JP2719502B2 - Method of manufacturing electrophotographic light-receiving member - Google Patents
Method of manufacturing electrophotographic light-receiving memberInfo
- Publication number
- JP2719502B2 JP2719502B2 JP7008907A JP890795A JP2719502B2 JP 2719502 B2 JP2719502 B2 JP 2719502B2 JP 7008907 A JP7008907 A JP 7008907A JP 890795 A JP890795 A JP 890795A JP 2719502 B2 JP2719502 B2 JP 2719502B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- layer
- drum
- atom
- deposited film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000010410 layer Substances 0.000 claims description 35
- 239000000758 substrate Substances 0.000 claims description 34
- 229910052751 metal Inorganic materials 0.000 claims description 28
- 239000002184 metal Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 13
- 125000004429 atom Chemical group 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 108091008695 photoreceptors Proteins 0.000 claims description 7
- 238000000354 decomposition reaction Methods 0.000 claims description 6
- 125000005843 halogen group Chemical group 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 230000004888 barrier function Effects 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 3
- 239000011241 protective layer Substances 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 238000004070 electrodeposition Methods 0.000 claims 1
- 229910052732 germanium Inorganic materials 0.000 claims 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical group [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims 1
- 239000011159 matrix material Substances 0.000 claims 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 28
- 238000000151 deposition Methods 0.000 description 23
- 230000008021 deposition Effects 0.000 description 23
- 230000015572 biosynthetic process Effects 0.000 description 10
- 229910018110 Se—Te Inorganic materials 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- -1 (II Group V) Chemical compound 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 208000003556 Dry Eye Syndromes Diseases 0.000 description 1
- 206010013774 Dry eye Diseases 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 241001676573 Minium Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000519995 Stachys sylvatica Species 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000004298 light response Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000004347 surface barrier Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Photoreceptors In Electrophotography (AREA)
- Chemical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、光(ここでは広義の光
で、紫外光線、可視光線、赤外光線、X線、γ線等を示
す)のような電磁波に感受性のある電子写真用光導電部
材などとして用いる電子写真光受容部材の製造方法に関
する。
【0002】
【従来の技術】像形成分野における電子写真用像形成部
材に於ける光導電層を形成する光導電材料としては、高
感度で、SN比〔光電流(Ip )/(Id )〕が高く、
照射する電磁波のスペクトル特性にマッチングした吸収
スペクトル特性を有すること、光応答性が速く、所望の
暗抵抗値を有すること、使用度において人体に対して無
公害であること等の特性が要求される。殊に、事務機と
してオフィスで使用される電子写真装置内に組込まれる
電子写真用像形成部材の場合には、上記の使用時におけ
る無公害性は重要な点である。
【0003】このような観点に立脚して最近注目されて
いる光導電材料に、水素(H)やハロゲン原子(X)等
の一価の元素でダングリングボンドが修飾されたアモル
ファスシリコン(以後a−Si(H,X)と表記する)
があり、例えば独国公開第2746967号公報、同第
2855718号公報には電子写真用像形成部材への応
用が記載されており、その優れた光導電性、耐摩耗性、
耐熱性及び大面積化が比較的容易であることから電子写
真用像形成部材への応用が期待されている。
【0004】一般に、a−Si(H,X)を含有する光
導電材料を有する電子写真用の感光体ドラムを製造する
場合には、良好な光導電特性を得るために、a−Si
(H,X)膜堆積装置内で、ドラム状金属基体を200
℃〜350℃のSe系の場合に比べて極めて高い温度に
加熱し続けるという条件でドラム状金属基体上にa−S
i(H,X)膜堆積を1〜100μの膜厚に形成してい
る。この基体の高温加熱維持は電子写真特性に優れたa
−Si系感光ドラムを製造する上で必要であり、a−S
i(H,X)膜の堆積速度を考慮すれば、この高温加熱
維持は、数時間から十数時間までに及ぶのが現状であ
る。そして、ドラム状金属基体とa−Si(H,X)膜
の熱膨張係数に差があることと、a−Si(H,X)膜
の内部応力が大きいこととから、前記のようにドラム状
金属基体を高温加熱維持するa−Si(H,X)膜の堆
積中だけでなく、堆積後外気温度まで冷却する際にも、
堆積したa−Si(H,X)膜がドラム状金属基体から
剥離することが認められることが少なくなった。
【0005】更に、電子写真用の感光ドラムとしての使
用時に使用環境温度如何によってはドラムが加熱される
ことによってもa−Si(H,X)膜が剥れる場合が少
なくはなかった。本発明者等の多くの実験によれば、a
−Si(H,X)膜の場合の膜剥れは、a−Si(H,
X)膜の膜厚が厚くなればなる程生じやすく、また従来
のSe系電子写真用感光ドラムでは膜剥れが生じない程
度のドラム状金属基体の熱変形(殊に、光導電層の形成
時に起こり易い)によっても、a−Si(H,X)系感
光体ドラムの場合には前記熱膨張係数の差とa−Si
(H,X)膜の内部応力の大きさとの理由から膜剥れが
生じる場合が少なくはなかった。a−Si(H,X)膜
の内部応力については、a−Si(H,X)膜の製造条
件(原料ガスの種類、ガス流量比、放電パワー、基体の
加熱温度、製造装置の内部構造等)によって、ある程度
は緩和することはできるが、生産性、量産性のことを考
慮すると未だ不充分である。そして、この膜剥れは、電
子写真用感光体ドラムとして使用した場合には、画像欠
陥の原因となり致命的なものである。
【0006】また、a−Si(H,X)膜の製造時に於
けるドラム状金属基体の長時間にわたる高温加熱は、上
記の膜剥れの原因となるばかりでなく、ドラム状金属基
体の熱変形をも生じさせやすく、この熱変形は、a−S
i(H,X)堆積膜の製造時の放電の不均一を引き起こ
して、これによりa−Si(H,X)堆積膜の膜厚の均
一性が失われ、画像欠陥の原因となる。
【0007】
【発明が解決しようとする課題】本発明は上記の諸点に
鑑み成されたもので、a−Si(H,X)に関し電子写
真用像形成部材に使用される光導電部材としての適用性
とその応用性という観点から総括的に鋭意研究検討を重
ねた結果、特定の厚みを有するドラム状金属基体をa−
Si(H,X)堆積膜の支持体として使用することによ
って、膜剥れ等の上記問題点を解決できることを見い出
したことに基づくものである。
【0008】本発明は、a−Si(H,X)堆積膜の膜
剥れによる白抜け等の画像欠陥が少なく、高品質な画像
を得ることができる電子写真用の光導電部材などとして
用いる電子写真光受容部材を提供することを目的とす
る。
【0009】本発明の他の目的は、電気的、光学的、光
導電的特性が常時安定し、繰り返し使用に際しても劣化
現象を起こさず、耐久性に優れた電子写真用光導電部材
を提供することにある。
【0010】
【課題を解決するための手段】すなわち本発明の電子写
真光受容部材の製造方法は、厚さ2.5mm以上のアル
ミニウムまたはアルミニウム系合金でできたドラム状形
状の金属基体を200℃〜350℃に加熱し、グロー放
電分解法によって原料ガスを分解して前記金属基体上に
ケイ素原子を母体とする非晶質材料を有する堆積膜を形
成することを特徴とする。
【0011】本発明の電子写真光受容部材の製造方法
は、その好ましい実施態様例に於いては、電子写真用光
導電部材などの光導電層、障壁層、表面電荷注入防止
層、あるいは保護層などの堆積膜の形成方法として用い
られるもので、その際光導電層は、ドラム状、すなわち
円筒状のA1もしくはA1合金等の金属基体(以下A1
系基体という)上にケイ素原子を母体とし、好ましくは
水素原子及びハロゲン原子のいずれか少なくとも一方を
その構成原子として含む非晶質材料を含有する層として
形成される。電子写真用光導電部材に於いては、該光導
電層は、ドラム状金属基体に接して障壁層、更には該光
導電層の表面に表面障壁層を有してもよい。
【0012】本発明における金属基体は、その厚さが
2.5mm以上のものである。すなわち、2.5mm以
上の厚さを有するものを使用することによって、堆積膜
の形成時にa−Si(H,X)膜堆積装置内で、あるい
は電子写真用の感光体ドラムとしての使用時に金属基体
が加熱されても、金属基体の熱変形の程度を十分小さく
おさえることができるので、a−Si(H,X)堆積膜
の膜剥れの程度を実用範囲内に於いては問題がない程度
以下に減少させ、あるいは皆無にすることが可能であ
る。生産性、量産性をより向上させるには金属基体は
3.5mm以上の厚さを有することがより好ましい。
【0013】本発明において好ましく用いられる金属基
体の基材は、例えば、NiCr、ステンレス、Al、C
r、Mo、Au、Nb、Ta、V、Ti、Pt、Pd等
の金属又はこれ等の合金が挙げられ、殊に、Al及びA
l系合金が好適に用いられる。 金属基体がドラム状の
とき、基体の基材としてアルミニウム又はアルミニウム
系合金を使用するのが好ましいのは、比較的簡易に真円
性、表面平滑性等の精度のよいものが得られ、製造時の
a−Si(H,X)の堆積表面部の温度制御が容易であ
り、かつ経済的であるからである。
【0014】本発明方法で形成する堆積膜が光導電層の
とき、光導電層中に含有されてもよいハロゲン原子
(X)としては、具体的にはフッ素、塩素、臭素、ヨウ
素が挙げられるが、特に塩素、とりわけフッ素を好適な
ものとして挙げることができる。光導電層中に含有され
るケイ素原子、水素原子、ハロゲン原子以外の成分とし
ては、フェルミ単位や禁止帯幅等を調整する成分とし
て、ホウ素、ガリウム等の周期律表第III 族原子、(II
I 族原子という)、窒素、リン、ヒ素等の周期律表第V
族原子、(V族原子という)、酸素原子、炭素原子、ゲ
ルマニウム原子等を単独若しくは適宜組み合わせて含有
させることができる。
【0015】堆積膜が障壁層のとき、障壁層は、光導電
層と金属基体との密着性向上あるいは電荷受容能の調整
等の目的で設置されるものであり、該障壁層は目的に応
じてIII 族原子、V族原子、酸素原子、炭素原子、ゲル
マニウム原子等を含むa−Si(H,X)層若しくは多
結晶−Si層で、一層あるいは多層に構成される。
【0016】また、堆積膜が光導電層の上部に設けられ
る表面電荷注入防止層あるいは保護層であるとき、それ
はシリコン原子を母体とし、炭素原子、窒素原子、酸素
原子等を、好ましくは多量に含有し、必要に応じて水素
原子又はハロゲン原子を含有する非晶質材料からなる層
あるいは高抵抗有機物質からなる層である。
【0017】本発明において、堆積膜としてa−Si
(H,X)で構成される光導電層などを形成するには、
例えばグロー放電法、スパッタリング法、あるいはイオ
ンプレーティング法等の従来公知の種々の放電現象を利
用する真空堆積法が適用される。
【0018】次にグロー放電分解法によって作成される
電子写真用の光導電部材としての堆積膜の形成方法の例
について説明する。
【0019】図1にグロー放電分解法による電子写真用
光導電部材としての堆積膜の製造装置を示す。堆積槽1
は、ベースプレート2と槽壁3とトッププレート4とか
ら構成され、この堆積槽1内には、カソード電極5が設
けられており、a−Si(H,X)堆積膜が形成される
ドラム状金属基体6はカソード電極5の中央部に設置さ
れ、アノード電極も兼ねている。
【0020】この製造装置を使用してa−Si(H,
X)堆積膜をドラム状金属基体上に形成するには、ま
ず、原料ガス流入バルブ7及びリークバルブ8を閉じ、
排気バルブ9を開け、堆積槽1内を排気する。真空計1
0の読みが約5×10-6torrになった時点で原料ガ
ス流入バルブ7を開いて、マスフローコントローラ11
内で所定の混合比に調整された、例えばSiH4 ガス、
Si2 H6 ガス、SiF4ガス等の原料混合ガスを堆積
槽1内に流入させる。このとき堆積槽1内の圧力が所望
の値になるように真空計10の読みを見ながら排気バル
ブ9の開口度を調整する。そしてドラム状金属基体6の
表面温度が加熱ヒーター12により所定の温度に設定さ
れていることを確認した後、高周波電源13を所望の電
力設定して堆積槽1内にグロー放電を生起させる。
【0021】また、層形成を行っている間は、層形成の
均一化を計るためにドラム状金属基体6をモーター14
により一定速度で回転させる。このようにしてドラム状
金属基体6上に、a−Si(H,X)堆積膜を形成する
ことができる。
【0022】
【実施例】以下、本発明を実施例に基づきより詳細に説
明する。
【0023】実施例1
図1に示した電子写真用光導電部材としての堆積膜の製
造装置を用い、先に詳述したグロー放電分解法に従い、
外径80mmφで、それぞれ肉厚の異なる6種のアルミ
ニウム製のドラム状基体上に、下記の条件によりa−S
i:H堆積膜を形成した。
【0024】堆積膜の積層順序 使用原料ガス 膜厚(μm)
第1層 SiH4 、B2 H6 0.6
第2層 SiH4 20
第3層 SiH4 、C2 H4 0.1
ドラム状基体温度:250℃
堆積膜形成時の堆積室内内圧:0.03Torr
放電周波数:13.56MHz
堆積膜形成速度:20Å/sec
放電電力:0.18W/cm2
こうして得られた電子写真感光体ドラムの膜剥れの状態
を観察した後、キャノン(株)製400RE複写装置を
実験用に改造した実験用複写装置にこれら感光体ドラム
を設置して画出しを行ない、膜剥れの影響を表わすため
に画像評価を実施した。その結果を表1に示す。
【0025】また、肉厚が1.5mmと2.0mmの上
記感光体ドラムの真円度を測定したところ、一番へこん
でいる箇所と一番突出している箇所の差が100μm近
くあったのに対して、肉厚2.5mmおよび3.0mm
の感光体ドラムではその差は約30μm、肉厚3.5m
m及び5.0mmの感光体ドラムでは10〜20μmで
あった。
【0026】実施例2
外径が80mmφ出、肉厚が3.0mmのアルミニウム
製のドラム状基体上に、第2層目のa−Si:H堆積膜
の形成に際して、SiH4 ガスに代えSi2 H 6 ガスを
使用したことを除き、実施例1と同様操作により電子写
真感光体ドラムを作製した。この電子写真感光体ドラム
につき、実施例1と同様にして膜剥れの状態の評価と実
験用複写装置に設置しての画像評価を実施したが、いず
れも実施例1の肉厚3.0mmの感光体ドラムの場合と
同様に良好な結果が得られた。
【0027】参考例1
図1に示した電子写真用光導電部材の製造装置を用い、
先に詳述したグロー放電分解法に従い、外径80mmφ
で、肉厚が異なる7種のアルミニウム製のドラム状基体
上に、下記の条件によりa−Si堆積膜を形成した。
【0028】使用原料ガス:SiH4 (10%)/H2
膜厚:35μm
ドラム状基体温度:250℃
堆積膜形成時の堆積室内内圧:0.03Torr
放電周波数:13.56MHz
堆積膜形成速度:20Å/sec
放電電力:0.18W/cm2
成膜後、10分かけて徐々にリークさせ大気圧とし、取
り出して室温まで自然冷却した。
【0029】比較例1
参考例1と同様のアルミニウム製ドラム状基体を用意
し、通常使用されている真空蒸着装置を用いて、各基体
上に以下の条件でSe−Te合金を蒸着して、光導電層
を形成した。
【0030】
蒸着原料:Se−Te合金(99.999%)
蒸発源温度:290℃
基板温度:65℃
層形成時真空度:1×10-5Torr
成膜後、10分かけて徐々にリークさせ大気圧とし、取
り出して室温まで自然冷却した。
【0031】比較例2
比較例1と同様の条件で成膜した後、10分かけて徐々
にリークさせ大気圧とし、取り出してすぐにドライアイ
スとアルコールの冷媒(−77℃)につけて約100℃
ほどの強制冷却を行った。これは、a−Si膜堆積後の
冷却の際に起こる歪をSe−Te膜にも与えるためであ
るが、Se−Te膜の堆積はa−Si膜堆積時のような
高温では行えないため冷媒を用いて強制冷却を行う方法
をとった。
【0032】参考例1
比較例1および比較例2で得られた電子写真感光体ドラ
ムの膜剥れの状態を室温下で観察した後、キャノン
(株)製400RE複写装置を実験用に改造した実験用
複写装置にこれら感光体ドラムを設置して画出しを行な
い、膜剥れの影響を表すための画像評価を実施した。そ
の結果を表2に示した。
【0033】表2から明らかなように、a−Si堆積膜
を形成させた電子写真感光体ドラムの場合には、基体の
厚さが2.5mm未満の場合には、2.4mmの厚さの
基体であっても膜はがれが多く、その画質も実用上問題
があるが、厚さが2.5mm以上のものでは膜剥れの個
数が少なく、その画質もほぼ良好であることがわかる。
【0034】一方、Se−Te堆積膜を形成させた従来
用いられていた電子写真感光体ドラムの場合には、自然
冷却の場合においても、強制冷却してあえてa−Si膜
と同様の歪を与えた場合においても、どの厚さの感光体
とも膜剥れが起っていない。すなわち、Se−Te膜の
場合には、膜剥れがドラム状金属基体の厚さに依存しな
いが、a−Si堆積膜の場合には、その膜質に起因し
て、膜剥れがドラム状金属基体の厚さに依存し、厚さを
2.5mm以上とする必要があることを示している。
【0035】
【表1】画像評価基準:◎非常に良い ○良い △実用上問題な
し ×実用上問題あり
A*1:膜剥れ部の大きさ0.3mm≦φ≦0.6mm
B*2:膜剥れ部の大きさ0.6mm<φ
【0036】
【表2】
画像評価基準:◎非常に良い ○良い △実用上問題な
し ×実用上問題あり
A*1:膜剥れ部の大きさ0.3mm≦φ≦0.6mm
B*2:膜剥れ部の大きさ0.6mm<φDETAILED DESCRIPTION OF THE INVENTION
[0001]
The present invention relates to light (here, light in a broad sense).
Indicates ultraviolet light, visible light, infrared light, X-ray, γ-ray, etc.
Photoconductor for electrophotography that is sensitive to electromagnetic waves such as
Used as materialMethod of manufacturing electrophotographic light-receiving memberAbout
I do.
[0002]
2. Description of the Related Art An electrophotographic image forming unit in the image forming field.
As the photoconductive material forming the photoconductive layer in the material,
In sensitivity, the S / N ratio [photocurrent (Ip) / (Id)] Is high,
Absorption matched to the spectral characteristics of the irradiating electromagnetic wave
Having spectral characteristics, fast light response,
It has dark resistance and no
Characteristics such as pollution are required. Especially with office machines
Embedded in electrophotographic equipment used in offices
For electrophotographic imaging members, use
Pollution is an important point.
Recently, attention has been focused on this point of view.
Hydrogen (H), halogen atom (X), etc.
With dangling bond modified by monovalent element
Fac silicon (hereinafter a-Si (H, X))
There are, for example, German Patent Publication No. 274667,
No. 2,855,718 discloses an electrophotographic image forming member.
For its excellent photoconductivity, abrasion resistance,
Because of its heat resistance and relatively easy area enlargement,
The application to a true image forming member is expected.
In general, light containing a-Si (H, X)
Manufactures a photosensitive drum for electrophotography having a conductive material
In order to obtain good photoconductive properties, a-Si
In the (H, X) film deposition apparatus, the drum-shaped metal
Extremely high temperature compared to the case of Se
A-S on the drum-shaped metal substrate under the condition that heating is continued.
i (H, X) film deposition is formed to a thickness of 1 to 100 μm.
You. Maintaining high temperature heating of this substrate is a
-Necessary for manufacturing a Si photosensitive drum, a-S
Considering the deposition rate of the i (H, X) film,
Currently, maintenance lasts from several hours to over a dozen hours.
You. And a drum-shaped metal substrate and an a-Si (H, X) film
Difference in thermal expansion coefficient of a-Si (H, X) film
Because of the large internal stress of
Deposition of a-Si (H, X) film for maintaining metal substrate at high temperature
Not only during loading, but also when cooling to outside air temperature after deposition,
Deposited a-Si (H, X) film from drum-shaped metal substrate
Peeling was reduced.
Further, the photosensitive drum for electrophotography is used.
During use, the drum is heated depending on the ambient temperature
The a-Si (H, X) film is less likely to peel off
It was not lost. According to many experiments by the present inventors, a
In the case of the -Si (H, X) film, the film peeling is performed using a-Si (H,
X) The larger the film thickness, the more likely it is to occur.
Of the photosensitive drum for Se-based electrophotography,
Thermal deformation of the drum-shaped metal substrate (particularly the formation of a photoconductive layer)
A.-Si (H, X) -based feeling
In the case of an optical drum, the difference between the coefficient of thermal expansion and a-Si
(H, X) The peeling of the film occurs due to the magnitude of the internal stress of the film.
This was not the case. a-Si (H, X) film
Of the internal stress of the a-Si (H, X) film
(Type of source gas, gas flow ratio, discharge power,
Heating temperature, internal structure of manufacturing equipment, etc.)
Can be eased, but consider productivity and mass productivity.
It is still insufficient when considered. And this film peeling
When used as a photoreceptor drum for
The cause of the fall is fatal.
[0006] In addition, during the production of an a-Si (H, X) film,
Prolonged high-temperature heating of the drum-shaped metal substrate
In addition to causing film peeling,
It is also easy to cause thermal deformation of the body, and this thermal deformation is a-S
Causes non-uniform discharge during the production of i (H, X) deposited film
Thereby, the uniformity of the film thickness of the a-Si (H, X) deposited film is obtained.
Loss of unity causes image defects.
[0007]
SUMMARY OF THE INVENTION The present invention is directed to the above points.
The electronic copying of a-Si (H, X)
Applicability as photoconductive member used for true image forming member
Intensive research and investigation from the perspective of
As a result, the drum-shaped metal substrate having a specific thickness was a-
By using it as a support for Si (H, X) deposited film
Can solve the above problems such as film peeling
It is based on what was done.
[0008] The present invention relates to an a-Si (H, X) deposited film.
High quality images with few image defects such as white spots due to peeling
As a photoconductive member for electrophotography that can obtain
UseElectrophotographic light receiving memberAim to provide
You.
Another object of the present invention is to provide an electric, optical, optical,
Conductive properties are always stable and degrade after repeated use
A photoconductive member for electrophotography that does not cause phenomena and has excellent durability
Is to provide.
[0010]
Means for Solving the Problems That is, according to the present invention,Electronic photography
Mahikari receiving memberofManufactureThe method is more than 2.5mm thickAl
Drum shape made of minium or aluminum alloy
ShapeHeat the metal substrate to 200 ° C to 350 ° C and release the glow.
The raw material gas is decomposed by electrolysis and
Forming deposited films with amorphous material based on silicon atoms
It is characterized by the following.
[0011] The present inventionElectrophotographic light receiving memberofManufactureMethod
Is an electrophotographic light source in the preferred embodiment.
Photoconductive layer such as conductive member, barrier layer, surface charge injection prevention
Used as a method for forming a deposited film such as a layer or a protective layer
In this case, the photoconductive layer has a drum shape, that is,
A metal substrate such as a cylindrical A1 or A1 alloy (hereinafter referred to as A1
Based on silicon atoms), preferably
At least one of a hydrogen atom and a halogen atom
As a layer containing an amorphous material containing as its constituent atoms
It is formed. In a photoconductive member for electrophotography,
The electric layer is in contact with the drum-shaped metal substrate,
A surface barrier layer may be provided on the surface of the conductive layer.
The metal substrate of the present invention has a thickness of
It is 2.5 mm or more. That is, 2.5 mm or less
By using one having the above thickness, the deposited film
In the a-Si (H, X) film deposition apparatus during the formation of
Is a metal substrate when used as a photoreceptor drum for electrophotography
The degree of thermal deformation of the metal substrate is sufficiently small even if
A-Si (H, X) deposited film
There is no problem within the practical range of the degree of film peeling
Can be reduced to none or none at all
You. To improve productivity and mass productivity, metal substrates
More preferably, it has a thickness of 3.5 mm or more.
The metal group preferably used in the present invention
The base material of the body is, for example, NiCr, stainless steel, Al, C
r, Mo, Au, Nb, Ta, V, Ti, Pt, Pd, etc.
Or alloys thereof, especially Al and A
An l-based alloy is preferably used. Drum-shaped metal substrate
Sometimes, aluminum or aluminum as the base material of the base
It is relatively easy to use a round alloy
Quality, surface smoothness, etc. can be obtained.
Easy temperature control of a-Si (H, X) deposition surface
And economical.
[0014] The deposited film formed by the method of the present invention is a photoconductive layer.
When the halogen atom which may be contained in the photoconductive layer
As (X), specifically, fluorine, chlorine, bromine, iodine
But chlorine, especially fluorine,
Can be listed as Contained in the photoconductive layer
Components other than silicon, hydrogen, and halogen atoms
Is used as a component to adjust the Fermi unit, the band width, etc.
Group III atoms of the periodic table, such as boron and gallium, (II
Group V), nitrogen, phosphorus, arsenic, etc.
Group atom, (group V atom), oxygen atom, carbon atom,
Contains rumanium atom etc. alone or in appropriate combination
Can be done.
When the deposited film is a barrier layer, the barrier layer may be a photoconductive layer.
Improve adhesion between layer and metal substrate or adjust charge acceptance
The barrier layer is provided according to the purpose.
Group III atom, group V atom, oxygen atom, carbon atom, gel
An a-Si (H, X) layer or the like containing manium atoms or the like;
It is composed of a single layer or multiple layers of a crystal-Si layer.
A deposition film is provided on the photoconductive layer.
Surface charge injection prevention layer or protective layer
Is based on silicon atoms, carbon atoms, nitrogen atoms, oxygen
Contains a large amount of atoms and the like, preferably hydrogen
A layer made of an amorphous material containing atoms or halogen atoms
Alternatively, it is a layer made of a high-resistance organic material.
In the present invention, a-Si is used as a deposited film.
To form a photoconductive layer composed of (H, X)
For example, glow discharge, sputtering, or ion
Various known discharge phenomena such as the plating method
The vacuum deposition method used is applied.
Next, it is prepared by a glow discharge decomposition method.
Example of a method for forming a deposited film as a photoconductive member for electrophotography
Will be described.
FIG. 1 shows an electrophotographic image formed by a glow discharge decomposition method.
1 shows an apparatus for producing a deposited film as a photoconductive member. Deposition tank 1
Are base plate 2, tank wall 3, top plate 4, etc.
In this deposition tank 1, a cathode electrode 5 is provided.
And an a-Si (H, X) deposited film is formed.
The drum-shaped metal substrate 6 is set at the center of the cathode electrode 5.
And also serves as the anode electrode.
Using this manufacturing apparatus, a-Si (H,
X) To form a deposited film on a drum-shaped metal substrate,
First, the raw gas inflow valve 7 and the leak valve 8 are closed,
The exhaust valve 9 is opened, and the inside of the deposition tank 1 is exhausted. Vacuum gauge 1
The reading of 0 is about 5 × 10-6When the torr reaches
Open the inlet valve 7 and open the mass flow controller 11
Adjusted to a predetermined mixing ratio within, for example, SiHFourgas,
SiTwoH6Gas, SiFFourDeposits raw material mixed gas such as gas
It flows into the tank 1. At this time, the pressure in the deposition tank 1 is desired.
While reading the vacuum gauge 10 reading
The opening of the valve 9 is adjusted. And the drum-shaped metal substrate 6
The surface temperature is set to a predetermined temperature by the heater 12.
After confirming that the high-frequency power supply 13 is
Glow discharge is generated in the deposition tank 1 by setting the force.
In addition, during the formation of the layer,
In order to achieve uniformity, the drum-shaped metal substrate 6 is
To rotate at a constant speed. In this way the drum shape
A-Si (H, X) deposited film is formed on the metal substrate 6
be able to.
[0022]
The present invention will now be described in more detail with reference to examples.
I will tell.
Embodiment 1
Production of deposited film as photoconductive member for electrophotography shown in FIG.
According to the glow discharge decomposition method described in detail above,
Six types of aluminum with outer diameter of 80mmφ and different thickness
A-S on a drum-shaped substrate made of
An i: H deposited film was formed.
[0024]Stacking order of deposited film Raw material gas used Film thickness (μm)
First layer SiHFour, BTwoH6 0.6
Second layer SiHFour 20
Third layer SiHFour, CTwoHFour 0.1
Drum-shaped substrate temperature: 250 ° C
Internal pressure of deposition chamber during deposition film formation: 0.03 Torr
Discharge frequency: 13.56 MHz
Deposition film formation speed: 20 ° / sec
Discharge power: 0.18 W / cmTwo
State of film peeling of electrophotographic photosensitive drum obtained in this way
After observing, 400RE copying machine manufactured by Canon Inc.
These photoreceptor drums were used in an experimental copier modified for experiments.
To display the effect of film peeling.
The image evaluation was performed. Table 1 shows the results.
The thickness is 1.5 mm and 2.0 mm.
When the roundness of the photosensitive drum was measured,
The difference between the part that is projected and the part that protrudes most is close to 100 μm
2.5mm and 3.0mm
The difference is about 30 μm and the wall thickness is 3.5 m
m and 5.0 mm for photoreceptor drums
there were.
Embodiment 2
Aluminum with an outer diameter of 80mmφ and a thickness of 3.0mm
A-Si: H deposited film as a second layer on a drum-shaped substrate made of
When forming SiHFourSi instead of gasTwoH 6Gas
Except for the fact that it was used,
A true photosensitive drum was prepared. This electrophotographic photosensitive drum
In the same manner as in Example 1, evaluation of the state of film peeling and actual
Image evaluation was performed with the test copying machine installed.
This is also the same as the case of the photosensitive drum having a thickness of 3.0 mm of the first embodiment.
Similarly good results were obtained.
Reference Example 1
Using the apparatus for manufacturing a photoconductive member for electrophotography shown in FIG.
According to the glow discharge decomposition method described in detail above, the outer diameter is 80 mmφ.
And 7 kinds of aluminum drum-shaped substrates with different wall thickness
An a-Si deposited film was formed thereon under the following conditions.
Material gas used: SiHFour(10%) / HTwo
Film thickness: 35 μm
Drum-shaped substrate temperature: 250 ° C
Internal pressure of deposition chamber during deposition film formation: 0.03 Torr
Discharge frequency: 13.56 MHz
Deposition film formation speed: 20 ° / sec
Discharge power: 0.18 W / cmTwo
After film formation, gradually leak over 10 minutes to atmospheric pressure.
Then, the mixture was naturally cooled to room temperature.
Comparative Example 1
Prepare the same aluminum drum base as in Reference Example 1.
Then, using a commonly used vacuum evaporation apparatus, each substrate
A Se-Te alloy is deposited on the above under the following conditions to form a photoconductive layer.
Was formed.
[0030]
Evaporation raw material: Se-Te alloy (99.999%)
Evaporation source temperature: 290 ° C
Substrate temperature: 65 ° C
Degree of vacuum during layer formation: 1 × 10-FiveTorr
After film formation, gradually leak over 10 minutes to atmospheric pressure.
Then, the mixture was naturally cooled to room temperature.
Comparative Example 2
After forming a film under the same conditions as in Comparative Example 1, gradually over 10 minutes
To the atmospheric pressure, take out dry eye immediately
About 100 ° C in cold and alcoholic refrigerant (-77 ° C)
Forced cooling was performed. This is because after the deposition of the a-Si film,
This is because the strain that occurs during cooling is also given to the Se-Te film.
However, the deposition of the Se-Te film is similar to the deposition of the a-Si film.
Method to perform forced cooling using refrigerant because it cannot be performed at high temperature
Was taken.
Reference Example 1
Electrophotographic photoreceptor drums obtained in Comparative Examples 1 and 2
After observing the peeling condition of the film at room temperature,
For experiment, which was modified from 400RE copier manufactured by Co., Ltd.
These photoconductor drums are installed in a copying machine to perform image output.
In addition, image evaluation was performed to show the effect of film peeling. So
Table 2 shows the results.
As is clear from Table 2, a-Si deposited film
In the case of an electrophotographic photosensitive drum formed with
If the thickness is less than 2.5 mm, the thickness of 2.4 mm
Even with a substrate, the film is often peeled off, and the image quality is also a practical problem
However, if the thickness is more than 2.5mm,
It can be seen that the number is small and the image quality is almost good.
On the other hand, in the case where a Se—Te deposited film is formed,
In the case of the electrophotographic photosensitive drum used,
Even in the case of cooling, a-Si film
Even if the same distortion is given,
Neither did film peeling occur. That is, the Se-Te film
In this case, the film peeling does not depend on the thickness of the drum-shaped metal substrate.
However, in the case of an a-Si deposited film,
Therefore, film peeling depends on the thickness of the drum-shaped metal substrate,
This indicates that the distance needs to be 2.5 mm or more.
[0035]
[Table 1]Image evaluation criteria: ◎ Very good ○ Good △ Not practical
X × Practical problem
A* 1: Size of film peeling part 0.3 mm ≦ φ ≦ 0.6 mm
B* 2: Size of film peeling part 0.6 mm <φ
[0036]
[Table 2]
Image evaluation criteria: ◎ Very good ○ Good △ Not practical
X × Practical problem
A* 1: Size of film peeling part 0.3 mm ≦ φ ≦ 0.6 mm
B* 2: Size of film peeling part 0.6 mm <φ
【図面の簡単な説明】
【図1】グロー放電分解法による光導電部材としての堆
積膜の製造装置を示す。
【符号の説明】
1 堆積槽
2 ベースプレート
3 槽壁
4 トッププレート
5 カソード電極
6 ドラム状金属基体
7 原料ガス流入バルブ
8 リークバルブ
9 排気バルブ
10 真空計
11 マスフローコントローラ
12 加熱ヒータ
13 高周波電源
14 モーターBRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an apparatus for producing a deposited film as a photoconductive member by a glow discharge decomposition method. [Description of Signs] 1 Deposition tank 2 Base plate 3 Tank wall 4 Top plate 5 Cathode electrode 6 Drum-shaped metal base 7 Source gas inflow valve 8 Leak valve 9 Exhaust valve 10 Vacuum gauge 11 Mass flow controller 12 Heater 13 High frequency power supply 14 Motor
Claims (1)
ウム系合金でできたドラム状形状の金属基体を200℃〜3
50℃に加熱し、グロー放電分解法によって原料ガスを分
解して前記金属基体上にケイ素原子を母体とする非晶質
材料を有する堆積膜を形成することを特徴とする電子写
真光受容部材の製造方法。 2.前記堆積膜は光導電性を有する請求項1に記載の電
子写真光受容部材の製造方法。 3.前記非晶質材料は水素原子及びハロゲン原子の少な
くとも1つを含有する請求項1に記載の電子写真光受容
部材の製造方法。 4.前記非晶質材料は周期率表第III族または第V族に
属する原子の少なくとも1種を含有する請求項1または
3に記載の電子写真光受容部材の製造方法。 5.前記非晶質材料は酸素原子、炭素原子及びゲルマニ
ウム原子の少なくとも1種を含有する請求項1、3また
は4に記載の電子写真光受容部材の製造方法。 6.前記原料ガスはSiH4 ,Si2 H6 ,SiF4 か
ら選択されたガスである請求項1に記載の電子写真光受
容部材の製造方法。 7.前記堆積膜は光導電層、障壁層、表面電荷注入防止
層、保護層の少なくとも一つを有する請求項1に記載の
方法。 (57) [Claims] Aluminum or aluminum with a thickness of 2.5 mm or more
The metal substrate of drum-like shape made of um based alloy 200 ° C. to 3
Was heated to 50 ° C., an electronic copy, characterized in that by decomposing the raw material gas by glow discharge decomposition method to form a deposited film having an amorphous material for the silicon atoms as a matrix on the metal substrate
A method for manufacturing a true light receiving member. 2. Electrodeposition of claim 1 wherein the deposited film having a photoconductive
A method for producing a photoreceptor. 3. The electrophotographic photoreceptor of claim 1, wherein said amorphous material contains at least one of a hydrogen atom and a halogen atom.
Manufacturing method of the member. 4. The amorphous material contains at least one atom belonging to Group III or Group V of the periodic table.
3. The method for producing an electrophotographic light-receiving member according to item 3 . 5. Wherein the amorphous material is an oxygen atom, a manufacturing method of the electrophotographic light-receiving member according to claim 1, 3 also <br/> 4 which contains at least one carbon atom and germanium atom. 6. 2. The electrophotographic light receiving device according to claim 1, wherein the source gas is a gas selected from SiH 4 , Si 2 H 6 and SiF 4.
A method for manufacturing a housing member. 7. The deposited film is a photoconductive layer, a barrier layer, and prevents surface charge injection.
The method according to claim 1, further comprising at least one of a layer and a protective layer.
Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7008907A JP2719502B2 (en) | 1995-01-24 | 1995-01-24 | Method of manufacturing electrophotographic light-receiving member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7008907A JP2719502B2 (en) | 1995-01-24 | 1995-01-24 | Method of manufacturing electrophotographic light-receiving member |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58064525A Division JPH0614189B2 (en) | 1983-04-14 | 1983-04-14 | Photoconductive member for electrophotography |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07261437A JPH07261437A (en) | 1995-10-13 |
JP2719502B2 true JP2719502B2 (en) | 1998-02-25 |
Family
ID=11705753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7008907A Expired - Lifetime JP2719502B2 (en) | 1995-01-24 | 1995-01-24 | Method of manufacturing electrophotographic light-receiving member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2719502B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56159680A (en) * | 1980-05-14 | 1981-12-09 | Canon Inc | Image bearing member |
JPS57192258A (en) * | 1981-05-19 | 1982-11-26 | Oki Electric Ind Co Ltd | Film forming apparatus using glow discharge |
JPS5854345A (en) * | 1981-09-26 | 1983-03-31 | Konishiroku Photo Ind Co Ltd | Production for amorphous silicon electrophotographic receptor |
-
1995
- 1995-01-24 JP JP7008907A patent/JP2719502B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56159680A (en) * | 1980-05-14 | 1981-12-09 | Canon Inc | Image bearing member |
JPS57192258A (en) * | 1981-05-19 | 1982-11-26 | Oki Electric Ind Co Ltd | Film forming apparatus using glow discharge |
JPS5854345A (en) * | 1981-09-26 | 1983-03-31 | Konishiroku Photo Ind Co Ltd | Production for amorphous silicon electrophotographic receptor |
Also Published As
Publication number | Publication date |
---|---|
JPH07261437A (en) | 1995-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4830946A (en) | CVD process for forming an image forming member for electrophotography | |
JPS6226458B2 (en) | ||
US5849446A (en) | Light receiving member having a surface protective layer with a specific outermost surface and process for the production thereof | |
JPS6226459B2 (en) | ||
JPH0114579B2 (en) | ||
US5976745A (en) | Photosensitive member for electrophotography and fabrication process thereof | |
US6110629A (en) | Electrophotographic, photosensitive member and image forming apparatus | |
JPH0213298B2 (en) | ||
JP2719502B2 (en) | Method of manufacturing electrophotographic light-receiving member | |
JP2000073173A (en) | Formation of deposited film and deposited film forming device | |
US4814248A (en) | Photoconductive member and support for said photoconductive member | |
JPS6318749B2 (en) | ||
JPH0627948B2 (en) | Photoconductive member | |
US4698288A (en) | Electrophotographic imaging members having a ground plane of hydrogenated amorphous silicon | |
US6197471B1 (en) | Amorphous silicon photoreceptor and method for making same | |
JP3402952B2 (en) | Method and apparatus for forming deposited film | |
JPS5952251A (en) | Manufacture of electrophotographic image forming material | |
JPS6215857B2 (en) | ||
JPH05150532A (en) | Method for producing amorphous silicon photoconductor | |
JP3412957B2 (en) | Method for manufacturing light receiving member | |
JPS6391664A (en) | Photoreceptive member | |
JPS6242263B2 (en) | ||
JPH11181571A (en) | Formation of deposited coating and device therefor | |
JPS63279259A (en) | Photoreceptive member for electrophotography | |
JPS58137843A (en) | Photoconductive material |