal continuous casting methodInfo
- Publication number
- JP2727886B2 JP2727886B2 JP23044692A JP23044692A JP2727886B2 JP 2727886 B2 JP2727886 B2 JP 2727886B2 JP 23044692 A JP23044692 A JP 23044692A JP 23044692 A JP23044692 A JP 23044692A JP 2727886 B2 JP2727886 B2 JP 2727886B2
- Authority
- JP
- Japan
- Prior art keywords
- slab
- center
- continuous casting
- stage
- horizontal continuous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Continuous Casting (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、ビレットまたはブル
ームの水平連続鋳造方法、特に、炭素鋼、低合金鋼、ス
テンレス鋼、高合金鋼、超合金等の例えば熱間押出し用
ブルームまたはビレットを水平連続鋳造する際に、鋳片
の中心部に発生するキャビティやポロシティの存在範囲
および大きさを小さく抑えることが可能な水平連続鋳造
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a horizontal continuous casting method for billets or blooms, and more particularly to a method for horizontally casting a bloom or billet for hot extrusion of carbon steel, low alloy steel, stainless steel, high alloy steel, superalloy or the like. The present invention relates to a horizontal continuous casting method capable of suppressing the existence range and size of cavities and porosity generated at the center of a slab during continuous casting.
【0002】[0002]
【従来の技術】一般にユジーン・セジュルネ法等の熱間
押出し製管法においては、製管の際に中央部が穿孔され
るので穿孔径よりキャビティの存在径が小さい場合に
は、キャビティは穿孔によって除去され品質上の問題は
生じない。しかし、キャビティの存在径が穿孔径より大
きい場合、そのまま製管すると管内面疵の原因となり、
管の品質低下を招く。一方、管内面疵の発生を防止する
ために、穿孔時に穿孔径を大きくしてポロシティを除去
すると穿孔分だけ歩留りロスを生じ、経済性が悪くな
る。2. Description of the Related Art Generally, in a hot extrusion pipe making method such as the Ugine-Sejournet method, the center portion is drilled at the time of pipe making. Removed, no quality problem. However, if the existing diameter of the cavity is larger than the diameter of the perforation, if the pipe is made as it is, it will cause flaws on the inner surface of the pipe,
This leads to poor quality of the tube. On the other hand, if the porosity is removed by increasing the diameter of the hole at the time of drilling in order to prevent the occurrence of a flaw on the inner surface of the pipe, the yield loss is caused by the amount of the hole and the economic efficiency is deteriorated.
【0003】水平連続鋳造設備は、垂直型や湾曲型の連
続鋳造設備と比較して設備の高さが低く、大がかりな鋳
片支持機構が不要であるため、設備費が少なくてすみ、
かつ保守点検が容易である等の利点がある。このため連
続鋳造化が遅れていた小ロット、多品種のステンレス鋼
などを対象として実用化が図られてきた。また、水平連
続鋳造では特に高温での曲げや矯正を必要としないため
に、この方法による連続鋳造化は、熱間での割れ感受性
の強い高合金鋼やNi基超合金等について近年さらに推進
されようとしている。[0003] Horizontal continuous casting equipment is lower in height than vertical and curved continuous casting equipment, and does not require a large slab support mechanism.
There are also advantages such as easy maintenance and inspection. For this reason, practical use has been attempted for small lots, various kinds of stainless steel, etc., for which continuous casting has been delayed. In addition, since continuous continuous casting does not require bending or straightening at high temperatures, continuous casting by this method has been further promoted in recent years for high alloy steels and Ni-based superalloys that are highly sensitive to hot cracking. I am trying to do.
【0004】しかし、水平連続鋳造においては前記のよ
うに、設備の高さが低いので鋳片の最終凝固位置近傍の
溶鋼静圧が小さくなるため、鋳片の中心部に凝固収縮に
よるひけ巣が発生し易く、中心部にキャビティが残存し
がちである。この中心部のキャビティは、鋳片の断面積
または厚さ、あるいは鋳造速度が大きくなるほど発生し
易くなり、キャビティの存在径も大きくなる傾向にあ
る。またステンレス鋼、高合金鋼、Ni基超合金等のよう
に、一般鋼と比較して低融点でかつ固液共存相の温度域
が広いものは、キャビティがさらに発生し易くなる。上
記の問題点を解決するために、特開昭57−75258 号公
報には、リニア型電磁攪拌装置を少なくとも2段設置
し、クレータエンド側に等軸晶片を移動させることによ
ってセンターポロシティを防止する方法が提案されてい
る。However, in horizontal continuous casting, as described above, since the height of the equipment is low, the static pressure of molten steel in the vicinity of the final solidification position of the slab becomes small. It is easy to occur and the cavity tends to remain in the center. The cavity at the center tends to be generated as the sectional area or thickness of the slab or the casting speed increases, and the existing diameter of the cavity tends to increase. In addition, such as stainless steel, high alloy steel, and Ni-based superalloy, which have a lower melting point and a wider solid-liquid coexisting phase temperature range than general steel, are more likely to generate cavities. In order to solve the above-mentioned problems, Japanese Patent Laid-Open No. 57-75258 discloses that at least two stages of a linear electromagnetic stirrer are installed and a center porosity is prevented by moving an equiaxed crystal piece to a crater end side. A method has been proposed.
【0005】また、特開昭59−133957号公報には、少
なくとも2つの回転磁界型電磁攪拌装置を鋳片引抜速度
と第1段電磁攪拌装置の後端部における液芯値とから定
まる一定間隔内に直列に配置して、未凝固溶湯を攪拌す
ることにより等軸晶核の沈降を防止し、鋳片中心部のミ
クロキャビティを改善する方法が提案されている。これ
らの方法はいずれも、未凝固溶湯中の等軸晶の核または
等軸晶片を電磁攪拌により分散させようとするものであ
る。しかしながら、かかる従来法にあっても鋳片中心部
のポロシティ、キャビティの抑制は十分ではなかった。Japanese Patent Application Laid-Open No. 59-133957 discloses that at least two rotating magnetic field type electromagnetic stirrers are provided with a fixed interval determined from a slab drawing speed and a liquid core value at the rear end of the first stage electromagnetic stirrer. A method has been proposed in which sedimentation of equiaxed crystal nuclei is prevented by agitating an unsolidified molten metal, and the microcavity in the center of a slab is improved. All of these methods attempt to disperse equiaxed crystal nuclei or equiaxed crystal pieces in the unsolidified molten metal by electromagnetic stirring. However, even in such a conventional method, the porosity and the cavity at the center of the slab were not sufficiently suppressed.
【0006】[0006]
【発明が解決しようとする課題】このような従来技術の
問題点を解決すべく、本出願人は、特願平3−232
660号として3段の電磁攪拌を行い、鋳片中心部のポ
ロシティ、キャビティの形成を抑制する方法を提案した
が、その後も研究開発を続けていたところ、さらに次の
ような解決すべき課題が見い出された。In order to solve such problems of the prior art, the present applicant has filed Japanese Patent Application No. 3-232.
As No. 660, a method was proposed in which three-stage electromagnetic stirring was performed to suppress the formation of porosity and cavities in the center of the slab. Was found.
【0007】(1) 生産性向上のために鋳造速度を増
加した場合、の方法のように3段で電磁攪拌を実施し
た場合、その効果は不充分で、センターポロシティまた
はキャビティの存在径が大きくなり、穿孔径を大きくと
らなければならないという問題が生じた。これは、鋳造
速度が大きくなることにより未凝固領域が長くなり、等
軸晶のブリジングの機会が大きくなったため凝固末期で
の電磁攪拌の効果が相対的に弱くなったことによる。(1) In the case where the casting speed is increased to improve the productivity, when the electromagnetic stirring is performed in three stages as in the method described above, the effect is insufficient and the center porosity or the existing diameter of the cavity is large. Therefore, there is a problem that the diameter of the perforation must be increased. This is because the unsolidified region becomes longer as the casting speed increases, and the chance of equiaxed crystal bridging increases, so that the effect of electromagnetic stirring in the final stage of solidification becomes relatively weak.
【0008】(2) さらに、このブリジングを低減するた
めに凝固末期での攪拌強度を大きくすると、センターポ
ロシティまたはキャビティの低減は見られるものの、今
度は、強い攪拌のために、中心部方向への成分の偏析が
著しくなり、径方向の成分の不均一を招くこととなっ
た。(2) Further, when the stirring intensity at the end of solidification is increased to reduce the bridging, although the center porosity or the cavity is reduced, this time, due to the strong stirring, the center porosity or the cavity is reduced. The segregation of the components became remarkable, resulting in non-uniform components in the radial direction.
【0009】ここに、この発明の目的は、鋳片中心方向
への偏析の問題がなく、センターポロシティおよびキャ
ビティの問題も見られない水平連続鋳造方法を提供する
ことである。Here, an object of the present invention is to provide a horizontal continuous casting method which does not have the problem of segregation in the direction of the center of the slab and has no problems of center porosity and cavity.
【0010】[0010]
【課題を解決するための手段】本発明者は、上記課題を
解決するために種々実験研究を行った結果、以下の手段
によれば解決が可能であることを見い出した。 (1) 1段目の電磁攪拌を鋳型内の凝固開始位置に相当す
る位置で実施する、 (2) 2段目の電磁攪拌は鋳型出口と鋳片の中心の固相率
が0となる位置との間で実施する、さらに (3) 以上の電磁攪拌の下流側で、鋳片の中心部が凝固を
開始した時点から、鋳片の中心部が完全に凝固を終了す
る間に鋳片表面を強冷却する、 (4) 以上の方法により、鋳片中心方向への偏析の問題が
なくセンターポロシティまたはキャビティを低減するこ
とが可能である。The present inventor has conducted various experimental studies to solve the above-mentioned problems, and as a result, has found that the following means can solve the problems. (1) The first-stage electromagnetic stirring is performed at a position corresponding to the solidification start position in the mold. (2) The second-stage electromagnetic stirring is performed at a position where the solid phase ratio between the mold outlet and the center of the slab becomes zero. (3) On the downstream side of the electromagnetic stirring described above, from the time when the center of the slab starts to solidify, the time when the center of the slab completely completes solidification, (4) By the above method, the center porosity or the cavity can be reduced without the problem of segregation toward the center of the slab.
【0011】ここに、この発明の要旨とするところは、
水平連続鋳造によってビレットまたはブルームを製造す
る際に、少なくとも2段の回転磁界型電磁攪拌装置を直
列に配置し、1段目の電磁攪拌は鋳型内の凝固開始位置
に相当する位置で行い、2段目の電磁攪拌は鋳型出口と
鋳片中心の固相率が0を超えない位置との間で行い、か
つ、これらの電磁攪拌装置の設置位置の下流側であって
鋳片の中心部の固相率が0を超える時点から鋳片の中心
部の固相率が1.0となるまでの間に、鋳片表面に凝固
収縮量を補償する圧縮力を加えることのできる強冷却を
鋳片表面に行うことを特徴とする水平連続鋳造方法であ
る。Here, the gist of the present invention is as follows.
When producing a billet or bloom by horizontal continuous casting, at least two stages of a rotating magnetic field type electromagnetic stirrer are arranged in series, and the first stage of electromagnetic stirring is performed at a position corresponding to a solidification start position in a mold. The electromagnetic stirring of the stage is performed between the mold outlet and a position where the solid phase ratio at the center of the slab does not exceed 0, and at the downstream side of the installation position of these electromagnetic stirring devices and at the center of the slab. Solidified on the slab surface from the point when the solid phase ratio exceeds 0 until the solid phase ratio at the center of the slab becomes 1.0
Strong cooling that can apply compression force to compensate for shrinkage
A horizontal continuous casting method characterized in that the method is performed on a slab surface .
【0012】本発明において、「固相率」というのは、
固液共存相である溶湯のある領域中の全容積に占める固
相の体積比率をいう。固相率と温度とは1対1の対応関
係があり、液相温度以上では固相率は0、固相温度以下
では固相率は1である。この固相率の分布は、鋳片内の
温度分布を実測することで、または伝熱計算で求めるこ
とによって算出できる。In the present invention, the “solid fraction” is defined as
It refers to the volume ratio of the solid phase to the total volume in a certain region of the molten metal that is the solid-liquid coexisting phase. There is a one-to-one correspondence between the solid phase ratio and the temperature. The solid phase ratio is 0 above the liquidus temperature, and 1 below the solidus temperature. The distribution of the solid fraction can be calculated by actually measuring the temperature distribution in the slab or by calculating the heat transfer.
【0013】[0013]
【作用】次に、添付図面を参照して、この発明の作用に
ついてさらに詳述する。図1は、この発明において使用
する水平連続鋳造設備の概略説明図である。図中、一旦
タンディッシュ4に蓄えられた溶湯10は、鋳型5、二次
冷却帯6を経て冷却され、凝固殻9を成長させ、鋳片8
となって、末期冷却装置3を経て、ピンチロール (図示
せず) で水平方向( 図面向かって右手方向) に引き抜か
れる。Next, the operation of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a schematic explanatory view of a horizontal continuous casting facility used in the present invention. In the figure, a molten metal 10 once stored in a tundish 4 is cooled through a mold 5 and a secondary cooling zone 6 so that a solidified shell 9 is grown and a slab 8 is formed.
Then, it is pulled out horizontally by the pinch roll (not shown) through the terminal-stage cooling device 3 (the right-hand direction in the drawing).
【0014】この発明にしたがって、直径265 mm×長さ
300mm の鋳型を用いて鋳造速度1.2m/minでステンレス鋼
を鋳造した例を以下説明する。この発明によれば、第1
段目の鋳型内の電磁攪拌装置1と、第2段目の電磁攪拌
装置2と、末期冷却装置3とがそれぞれ所定位置に設け
られている。換言すれば、各電磁攪拌装置および末期冷
却装置の位置を基準に溶湯および鋳片の冷却を制御する
のである。According to the invention, a diameter of 265 mm × length
An example of casting stainless steel at a casting speed of 1.2 m / min using a 300 mm mold will be described below. According to the present invention, the first
The electromagnetic stirrer 1 in the mold at the second stage, the electromagnetic stirrer 2 at the second stage, and the terminal cooling device 3 are provided at predetermined positions. In other words, the cooling of the molten metal and the slab is controlled based on the positions of the electromagnetic stirring devices and the terminal cooling devices.
【0015】なお、これらの電磁攪拌装置の仕様は特願
平3−232660号に示したものとほぼ同様であって、例え
ば、後述の表1にまとめて示す通りである。電磁攪拌装
置としては慣用のものを適宜使用すればよく、所要攪拌
能力を有する限り、特に制限されない。The specifications of these electromagnetic stirrers are almost the same as those described in Japanese Patent Application No. 3-232660, for example, as shown in Table 1 below. As the electromagnetic stirrer, a commonly-used electromagnetic stirrer may be appropriately used and is not particularly limited as long as it has a required stirring ability.
【0016】1段目、2段目の電磁攪拌について、それ
を行う位置をこの発明において規定する理由は次のとお
りである。まず、第1段の電磁攪拌装置1はその電磁攪
拌有効長さが200 mmであり、鋳型5内にあって初期の凝
固殻9が生成し始める位置の溶湯10を充分に攪拌できる
ように鋳型5の外周近傍に配置される。The reason why the position of the first and second stages of electromagnetic stirring is defined in the present invention is as follows. First, the first-stage electromagnetic stirrer 1 has an effective electromagnetic stirring length of 200 mm, and a mold so that the molten metal 10 in the mold 5 at a position where the initial solidified shell 9 starts to be formed can be sufficiently stirred. 5 is arranged near the outer periphery.
【0017】このように、鋳型5内の凝固開始位置に相
当する位置で電磁攪拌を実施する理由は、冷却速度が最
も速い時期に凝固する初期の凝固殻9の前面に溶湯10の
攪拌作用を及ぼすことにより、微細な等軸晶の核を多数
溶湯10内に分散遊離させることができるからである。The reason why the electromagnetic stirring is performed at the position corresponding to the solidification start position in the mold 5 is that the stirring action of the molten metal 10 is performed on the front surface of the solidified shell 9 which solidifies at the time when the cooling rate is the fastest. This is because a large number of fine equiaxed crystal nuclei can be dispersed and released in the molten metal 10 by applying.
【0018】なお、第1段の電磁攪拌の強度は、この例
では例えば中心磁束密度が1200ガウス、磁場回転数が3
Hzの回転磁界を印加して得られるものであるが、これよ
り大きい磁束密度で回転数をあまり大きくすると負偏析
が凝固界面に生じ、鋳片の均一性を阻害するので望まし
くない。次に、第2段の電磁攪拌装置2は、その電磁攪
拌有効長さが300 mmであり、電磁攪拌装置2の位置では
鋳片中心の固相率(fs)が0であり、鋳片中心には液相だ
けの溶湯が存在する。In this example, the intensity of the electromagnetic stirring at the first stage is, for example, 1200 gauss for the center magnetic flux density and 3 for the magnetic field rotation speed.
It is obtained by applying a rotating magnetic field of Hz, but if the rotation speed is too high with a magnetic flux density higher than this, negative segregation will occur at the solidification interface, which will hinder the uniformity of the slab, which is not desirable. Next, the electromagnetic stirring device 2 of the second stage has an effective electromagnetic stirring length of 300 mm, and at the position of the electromagnetic stirring device 2, the solid phase ratio (fs) at the center of the slab is 0; Has a liquid phase-only melt.
【0019】このように第2段の電磁攪拌位置を鋳型出
口と鋳片中心の固相率が0を超えない位置との間に設定
する理由は、この間で攪拌を行うことにより未凝固溶湯
のスーパーヒートを均一化させて、溶湯10内に分散遊離
した等軸晶が成長して粒径が増大するのを防止するとと
もに凝固殻9の前面で新たな等軸晶の核を発生させて微
細な等軸晶の増加を図り、さらに等軸晶の沈降を防止す
ることができるからである。The reason why the electromagnetic stirring position of the second stage is set between the exit of the mold and the position where the solid phase ratio at the center of the slab does not exceed 0 is that the stirring is performed during this period to remove the unsolidified molten metal. The superheat is made uniform to prevent the growth of the equiaxed crystals dispersed and liberated in the molten metal 10 to increase the particle size, and to generate new equiaxed crystal nuclei on the front surface of the solidified shell 9 to produce fine particles. This is because the number of equiaxed crystals can be increased and sedimentation of equiaxed crystals can be prevented.
【0020】一方、鋳片8の中心の固相率が0を超えた
状態では、溶湯10のスーパーヒートが利用できなくな
り、流動抵抗が急激に大きくなるので、上述のような効
果は期待できなくなる。On the other hand, when the solid fraction at the center of the slab 8 exceeds 0, the superheat of the molten metal 10 cannot be used and the flow resistance rapidly increases, so that the above-mentioned effects cannot be expected. .
【0021】鋳片8の中心部が凝固を開始した時点か
ら、鋳片8の中心部が完全に凝固を終了する間に、鋳片
表面を冷却するために設けた冷却水スプレー装置である
末期冷却装置3が設けられている。図示例では、この末
期冷却装置3は、鋳型入口から8.5 〜22mの間に設置さ
れている。ここでの鋳造条件において、メニスカスから
8.5 mの位置が鋳片の中心部が凝固を開始する位置に相
当し、22mの位置が鋳片の中心部が凝固を終了する位置
に相当する。From the time when the center of the slab 8 starts to solidify, to the time when the center of the slab 8 completes solidification, a final stage of a cooling water spray device provided for cooling the slab surface. A cooling device 3 is provided. In the illustrated example, the last-stage cooling device 3 is installed between 8.5 and 22 m from the mold inlet. In the casting conditions here, from the meniscus
The position of 8.5 m corresponds to the position where the center of the slab starts solidification, and the position of 22 m corresponds to the position where the center of the slab ends solidification.
【0022】このように凝固末期において鋳片の表面を
冷却する理由は、表面を冷却することにより、表面が収
縮し、その結果鋳片の内部に圧縮力が加わり、キャビテ
ィまたはポロシティの原因となる凝固収縮量を補償する
ことができ、これらの発生を抑制することができる。末
期の電攪が等軸晶の合体によるブリジングを防止するの
に効果があるのに対し、この発明による方法では、さら
に積極的に圧縮力を加えることにより、キャビティまた
はポロシティの生成そのものを抑制しようとするもので
ある。したがって、このときの冷却能、つまりこの発明
で云う「強冷却」はそのような圧縮力を加えることがで
きる冷却能ということができ、具体的には、例えば 0.5
〜2℃/sec程度が望ましい。The reason for cooling the surface of the slab in the final stage of solidification is that the surface is shrunk by cooling the surface, and as a result, a compressive force is applied to the inside of the slab, causing a cavity or porosity. The amount of coagulation shrinkage can be compensated, and the occurrence thereof can be suppressed. In contrast to the latter stage, which is effective in preventing bridging due to the coalescence of equiaxed crystals, the method according to the present invention is intended to suppress the formation of cavities or porosity itself by applying more compressive force. It is assumed that. Therefore, the cooling capacity at this time, that is, “strong cooling” in the present invention can be said to be a cooling capacity capable of applying such a compressive force.
~ 2 ° C / sec is desirable.
【0023】冷却の開始点を鋳片中心部の凝固が開始し
た時点とするのは、この点より鋳片中心部で凝固収縮が
開始するためであり、鋳片中心部が完全に凝固するまで
は、凝固収縮が継続されるために、その間ずっと冷却を
実施し、凝固が完了すれば冷却は不要となる。The starting point of the cooling is defined as the time when the solidification of the center of the slab starts, because the solidification shrinkage starts at the center of the slab from this point, and until the center of the slab is completely solidified. Since the solidification shrinkage is continued, cooling is performed during that time, and cooling is not required once solidification is completed.
【0024】[0024]
【実施例】次に、この発明にしたがって、図1に示す水
平連鋳造設備を使用して鋳造テストを行った。結果を比
較例のそれと対比して示す。鋳造条件としては、直径26
5 mm、長さ300 mmの鋳型を用いて、鋳造速度を0.8〜1.6
m/minの間で変更した。第1段目、第2段目の電磁攪拌
装置は表1の通りの配置、仕様とした。EXAMPLE Next, according to the present invention, a casting test was conducted using the horizontal continuous casting equipment shown in FIG. The results are shown in comparison with those of the comparative example. As casting conditions, diameter 26
Using a 5 mm, 300 mm long mold, the casting speed is 0.8-1.6
Changed between m / min. The first and second stages of the electromagnetic stirrers were arranged and specified as shown in Table 1.
【0025】末期冷却については、鋳片径、鋳造速度に
よって、鋳片中心部の凝固開始点と終了点を鋳片温度の
測定、鋲打テスト、伝熱計算等により求め、それに応じ
て冷却範囲を定めた。末期の冷却水量についても、鋳造
速度、鋳片径によって変更し、比水量で0.25l/kg-steel
とした。In the last stage cooling, the solidification start and end points at the center of the slab are obtained by measuring the slab temperature, tacking test, heat transfer calculation, etc., according to the slab diameter and casting speed. Was determined. The cooling water volume at the end of the period was also changed according to the casting speed and slab diameter, and the specific water volume was 0.25 l / kg-steel.
And
【0026】比較例としては、鋳造条件は上記と全く同
様とし、ただし末期部の冷却は実施せず、特願平3−23
2660号に示した末期電磁攪拌を行った。図2に各鋳造速
度におけるセンターポロシティまたはキャビティの存在
径の変化を本発明例と比較例と対比して示す。As a comparative example, the casting conditions were exactly the same as those described above, except that the terminal part was not cooled.
The last stage magnetic stirring shown in No. 2660 was performed. FIG. 2 shows the change of the center porosity or the existing diameter of the cavity at each casting speed in comparison with the present invention example and the comparative example.
【0027】鋳造速度の増加に伴って、センターポロシ
ティ・キャビティ存在径は増加するが、本発明法の場合
は上記存在径が小さく、鋳造速度0.8m/minにおいて18〜
23mm、鋳造速度1.6m/minにおいても23〜30mm程度と低い
値に納まっている。これに対して、比較例の場合は鋳造
速度0.8m/minにおいて28〜33mm、鋳造速度1.6m/minにお
いて46〜54mmである。従って、これらの結果からこの発
明の効果の顕著なことが理解できる。Although the diameter of the center porosity cavity increases with an increase in the casting speed, the diameter of the center porosity cavity is small in the case of the method of the present invention.
Even at 23 mm and a casting speed of 1.6 m / min, the value is as low as about 23 to 30 mm. On the other hand, in the case of the comparative example, it is 28 to 33 mm at a casting speed of 0.8 m / min, and 46 to 54 mm at a casting speed of 1.6 m / min. Therefore, it can be understood from these results that the effect of the present invention is remarkable.
【0028】[0028]
【表1】 [Table 1]
【0029】[0029]
【発明の効果】この発明によれば、水平連続鋳造の鋳片
で大きな問題となるセンターポロシティまたはキャビテ
ィの形成を抑制することができる。かつ広範な鋳造条件
においてもユジーン製管時の穿孔径よりも小さい範囲に
センターポロシティまたはキャビティの存在径をおさめ
ることができる。According to the present invention, it is possible to suppress the formation of the center porosity or the cavity, which is a serious problem in the slab of horizontal continuous casting. In addition, even under a wide range of casting conditions, the center porosity or the existing diameter of the cavity can be reduced to a range smaller than the diameter of the hole bored during the production of Eugene.
【図1】この発明を実施するための水平連続鋳造設備の
概略説明図である。FIG. 1 is a schematic explanatory view of a horizontal continuous casting facility for carrying out the present invention.
【図2】鋳造速度、鋳片径を変更した時のセンターポロ
シティまたはキャビティの存在径の変化を、この発明の
実施例と比較例とのそれぞれに対比して示すグラフであ
る。FIG. 2 is a graph showing a change in center porosity or an existing diameter of a cavity when a casting speed and a slab diameter are changed, in comparison with an example of the present invention and a comparative example.
1: 第1段電磁攪拌装置 2: 第2段電磁攪拌
装置 3: 末期冷却装置 4: タンディッシュ 5: 鋳型 6: 二次冷却帯 8: 鋳片 9: 凝固殻 10: 溶湯1: 1st stage electromagnetic stirrer 2: 2nd stage electromagnetic stirrer 3: terminal cooling unit 4: tundish 5: mold 6: secondary cooling zone 8: slab 9: solidified shell 10: molten metal
Claims (1)
ルームを製造する際に、少なくとも2段の回転磁界型電
磁攪拌装置を直列に配置し、1段目の電磁攪拌は鋳型内
の凝固開始位置に相当する位置で行い、2段目の電磁攪
拌は鋳型出口と鋳片中心の固相率が0を超えない位置と
の間で行い、かつ、これらの電磁攪拌装置の設置位置の
下流側であって鋳片の中心部の固相率が0を超える時点
から鋳片の中心部の固相率が1.0となるまでの間に、
鋳片表面に凝固収縮量を補償する圧縮力を加えることの
できる強冷却を鋳片表面に行うことを特徴とする水平連
続鋳造方法。When producing a billet or bloom by horizontal continuous casting, at least two stages of a rotating magnetic field type electromagnetic stirrer are arranged in series, and the first stage of electromagnetic stirring corresponds to a solidification start position in a mold. The second stage of electromagnetic stirring is performed between the mold outlet and the position where the solid phase ratio at the center of the slab does not exceed 0, and the casting is performed downstream of the installation position of these electromagnetic stirring devices. From the time when the solid fraction at the center of the slab exceeds 0 to the solid fraction at the center of the slab becomes 1.0,
Applying compressive force to compensate for solidification shrinkage on the slab surface
A horizontal continuous casting method, characterized in that as much cooling as possible is performed on the slab surface .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23044692A JP2727886B2 (en) | 1992-08-28 | 1992-08-28 | Horizontal continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23044692A JP2727886B2 (en) | 1992-08-28 | 1992-08-28 | Horizontal continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0671388A JPH0671388A (en) | 1994-03-15 |
JP2727886B2 true JP2727886B2 (en) | 1998-03-18 |
Family
ID=16908017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23044692A Expired - Lifetime JP2727886B2 (en) | 1992-08-28 | 1992-08-28 | Horizontal continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2727886B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007007721A (en) * | 2005-07-04 | 2007-01-18 | Furukawa Electric Co Ltd:The | Horizontal continuous casting method and horizontal continuous casting apparatus |
JP7147477B2 (en) * | 2018-10-31 | 2022-10-05 | 日本製鉄株式会社 | Continuous casting method for billet slab |
-
1992
- 1992-08-28 JP JP23044692A patent/JP2727886B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0671388A (en) | 1994-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1777023A2 (en) | Treating molten metals by moving electric arc | |
US3771584A (en) | Method for continuously casting steel billet strands to minimize the porosity and chemical segregation along the center line of the strand | |
AU2002222478A1 (en) | Treating molten metals by moving electric arc | |
JPS63199050A (en) | Pull-up continuous casting method that does not use a mold and its equipment | |
JP2727887B2 (en) | Horizontal continuous casting method | |
JP2727886B2 (en) | Horizontal continuous casting method | |
US4641704A (en) | Continuous casting method and ingot produced thereby | |
JPH0957410A (en) | Continuous casting method | |
JP2677070B2 (en) | Horizontal continuous casting method | |
CN114749616A (en) | Ingot mould for large-scale high-length-diameter ratio steel ingot and blank forming method | |
JP2004216411A (en) | Continuous casting of special molten steel | |
JP4026792B2 (en) | Billet continuous casting method | |
RU2101129C1 (en) | Method of manufacture of cast metal articles | |
JPH0531568A (en) | Plasma melting/casting method | |
JPH07214262A (en) | Center segregation prevention method for continuously cast slabs | |
Li et al. | Solidification mechanisms of melt conditioned direct-chill (mc-dc) casting | |
RU2027544C1 (en) | Method of obtaining continuously cast metal | |
JPH11192539A (en) | Continuous casting method of chromium-containing molten steel with excellent internal defect resistance | |
JPH01258801A (en) | Method for forging round shaped continuous cast billet | |
JP4469092B2 (en) | Slab with fine solidification structure | |
Lee et al. | Microstructural effects of electromagnetic stirring strength and casting speed in continuous casting of al alloy | |
JPS63123550A (en) | Continuous cast block for berylium-copper alloy and its continuous casting method | |
Kominami et al. | New billet caster for producing quality steel | |
CN110605371A (en) | Device and method for controlling solute negative segregation defects in continuous casting under magnetic stirring | |
JPH06328200A (en) | Manufacture of billet for rheo-working semi-molten metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19971111 |