JP2717106B2 - Heat storage device - Google Patents
Heat storage deviceInfo
- Publication number
- JP2717106B2 JP2717106B2 JP1300625A JP30062589A JP2717106B2 JP 2717106 B2 JP2717106 B2 JP 2717106B2 JP 1300625 A JP1300625 A JP 1300625A JP 30062589 A JP30062589 A JP 30062589A JP 2717106 B2 JP2717106 B2 JP 2717106B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat storage
- storage device
- pipe
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005338 heat storage Methods 0.000 title claims description 46
- 239000000843 powder Substances 0.000 claims description 19
- 239000000126 substance Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 239000000919 ceramic Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 4
- 239000011232 storage material Substances 0.000 description 4
- 229910052575 non-oxide ceramic Inorganic materials 0.000 description 3
- 239000011225 non-oxide ceramic Substances 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 240000006248 Broussonetia kazinoki Species 0.000 description 1
- 235000006716 Broussonetia kazinoki Nutrition 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- LHJQIRIGXXHNLA-UHFFFAOYSA-N calcium peroxide Chemical group [Ca+2].[O-][O-] LHJQIRIGXXHNLA-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- -1 ores Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/0056—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Resistance Heating (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は給湯器などに用いる電気式の蓄熱装置に関す
るものである。Description: TECHNICAL FIELD The present invention relates to an electric heat storage device used for a water heater or the like.
従来より、比熱の大きい物体に熱を蓄えておいて、後
でこの顕熱を利用する蓄熱技術は広く知られており、さ
まざまな分野で利用されていた。2. Description of the Related Art Conventionally, a heat storage technology that stores heat in an object having a large specific heat and uses this sensible heat later has been widely known and used in various fields.
たとえば、電気エネルギーによる蓄熱を利用した給湯
器として、水を直接加熱し、水自体を蓄熱体として利用
する貯湯式のものが広く用いられていた。また、より小
型、高性能の蓄熱装置として、本出願人等は、非酸化物
セラミックスを蓄熱材として用いることを既に提案した
(特願昭63−180594号、63−180595号)。これは、炭化
珪素質セラミックスや窒化珪素質セラミックス等の非酸
化物セラミックスからなる蓄熱体に電気ヒータ及びヒー
トパイプを具備したものであって、電気ヒータによって
前記蓄熱体に蓄熱しておいて、必要なときに、前記ヒー
トパイプによってこの熱を取り出すようにしたものであ
った。For example, as a water heater using heat storage by electric energy, a hot water storage type that directly heats water and uses the water itself as a heat storage material has been widely used. The present applicants have already proposed the use of non-oxide ceramics as a heat storage material as a smaller and higher performance heat storage device (Japanese Patent Application Nos. 63-180594 and 63-180595). This is provided with an electric heater and a heat pipe in a heat accumulator made of non-oxide ceramics such as silicon carbide ceramics and silicon nitride ceramics. At this time, the heat is extracted by the heat pipe.
〔従来技術の課題〕 ところが、このような非酸化物セラミックスを用いた
蓄熱装置は、セラミックスの成形、焼成などの工程を必
要とするため、製造に手間がかかり、またコスト的にも
非常に高いものであった。さらにセラミックス焼結体中
に直接ヒートパイプを挿通した構造であるため、熱応力
により割れが発生する恐れがあるなどの問題点があっ
た。[Problems of the prior art] However, such a heat storage device using non-oxide ceramics requires processes such as molding and firing of ceramics, which takes time and effort to manufacture, and is extremely expensive. Was something. Further, since the heat pipe is directly inserted into the ceramic sintered body, there is a problem that cracks may occur due to thermal stress.
上記に鑑みて本発明は、伝熱フィンを設けたヒートパ
イプと電気ヒータを、単位体積あたりの熱容量が0.5cal
/cm3・K以上の蓄熱粉体中に埋設することによって、小
型で製造の容易な蓄熱装置を構成したものである。In view of the above, the present invention provides a heat pipe and an electric heater provided with heat transfer fins with a heat capacity of 0.5 cal per unit volume.
By embedding in a heat storage powder of / cm 3 · K or more, the heat storage device is small and easy to manufacture.
以下、本発明の実施例を図によって説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第1図(a)に示す蓄熱装置Tは円筒状の容器5内に
蓄熱粉体1を充填し、該蓄熱粉体1中に伝熱フィン4を
多数装着したヒートパイプ2と電気ヒータ3を埋設して
なるものである。前記蓄熱粉体1は、単位体積あたりの
熱容量が0.5cal/cm3・K以上、熱伝導率が0.5kcal/m・
h・k以上、耐熱温度500℃以上のセラミックス、鉱
石、金属などから成る粉体である。またヒートパイプ2
は、前記容器5を貫通するように取付けられ、該ヒート
パイプ2と電気ヒータ3の双方に接合した、互いに平行
な複数の伝熱フィン4が具備されている。The heat storage device T shown in FIG. 1 (a) fills a heat storage powder 1 in a cylindrical container 5 and heat pipes 2 and electric heaters 3 in which a number of heat transfer fins 4 are mounted. It is buried. The heat storage powder 1 has a heat capacity per unit volume of 0.5 cal / cm 3 · K or more and a thermal conductivity of 0.5 kcal / m ·
It is a powder composed of ceramics, ores, metals, etc., having a h. Heat pipe 2
Is provided with a plurality of parallel heat transfer fins 4 attached to the heat pipe 2 and the electric heater 3 so as to penetrate the vessel 5.
この蓄熱装置Tは電気ヒータ3に通電することによっ
て、蓄熱粉体1を500℃以上の高温に維持しておき、必
要なときにヒートパイプ2を通じて、この熱を取り出す
ようにしたものであるが、蓄熱材として熱容量の大きな
蓄熱粉体1を用いていることから、小型で、効率の良い
蓄熱を安全且つきわめて安価に行うことができる。ま
た、蓄熱材が粉体であることから、直接ヒートパイプ1
を挿通しても熱応力による割れが生じることはない。The heat storage device T is configured to maintain the heat storage powder 1 at a high temperature of 500 ° C. or higher by energizing the electric heater 3 and take out this heat through the heat pipe 2 when necessary. In addition, since the heat storage powder 1 having a large heat capacity is used as the heat storage material, small and efficient heat storage can be performed safely and extremely inexpensively. Further, since the heat storage material is a powder, the heat pipe 1
Does not cause cracking due to thermal stress.
さらに、本発明の蓄熱装置Tは、第1図(b)に示す
ように容器5内に蓄熱粉体1を流し込んだり、あるいは
第1図(C)に示すように、あらかじめ蓄熱粉体1を所
定形状にプレス成形しておいて容器5内に挿入するなど
の方法によって製造することができる。このように、本
発明の蓄熱装置Tは、焼成工程などが必要なく、製造工
程が簡単であり、大きなものや複雑な形状のものでも容
易に製造することができる。Further, the heat storage device T of the present invention can be configured such that the heat storage powder 1 is poured into the container 5 as shown in FIG. 1 (b), or the heat storage powder 1 is previously stored as shown in FIG. 1 (C). It can be manufactured by a method such as pressing into a predetermined shape and inserting it into the container 5. As described above, the heat storage device T of the present invention does not require a firing step or the like, has a simple manufacturing process, and can easily manufacture a large-sized or complicated-shaped one.
次に本発明の他の実施例を説明する。 Next, another embodiment of the present invention will be described.
第2図に示す蓄熱装置Tは、伝熱フィン4をヒートパ
イプ2に対し放射状に形成したものである。また第3図
に示す蓄熱装置Tは、ヒートパイプ2を蛇管としたもの
であり、伝熱面積の増大だけでなく、ヒートパイプ2内
の作動流体に乱れが発生し、伝熱面の更新により熱伝達
率が向上する。さらに、第4図に示すように、伝熱面積
を大きくするためにヒートパイプ2を複数本配置したヘ
ッダー構造としてもよい。The heat storage device T shown in FIG. 2 has heat transfer fins 4 formed radially with respect to the heat pipe 2. The heat storage device T shown in FIG. 3 has a heat pipe 2 formed as a serpentine tube. Not only does the heat transfer area increase, but the working fluid in the heat pipe 2 is disturbed, and the heat transfer surface is renewed. The heat transfer coefficient is improved. Further, as shown in FIG. 4, a header structure in which a plurality of heat pipes 2 are arranged may be used to increase the heat transfer area.
なお、上記実施例ではヒートパイプ2と電気ヒータ3
に取り付ける伝熱フィン4を共通のものとしてある。In the above embodiment, the heat pipe 2 and the electric heater 3
The heat transfer fins 4 to be mounted on the fins are common.
また、上記蓄熱粉体1としては、第1表に示すように
さまざまなものを用いることができるが、種々実験の結
果、単位体積あたりの熱容量(比熱×比重)が0.5cal/c
m3・K以上、熱伝導率が0.4cal/m・h・K以上のセラミ
ックス、金属、鉱石などの粉末を用いたものが最も優れ
ていた。さらに、この蓄熱粉末1の平均粒径は1〜500
μmの範囲内のものを用いればよい。As the heat storage powder 1, various types can be used as shown in Table 1. As a result of various experiments, the heat capacity per unit volume (specific heat × specific gravity) is 0.5 cal / c.
Those using powders of ceramics, metals, ores and the like having m 3 · K or more and thermal conductivity of 0.4 cal / m · h · K or more were the best. The average particle size of the heat storage powder 1 is 1 to 500.
What is necessary is just to use the thing in the range of μm.
次に、この蓄熱装置Tを給湯器に用いた例を説明す
る。第5図に示すように、蓄熱装置Tに挿通したヒート
パイプ2は熱交換器Kを通って循環する熱サイホン式の
ものとし、熱交換器Kでは水管Pを通る水道水へ伝熱す
るようになっている。 Next, an example in which the heat storage device T is used for a water heater will be described. As shown in FIG. 5, the heat pipe 2 inserted into the heat storage device T is of a thermosiphon type that circulates through a heat exchanger K. In the heat exchanger K, heat is transferred to tap water passing through a water pipe P. It has become.
上記給湯器は、まず、夜間に電気ヒータ3に通電し
て、蓄熱粉体1を500℃程度に加熱しておき、温水を利
用する際に蛇口を捻ると、ヒートパイプ2内を作動流体
が循環し、熱交換器Kで、水管P中の水に熱を伝え、温
水が発生するようになっている。In the water heater, first, the electric heater 3 is energized at night to heat the heat storage powder 1 to about 500 ° C., and when the faucet is twisted when using hot water, the working fluid flows through the heat pipe 2. The water circulates and the heat exchanger K transfers heat to the water in the water pipe P to generate hot water.
この給湯器は、クリーンな電気エネルギーのみを用い
るものであり、インテリジェントビルにも応用でき、ま
た夜間電力を利用することから低コストで電力の昼夜平
滑化にも貢献できる。This water heater uses only clean electric energy, and can be applied to intelligent buildings. In addition, since nighttime power is used, the water heater can contribute to day and night power smoothing at low cost.
実際に第4図に示す蓄熱装置Tを試作した。 Actually, a thermal storage device T shown in FIG. 4 was prototyped.
蓄熱粉体1は比重3.6、比熱0.27cal/g・kのアルミナ
を粒径が10〜400μmとなるまで粉砕したものを使用
し、容器5内に充填した。充填後のアルミナは空隙を30
%程度有し、全体の密度は2.5g/cm3、単位面積あたりの
熱容量は0.68cal/cm3・Kとなった。The heat storage powder 1 was prepared by pulverizing alumina having a specific gravity of 3.6 and a specific heat of 0.27 cal / g · k until the particle size became 10 to 400 μm, and was filled in the container 5. Alumina after filling has voids of 30
%, The overall density was 2.5 g / cm 3 , and the heat capacity per unit area was 0.68 cal / cm 3 · K.
またヒートパイプ2はステンレス(SUS316L)シーム
レスパイプを使用し、電気ヒータ3はNi−Cr発熱体の周
囲をMgOの無機系充填材で絶縁し、ステンレス(SUS30
4)でシースした棒状のヒータを使用した。このヒート
パイプ2と電気ヒータ3にはバーリング加工を行った伝
熱フィン4をかしめてある。The heat pipe 2 uses a stainless steel (SUS316L) seamless pipe, and the electric heater 3 insulates the surroundings of the Ni-Cr heating element with an inorganic filler of MgO.
A rod-shaped heater sheathed in 4) was used. The heat pipe 2 and the electric heater 3 are caulked with heat transfer fins 4 subjected to burring.
ヒートパイプ2の蒸発部分の仕様は外径φ18mm内径φ
16mm高さ300mmの蒸発管を10本並列に組み合わせたヘッ
ダー型とし、これにより0.2m2の伝熱面積を得た。The specification of the evaporation part of heat pipe 2 is outer diameter φ18mm inner diameter φ
A header type in which ten evaporating tubes having a height of 16 mm and a height of 300 mm were combined in parallel, and a heat transfer area of 0.2 m 2 was obtained.
電気ヒータ3は外径φ20mm、長さ340mm、発熱量600W
のヒータを3本用い、蓄熱粉体1を5時間でほぼ均一に
500℃となるような加熱を行った。Electric heater 3 has outer diameter φ20mm, length 340mm, heat generation 600W
Heat storage powder 1 almost uniformly in 5 hours using three heaters
Heating was performed to 500 ° C.
全体としての蓄熱装置Tの大きさは縦×横×高さを15
0mm×360mm×360mmとし、0.020m3の容積を得た。この蓄
熱装置は夜間7000kcal以上の熱量を蓄熱することがで
き、昼間5000kcal/hの温水出力を得ることができた。従
って一般家庭用台所およびオフィス用給茶等の小型給湯
器として利用可能なことが実証された。The size of the heat storage device T as a whole is 15 × W × H.
The size was set to 0 mm × 360 mm × 360 mm to obtain a volume of 0.020 m 3 . This heat storage device was able to store more than 7,000 kcal of heat at night, and was able to obtain 5000 kcal / h hot water output during the day. Therefore, it was proved that it can be used as a small-sized water heater for general kitchen and office tea supply.
ちなみに従来の貯湯式の給湯器の場合、5000kcalの温
水を得るために58の容積を必要とすることから、断熱
容器5を考慮しても、本発明の蓄熱装置は貯湯式に比
べ、ほぼ半分の容積になることがわかった。By the way, in the case of the conventional hot water storage type water heater, since 58 volumes are required to obtain 5000 kcal of hot water, the heat storage device of the present invention is almost half as compared with the hot water storage type even if the heat insulating container 5 is considered. It was found that the volume became.
叙上のように本発明によれば、伝熱フィンを設けたヒ
ートパイプと電気ヒータを、単位体積あたりの熱容量が
0.5cal/cm3・K以上の物質からなる蓄熱粉体中に埋設し
て蓄熱装置を構成したことによって、小型で安全な蓄熱
を行うことができ、また製造が容易でコストも低く、熱
応力による割れの恐れもないなど、さまざまな特徴をも
った蓄熱装置を提供できる。As described above, according to the present invention, the heat pipe and the electric heater provided with the heat transfer fins have a heat capacity per unit volume.
By embedding in a heat storage powder composed of a substance of 0.5 cal / cm 3 · K or more, a heat storage device can be constructed, which enables small and safe heat storage, is easy to manufacture, has low cost, and has low thermal stress. It is possible to provide a heat storage device having various features, such as no possibility of cracking due to cracks.
第1図(a)は本発明実施例に係る蓄熱装置を示す一部
破断斜視図、第1図(b)(c)はその製造方法を説明
するための図である。 第2図〜第4図はそれぞれ本発明の他の実施例を示す一
部破断斜視図である。 第5図は本発明の蓄熱装置を用いた給湯器を示す概略図
である。 1:蓄熱粉体、2:ヒートパイプ 3:電気ヒータ、4:伝熱フィン 5:容器FIG. 1 (a) is a partially cutaway perspective view showing a heat storage device according to an embodiment of the present invention, and FIGS. 1 (b) and 1 (c) are diagrams for explaining a manufacturing method thereof. 2 to 4 are partially cutaway perspective views each showing another embodiment of the present invention. FIG. 5 is a schematic view showing a water heater using the heat storage device of the present invention. 1: Heat storage powder, 2: Heat pipe 3: Electric heater, 4: Heat transfer fin 5: Container
───────────────────────────────────────────────────── フロントページの続き (72)発明者 長崎 浩一 鹿児島県国分市山下町1番1号 京セラ 株式会社内鹿児島国分工場内 (72)発明者 鈴木 皓三 東京都千代田区内幸町1丁目1番3号 東京電力株式会社内 (72)発明者 岡田 宗男 東京都千代田区内幸町1丁目1番3号 東京電力株式会社内 (72)発明者 望月 正孝 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 益子 耕一 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 置鮎 隆一 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 久松 明彦 愛知県常滑市港町3丁目77番地 株式会 社イナックス榎戸工場内 (72)発明者 牧野 勤 愛知県常滑市港町3丁目77番地 株式会 社イナックス榎戸工場内 審査官 千壽 哲郎 (56)参考文献 特開 昭51−140252(JP,A) 特開 昭63−21753(JP,A) 実開 昭62−132535(JP,U) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koichi Nagasaki 1-1-1, Yamashita-cho, Kokubu-shi, Kagoshima Kyocera Inside Uchi-Kagoshima Kokubu Plant (72) Inventor Kozo Suzuki 1-3-1, Uchisaiwai-cho, Chiyoda-ku, Tokyo Tokyo Electric Power Company (72) Inventor Muneo Okada 1-3-1 Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Electric Power Company (72) Inventor Masataka Mochizuki 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Electric Wire Co., Ltd. (72) Inventor Koichi Masuko 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Electric Wire Co., Ltd. (72) Inventor Ryuichi Okiayu 1-5-1 Kiba, Koto-ku, Tokyo In Fujikura Electric Wire Co., Ltd. (72) Inventor Akihiko Hisamatsu 3-77 Minatomachi, Tokoname City, Aichi Prefecture Inside Inax Enodo Plant (72) Inventor Tsutomu Makino Port of Tokoname City, Aichi Prefecture 3-77, Japan Inax Enokido Factory Examiner Tetsuro Chijusu (56) References JP-A-51-140252 (JP, A) JP-A-63-21753 (JP, A) Jpn. JP, U)
Claims (2)
伝熱フィンを接合し、これらヒートパイプ、電気ヒー
タ、および伝熱フィンを容器内に収容するとともに、該
容器内に蓄熱粉体を充填してなることを特徴とする蓄熱
装置。1. A heat transfer fin common to both a heat pipe and an electric heater is joined, the heat pipe, the electric heater and the heat transfer fin are accommodated in a container, and the container is filled with a heat storage powder. A heat storage device comprising:
が0.5cal/cm3・K以上の物質からなることを特徴とする
請求項1項記載の蓄熱装置。2. The heat storage device according to claim 1, wherein the heat storage powder is made of a substance having a heat capacity per unit volume of 0.5 cal / cm 3 · K or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1300625A JP2717106B2 (en) | 1989-11-17 | 1989-11-17 | Heat storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1300625A JP2717106B2 (en) | 1989-11-17 | 1989-11-17 | Heat storage device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03160272A JPH03160272A (en) | 1991-07-10 |
JP2717106B2 true JP2717106B2 (en) | 1998-02-18 |
Family
ID=17887115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1300625A Expired - Lifetime JP2717106B2 (en) | 1989-11-17 | 1989-11-17 | Heat storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2717106B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2927615B2 (en) * | 1992-07-28 | 1999-07-28 | シャープ株式会社 | Heat storage type electric hot air heater |
CA2258964A1 (en) * | 1996-06-25 | 1997-12-31 | Toshio Saburi | Heating device, regenerative heat generating body and protective sheet for same |
US6054692A (en) * | 1997-06-25 | 2000-04-25 | Takehiko Hitomi | Heating device, heat storing type heat generating body and protective sheet for the heating device |
KR100797580B1 (en) * | 2007-07-16 | 2008-01-24 | 에니웰에이치피(주) | Heat exchanger using electric heater |
SE534695C2 (en) | 2009-12-23 | 2011-11-22 | Fueltech Sweden Ab | Accumulator |
JP2012077939A (en) * | 2010-09-30 | 2012-04-19 | Panasonic Corp | Heat storage device, and air conditioner with the heat storage device |
BE1024015B1 (en) * | 2016-07-29 | 2017-10-27 | Cesi Power Exchanger | HEAT EXCHANGER FOR THERMAL SOLAR SENSOR |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51140252A (en) * | 1975-05-29 | 1976-12-03 | Daikin Ind Ltd | Regenerator |
JPS56132535U (en) * | 1980-03-10 | 1981-10-07 | ||
JPS63217153A (en) * | 1987-03-04 | 1988-09-09 | Matsushita Electric Ind Co Ltd | Quick hot water feed device |
-
1989
- 1989-11-17 JP JP1300625A patent/JP2717106B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03160272A (en) | 1991-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2717106B2 (en) | Heat storage device | |
GB2037975A (en) | Heat exchanger | |
CN103411262B (en) | A kind of new type solar energy heat pipe heat-collection and heat-accumulation radiant heating system | |
CN106595084B (en) | A kind of combined module type phase transition thermal storage water tank | |
Shinde et al. | Heat transfer investigation of PCM pipe bank thermal storage for space heating application | |
JP2700897B2 (en) | Heat storage device | |
JP2789363B2 (en) | Heat storage device | |
JP2620958B2 (en) | Heat storage device | |
CN205717871U (en) | A kind of phase transformation dilatation storage-type electric water heater | |
JP2761777B2 (en) | Heat storage device | |
JPH0443291A (en) | Heat storage element | |
CN209960768U (en) | Equal temperature field fluid heater | |
JPS5956046A (en) | Hot-water storing tank | |
CN205957477U (en) | Phase change energy storage heat pump water heater heat transfer device and water heater | |
JPH0525254U (en) | Regenerator for hot water | |
CN210486621U (en) | Heat exchange structure and beverage machine | |
JPH08110185A (en) | Thermal accumulator | |
CN219014631U (en) | Electric water heater | |
CN211503261U (en) | Improved heat exchange structure for electric wall-mounted boiler | |
CN221923653U (en) | Liquid pump heating machine | |
RU34236U1 (en) | Device for heating residential and industrial premises (options) | |
CN2151603Y (en) | Effective electric heater with wings | |
CN115884449A (en) | Electric heating device for high-temperature phase change heat storage system | |
CN2522773Y (en) | Electric heating device | |
JPH04335949A (en) | Heat storage type heat pipe type hot water supply device |