[go: up one dir, main page]

JP2710287B2 - Polycrystalline diamond for tools - Google Patents

Polycrystalline diamond for tools

Info

Publication number
JP2710287B2
JP2710287B2 JP1051485A JP5148589A JP2710287B2 JP 2710287 B2 JP2710287 B2 JP 2710287B2 JP 1051485 A JP1051485 A JP 1051485A JP 5148589 A JP5148589 A JP 5148589A JP 2710287 B2 JP2710287 B2 JP 2710287B2
Authority
JP
Japan
Prior art keywords
diamond
polycrystalline diamond
tool
tools
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1051485A
Other languages
Japanese (ja)
Other versions
JPH02232106A (en
Inventor
中村  勉
敬一朗 田辺
貴浩 今井
明彦 池ケ谷
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1051485A priority Critical patent/JP2710287B2/en
Publication of JPH02232106A publication Critical patent/JPH02232106A/en
Application granted granted Critical
Publication of JP2710287B2 publication Critical patent/JP2710287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、切削工具や耐摩工具等として用いるに好適
な、強度、耐溶着性、耐熱性及び耐摩耗性が著しく改善
された工具用多結晶ダイヤモンドに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a tool for a tool which has a remarkably improved strength, welding resistance, heat resistance and wear resistance suitable for use as a cutting tool, a wear-resistant tool and the like. Related to crystalline diamond.

〔従来の技術〕[Conventional technology]

工具用ダイヤモンドとしては、ダイヤモンドの微粉末
を超高圧下で焼結してなるダイヤモンド焼結体が非鉄金
属の切削工具、ドリルビツト、線引ダイス等に使用され
ている。
As a diamond for tools, a sintered diamond obtained by sintering fine powder of diamond under ultra-high pressure is used for cutting tools, drill bits, drawing dies and the like of non-ferrous metals.

例えば、特公昭52-12126号公報には、ダイヤモンド粉
末をWC-Co系超硬合金の粉末成形体又は焼結体に接せし
めて焼結し、Coの一部をダイヤモンド粉末中に結合金属
として侵入させることによつて、役10〜15体積%のCoを
含有するダイヤモンド焼結体を製造する技術が開示され
ている。このダイヤモンド焼結体は非鉄金属の切削工具
用としては実用的性能を有するが、耐熱性に劣る欠点が
あつた。例えば700℃以上に加熱すると耐摩耗性や強度
の低下がみられ、900℃以上の温度では焼結体が破壊し
てしまう。かかる耐熱性における欠点は、ダイヤモンド
粒子と結合材であるCoとの界面においてダイヤモンドの
黒鉛化が生じること、及び両者の加熱時における熱膨張
率の差に基ずく熱応力によるものと考えられる。
For example, Japanese Patent Publication No. 52-12126 discloses that diamond powder is brought into contact with a powder compact or sintered body of a WC-Co cemented carbide and sintered, and a part of Co is used as a bonding metal in the diamond powder. A technique for producing a diamond sintered body containing 10 to 15% by volume of Co by infiltration is disclosed. Although this diamond sintered body has practical performance as a cutting tool for non-ferrous metals, it has a drawback of poor heat resistance. For example, when heated to 700 ° C. or higher, wear resistance and strength are reduced, and at a temperature higher than 900 ° C., the sintered body is broken. It is considered that such a defect in heat resistance is caused by graphitization of diamond at the interface between diamond particles and Co as a binder and thermal stress based on a difference in coefficient of thermal expansion when both are heated.

上記のダイヤモンド焼結体の耐熱性を改善する試みと
して、例えば特開昭53-114589号公報には焼結体を酸処
理して結合金属Coを除去することが提案されている。し
かし、この方法では、除去されたCo部分が空孔となるた
め、耐熱性は向上しても強度が低下してしまうという欠
点があつた。
As an attempt to improve the heat resistance of the above-mentioned diamond sintered body, for example, Japanese Patent Application Laid-Open No. 53-114589 proposes that the sintered body is subjected to an acid treatment to remove the binding metal Co. However, in this method, since the removed Co portions become vacancies, there is a disadvantage that the heat resistance is improved but the strength is reduced.

一方、最近では化学的に気相から合成する方法によつ
てもダイヤモンドの合成が可能となつている。この化学
的気相合成法(CVD法)として、水素と炭化水素の原料
ガスを励起分解する各種の提案がある。例えば、特開昭
58-91100号公報には上記原料ガスを1000℃以上に加熱し
た熱電子放射材によつて予備加熱した後、加熱した基材
表面に導入して炭化水素の熱分解によりダイヤモンドを
析出する方法が;又特開昭58-110494号公報には水素ガ
スをマイクロ波無電極放電中を通過させた後、炭化水素
ガスと混合して同じようにダイヤモンドを析出させる方
法が;更に特開昭59-30398号公報には水素ガスと不活性
ガスとの混合ガスにマイクロ波を導入してプラズマを発
生させ、この中に基材を設置して300〜1300℃に加熱
し、炭化水素を分解させてダイヤモンドを析出させる方
法が夫々記載されている。又、特開昭61-158899号公報
には、原料ガスとして炭化水素に酸素含有ガスを混合す
ることが開示されている。
On the other hand, recently, it has become possible to synthesize diamond by a method of chemically synthesizing from the gas phase. As this chemical vapor synthesis method (CVD method), various proposals have been made to excite and decompose hydrogen and hydrocarbon source gases. For example,
No. 58-91100 discloses a method of preheating a raw material gas with a thermionic emitting material heated to 1000 ° C. or higher, and then introducing the raw material gas to a heated base material surface to precipitate diamond by thermal decomposition of hydrocarbons. JP-A-58-110494 discloses a method in which hydrogen gas is passed through a microwave electrodeless discharge and then mixed with a hydrocarbon gas to precipitate diamond in the same manner; No. 30398 discloses that a microwave is introduced into a mixed gas of a hydrogen gas and an inert gas to generate a plasma, a substrate is placed in the mixture, and the substrate is heated to 300 to 1300 ° C. to decompose the hydrocarbon. Methods for depositing diamond are described respectively. Japanese Patent Application Laid-Open No. 61-158899 discloses that an oxygen-containing gas is mixed with a hydrocarbon as a raw material gas.

これらのCVD法を応用することによつて、基材上に多
結晶ダイヤモンドをコーテイングした工具も提供されて
いる。しかし、ダイヤモンドの膜厚が薄く、且つダイヤ
モンドの基材との密着強度が不充分なため、工具として
充分な性能が得られていない。
By applying these CVD methods, tools having polycrystalline diamond coated on a substrate have also been provided. However, since the diamond film is thin and the adhesion strength of the diamond to the substrate is insufficient, sufficient performance as a tool has not been obtained.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明者等は、かかる従来のダイヤモンド工具の欠点
に検討を加え、先に特願昭63-34033号及び特願昭63-340
34号によつて、CVD法を応用して基材上に形成した多結
晶ダイヤモンドを化学的処理又は機械的手段により基材
から分離させ、焼入鋼や超硬合金からなる支持部材にろ
う付けすることにより、従来のダイヤモンド工具に比べ
強度及び耐摩耗性に劣ることなく、しかも遥かに耐熱性
に優れたダイヤモンド工具を提案した。
The present inventors have examined the drawbacks of the conventional diamond tool and have previously described Japanese Patent Application Nos. 63-34033 and 63-340.
According to No. 34, the polycrystalline diamond formed on the substrate by applying the CVD method is separated from the substrate by chemical treatment or mechanical means, and brazed to a support member made of hardened steel or cemented carbide. By doing so, we have proposed a diamond tool which is not less inferior in strength and wear resistance than conventional diamond tools, and which is far superior in heat resistance.

しかし、上記提案によるダイヤモンド工具の性能評価
を進めた結果、工具素材としての多結晶ダイヤモンドの
種類により、工具性能、特に耐欠損性と耐摩耗性に差異
があることを見い出し、本発明に至つたものである。
However, as a result of progressing the performance evaluation of the diamond tool according to the above proposal, it was found that there was a difference in tool performance, particularly in chipping resistance and wear resistance, depending on the type of polycrystalline diamond as a tool material, leading to the present invention. Things.

即ち、本発明は強度、耐溶着性、耐熱性及び耐摩耗性
を改善し、特に耐欠損性と耐摩耗性に優れた工具用多結
晶ダイヤモンドを提供することを目的とする。
That is, an object of the present invention is to improve the strength, welding resistance, heat resistance and wear resistance, and to provide a polycrystalline diamond for a tool which is particularly excellent in chipping resistance and wear resistance.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するため、本発明の工具用多結晶ダ
イヤモンドは、厚さが50μm以上、平均結晶粒径が50μ
m以下であつて、純度の指標としてラマン分光分析によ
るダイヤモンド炭素(X)と非ダイヤモンド炭素(Y)
のピーク比(Y/X)が0.2以下、好ましくは0.05以下であ
って、且つ比抵抗が107Ω・cm以上であることを特徴と
する。
In order to achieve the above object, the polycrystalline diamond for tools of the present invention has a thickness of 50 μm or more and an average crystal grain size of 50 μm.
m or less and diamond carbon (X) and non-diamond carbon (Y) by Raman spectroscopy as indices of purity.
Is characterized by having a peak ratio (Y / X) of 0.2 or less, preferably 0.05 or less, and a specific resistance of 10 7 Ω · cm or more.

多結晶ダイヤモンドの純度の指標としては、ラマン分
光分析のピーク比と比抵抗以外にも、光透過率、誘電損
失等を用いることができ、その場合には波長600nmでの
可視光透過率が10%以上であること、100KHzでの誘電損
失が0.2以下であることが夫夫必要な条件となるが、こ
れらはそれぞれ直接対応する関係にあるとは云えない。
As an index of the purity of polycrystalline diamond, in addition to the peak ratio and the specific resistance of Raman spectroscopy, light transmittance, dielectric loss, and the like can be used.In this case, the visible light transmittance at a wavelength of 600 nm is 10%. % And a dielectric loss at 100 KHz of 0.2 or less are necessary conditions, but they cannot be said to have a directly corresponding relationship.

〔作用〕[Action]

多結晶ダイヤモンドが高純度であることは特に重要な
条件であり、純度の指標としては前記の如くラマン分光
分析のピーク比と比抵抗、光透過率、及び誘電損失のい
ずれかを用いる。これらの純度の指標において、ピーク
比(Y/X)が0.2を超える場合、比抵抗が107Ω・cmより
小さい場合、波長600nmでの可視光透過率が10%の範囲
より小さい場合、又は100KHzでの誘電損失が0.2より大
きい場合には、多くの非ダイヤモンド炭素やその他の不
純物が含有され純度が低下したと判断することができ、
このようなダイヤモンドは工具として使用する際に大き
な欠損が生じやすくなると共に、粒子の微小破砕や脱落
による摩耗が顕著となる。これは、非ダイヤモンド炭素
がダイヤモンド粒子間に存在するために粒子間結合強度
が低下すること、並びにこのような条件下で析出したダ
イヤモンド粒子内には欠陥が多く存在するため粒子自体
の強度も小さいこと等によるものと推定される。
It is a particularly important condition that polycrystalline diamond has high purity. As an index of the purity, any one of peak ratio and specific resistance, light transmittance, and dielectric loss of Raman spectroscopic analysis is used as described above. In these purity indexes, when the peak ratio (Y / X) exceeds 0.2, when the specific resistance is smaller than 10 7 Ω · cm, when the visible light transmittance at a wavelength of 600 nm is smaller than 10%, or If the dielectric loss at 100 KHz is greater than 0.2, it can be determined that the purity has decreased due to the inclusion of many non-diamond carbon and other impurities,
Such a diamond is liable to generate large defects when used as a tool, and wear due to minute crushing or falling off of particles becomes remarkable. This is because the non-diamond carbon is present between the diamond particles, which lowers the intergranular bond strength, and the diamond particles deposited under such conditions have a large number of defects, so the strength of the particles themselves is also small. It is presumed to be due to the above.

かかる条件を満たす多結晶ダイヤモンドは、前記した
CVD法に基ずいて合成条件を選定することによつて製造
できるが、特に原料ガスの励起にプラズマを用いるこ
と、及び原料ガスとして炭化水素と水素の外に酸素や水
蒸気のような酸素含有ガスを使用することが有効であ
る。尚、非ダイヤモンド炭素以外の不純物も極力混入し
ないように合成条件を選定することが好ましい。
Polycrystalline diamond satisfying such conditions is described above.
It can be produced by selecting the synthesis conditions based on the CVD method.In particular, plasma is used to excite the source gas, and oxygen-containing gas such as oxygen and water vapor is used as the source gas in addition to hydrocarbons and hydrogen. It is effective to use. Note that it is preferable to select synthesis conditions so that impurities other than non-diamond carbon are not mixed as much as possible.

又、多結晶ダイヤモンドの厚さを50μm以上とするの
は、切削工具とした場合の寿命時の逃げ面摩耗幅が50μ
m以上となることが多いこと、並びに50μmより薄いと
強度が低下して破損しやすくなるためである。更に耐摩
耗性を要求する場合には厚さを0.3〜3.0mmとすることが
好ましい。厚さを厚くすることによつて放熱特性が良好
となり、工具使用時の刃先温度の上昇が抑制されるため
である。
Further, the thickness of the polycrystalline diamond is set to 50 μm or more because the flank wear width at the time of life when the cutting tool is used is 50 μm.
m or more, and when the thickness is less than 50 μm, the strength is reduced and the material is easily broken. Further, when abrasion resistance is required, the thickness is preferably set to 0.3 to 3.0 mm. This is because, by increasing the thickness, the heat radiation characteristics are improved, and the rise in the temperature of the cutting edge when using the tool is suppressed.

更に、平均結晶粒径を50μm以下とするのは耐欠損性
を向上させるためであり、1μm〜10μmの範囲が一層
好ましい。この範囲より大きいと耐欠損性が徐々に低下
し、又この範囲よりも小さいと耐摩耗性が低下するから
である。このような結晶粒径の制御は、本発明者等によ
る特願昭63-139143号及び特願昭63-148631号等に記載の
方法によつて行なうことが出来る。
Further, the reason why the average crystal grain size is set to 50 μm or less is to improve the fracture resistance, and the range of 1 μm to 10 μm is more preferable. If it is larger than this range, the fracture resistance gradually decreases, and if it is smaller than this range, the wear resistance decreases. Such control of the crystal grain size can be performed by the method described in Japanese Patent Application Nos. 63-139143 and 63-148631 by the present inventors.

尚、CVD法等により合成された本発明の多結晶ダイヤ
モンドは、前記特願昭63-34033号及び特願昭63-34034号
と同様に、基材から分離して支持部材にろう付けして工
具とするか、或いは厚いものはそのまゝ単体工具として
使用する。
The polycrystalline diamond of the present invention synthesized by a CVD method or the like is separated from the base material and brazed to a supporting member in the same manner as in Japanese Patent Application Nos. 63-34033 and 63-34034. Tools or thick ones are used as single tools.

〔実施例〕〔Example〕

実施例1 マイクロ波プラズマCVD法により、原料ガスとしてH22
50cc/min、CH45cc/min、及びAr80cc/minを用い、圧力20
0torrでMo基材上に多結晶ダイヤモンドを20時間で約0.5
mmの厚さに形成した。この多結晶ダイヤモンド(A)の
成長上面での平均結晶粒径は約40μmであつた。次に、
原料ガスに更に1.0容量%の水蒸気を添加した他は上記
と同じ条件により、20時間で約0.4mmの厚さに多結晶ダ
イヤモンド(B)を形成した。この平均結晶粒径は約25
μmであつた。
Example 1 H 2 2 was used as a source gas by microwave plasma CVD.
50cc / min, CH 4 5cc / min, and the Ar80cc / min using a pressure 20
Polycrystalline diamond on Mo substrate at 0 torr about 0.5 in 20 hours
mm. The average crystal grain size on the growth upper surface of the polycrystalline diamond (A) was about 40 μm. next,
Polycrystalline diamond (B) was formed to a thickness of about 0.4 mm in 20 hours under the same conditions as above except that 1.0% by volume of steam was further added to the raw material gas. This average grain size is about 25
μm.

その後、熱王水処理によりMo基材を溶解除去して多結
晶ダイヤモンドを回収したところ、(A)は黒色不透明
であつたが、(B)は白色透明を呈していた。又、比重
は共に3.52であつたが、ラマン分光分析の結果は第1図
に示す通りであつて、1800cm-1〜1000cm-1の間のバツク
グランドから測定した1360〜1580cm-1の非ダイヤモンド
炭素のピーク(Y)と、1333cm-1のピーク周辺部をバツ
クグランドとして測定したダイヤモンド炭素のピーク
(X)とのピーク比(Y/X)は(A)が0.32であるのに
対し(B)は0.05であり、及び比抵抗は(A)が3×10
3Ω・cmに対して(B)は7×1012Ω・cmであつた。
又、他の純度の指標をみても、波長600nmでの可視光透
過率(試料厚さ50μm)が(A)3%に対して(B)60
%、及び100KHzでの誘電損失が(A)0.95に対して
(B)0.03であつて、明らかに(B)の方が非ダイヤモ
ンド炭素の含有量が少なく高純度であることが判つた。
Thereafter, when the Mo substrate was dissolved and removed by hot aqua regia treatment to recover the polycrystalline diamond, (A) was black and opaque, but (B) was white and transparent. The specific gravity was 3.52, and the result of Raman spectroscopy was as shown in FIG. 1. The non-diamond of 1360 to 1580 cm -1 measured from the back ground between 1800 cm -1 and 1000 cm -1. The peak ratio (Y / X) between the carbon peak (Y) and the diamond carbon peak (X) measured using the periphery of the peak at 1333 cm -1 as the background is (A) of 0.32, while (B) is 0.32. ) Is 0.05, and the specific resistance (A) is 3 × 10
(B) was 7 × 10 12 Ω · cm against 3 Ω · cm.
Looking at other indexes of purity, the visible light transmittance at a wavelength of 600 nm (sample thickness 50 μm) is (A) 3% and (B) 60%.
%, And the dielectric loss at 100 KHz was (A) 0.95 to (B) 0.03, clearly indicating that (B) had a lower non-diamond carbon content and higher purity.

次に、工具性能を評価するため、各多結晶ダイヤモン
ドを超硬合金の台金にろう付けし、切削チツプを作製し
た。比較材として、結合材Coを10容量%含有する平均粒
径10μmの超高圧焼結ダイヤモンドを用いて、同様に切
削チツプを作製した。被削材として外周面に軸方向に伸
びる4本の溝が形成されたA390合金(Al-17Si)丸棒を
用い、切削速度300m/min、切り込み0.2mm、送り0.1mm/r
ev.の条件で乾式切削し、工具性能を評価した。
Next, in order to evaluate tool performance, each polycrystalline diamond was brazed to a cemented carbide base metal to prepare a cutting chip. As a comparative material, an ultrahigh-pressure sintered diamond containing 10% by volume of a binder Co and having an average particle size of 10 μm was similarly used to produce a cutting chip. A390 alloy (Al-17Si) round bar with four grooves extending in the axial direction is formed on the outer peripheral surface as a work material, cutting speed 300m / min, depth of cut 0.2mm, feed 0.1mm / r
Dry cutting was performed under the conditions of ev., and the tool performance was evaluated.

その結果、(A)は40分切削時点で欠損したが、
(B)は欠損せず、90分切削時での平均摩耗幅は0.04mm
であつた。比較材も欠損しなかつたが、90分切削時での
平均摩耗幅が0.09mmであつた。
As a result, (A) was lost at the time of cutting for 40 minutes,
(B) has no defect and the average wear width after 90 minutes cutting is 0.04mm
It was. Although the comparative material did not break, the average wear width after cutting for 90 minutes was 0.09 mm.

実施例2 熱電子放射材として直径0.5mm及び長さ20mmの直線状
タングステンフイラメントを用い、水素、炭素源及び水
蒸気からなる原料ガスを分解励起して、Si基材上に第1
表に示す条件で多結晶ダイヤモンドを10時間形成させ
た。
Example 2 A linear tungsten filament having a diameter of 0.5 mm and a length of 20 mm was used as a thermionic emitting material, and a raw material gas comprising hydrogen, a carbon source and water vapor was decomposed and excited to form a first material on a Si substrate.
Polycrystalline diamond was formed for 10 hours under the conditions shown in the table.

得られた各多結晶ダイヤモンド(C)〜(H)を酸処
理してSi基材から分離回収したところ、(D)と(E)
は黒色不透明であつたが、他はいずれも白色半透明であ
つた。各多結晶ダイヤモンドの膜厚と平均結晶粒径、及
び純度の指標を測定した結果を第2表に示した。
When each of the obtained polycrystalline diamonds (C) to (H) was subjected to an acid treatment and separated and recovered from the Si substrate, (D) and (E)
Was black and opaque, but all others were white and translucent. Table 2 shows the results of measuring the thickness, average crystal grain size, and index of purity of each polycrystalline diamond.

(注)ピーク比(X/Y)、透過率、及び誘電損失の測定
は実施例1と同様である。
(Note) The measurement of the peak ratio (X / Y), transmittance, and dielectric loss is the same as in Example 1.

各多結晶ダイヤモンド(C)〜(H)を超硬合金の台
金にろう付けして切削チツプを作製し、外周面に軸方向
に伸びる4本の溝が形成されたAC8A合金(Al-12Si)丸
棒を被削材として、切削速度500m/min、切り込み0.2m
m、送り0.1mm/rev.の条件で乾式で90分間切削した結果
を第3表に示した。
Each of polycrystalline diamonds (C) to (H) is brazed to a cemented carbide base metal to produce a cutting chip, and an AC8A alloy (Al-12Si) having four axially extending grooves formed on the outer peripheral surface ) Using a round bar as the work material, cutting speed 500m / min, depth of cut 0.2m
Table 3 shows the results of cutting for 90 minutes in a dry condition under conditions of m and feed rate of 0.1 mm / rev.

本発明による試料(C)、(F)及び(G)はいずれ
も良好な工具特性を示したが、試料(D)は純度が低い
が比較的微粒であつたため欠損が生じなかつたものの、
純度が低いので耐摩耗性に劣つており、試料(E)は粒
度が粗く純度も低いため、及び(H)は厚さが薄く強度
が低下したため夫々短時間で欠損した。
Although the samples (C), (F) and (G) according to the present invention all showed good tool properties, the sample (D) had a low purity but was relatively fine so that no defects occurred,
Since the purity was low, the abrasion resistance was inferior. The sample (E) was defective in a short time because the particle size was coarse and the purity was low, and the sample (H) was thin and the strength was reduced, respectively.

実施例3 C2H6:H2(容量比1:100)の混合ガスに更にO2を0〜2
0容量%添加した原料ガスを用い、ガス流量200cc/min及
び圧力180Torrに調整し、高周波(13.56MHz)を900Wの
出力で与えて原料ガスを励起させ、20時間の反応時間で
Si基材上に厚さ0.5〜0.7mmの多結晶ダイヤモンドを形成
させた。
Example 3 C 2 H 6: H 2 ( volume ratio 1: 100) 0-2 further O 2 mixed gas of
Using a source gas with 0% by volume added, adjust the gas flow rate to 200 cc / min and the pressure to 180 Torr, apply high frequency (13.56 MHz) at an output of 900 W to excite the source gas, and with a 20 hour reaction time
Polycrystalline diamond having a thickness of 0.5 to 0.7 mm was formed on a Si substrate.

得られた多結晶ダイヤモンドの中から平均粒径が7μ
m及び厚さ650μmで、各純度の指標に基ずいて純度の
異なるものを選択し、夫々超硬合金のホルダーにろう付
けして刃付け処理を行ない、硬質セラミツクスの切削性
能を評価した。切削評価は、アルミナ焼結体丸棒(Hv=
2000kg/mm2)の外周旋削を、切削速度50m/min、切り込
み0.2mm、送り0.25mm/rev.の条件で湿式により15分間行
なつた。純度の指標と逃げ面摩耗幅との関係を求め、夫
々第2図から第5図に示した。
The average particle size of the obtained polycrystalline diamond is 7 μm.
m and a thickness of 650 μm, each having a different purity were selected on the basis of each purity index, and each was brazed to a cemented carbide holder and subjected to a blade treatment to evaluate the cutting performance of the hard ceramics. The cutting evaluation was performed using a round alumina sintered body (Hv =
The outer periphery turning of 2000 kg / mm 2 ) was performed for 15 minutes by a wet method under the conditions of a cutting speed of 50 m / min, a cutting depth of 0.2 mm, and a feed of 0.25 mm / rev. The relationship between the index of purity and the flank wear width was determined and is shown in FIGS. 2 to 5, respectively.

この結果から、いずれかの純度の指標が本発明の範囲
内にあるものは、優れた耐摩耗性を有することが判る。
From this result, it can be seen that any of the indices of purity within the range of the present invention have excellent wear resistance.

〔発明の効果〕〔The invention's effect〕

本発明によれば、強度、耐溶着性、耐熱性及び耐摩耗
性を改善し、特に耐欠損性と耐摩耗性に優れた工具用多
結晶ダイヤモンドを提供することが出来る。
ADVANTAGE OF THE INVENTION According to this invention, strength, welding resistance, heat resistance, and abrasion resistance are improved, and the polycrystalline diamond for tools excellent especially in fracture resistance and abrasion resistance can be provided.

従つて、この多結晶ダイヤモンドを用いて高性能の工
具を作製でき、特に切削工具、堀削工具、ドレツサー等
の工具用として有効である。
Therefore, a high-performance tool can be manufactured using the polycrystalline diamond, and it is particularly effective for tools such as cutting tools, excavating tools, and dressers.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例で作成した多結晶ダイヤモンドのラマン
分光分析結果を示すグラフ、第2図から第5図は実施例
3で作成した多結晶ダイヤモンドの逃げ面摩耗幅と、純
度指標としてのラマン分光分析ピーク比、比抵抗、可視
光透過率、誘電損失との関係を夫々示すグラフである。
FIG. 1 is a graph showing the results of Raman spectroscopic analysis of the polycrystalline diamond prepared in Example, and FIGS. 2 to 5 are flank wear widths of the polycrystalline diamond prepared in Example 3 and Raman as an index of purity. It is a graph which shows the relationship between a spectral analysis peak ratio, specific resistance, visible light transmittance, and dielectric loss, respectively.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池ケ谷 明彦 兵庫県伊丹市昆陽北1丁目1番1号 住 友電気工業株式会社伊丹製作所内 (72)発明者 藤森 直治 兵庫県伊丹市昆陽北1丁目1番1号 住 友電気工業株式会社伊丹製作所内 (56)参考文献 特開 昭62−107068(JP,A) 特開 昭63−33570(JP,A) 特開 昭64−52699(JP,A) 特開 昭63−55197(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akihiko Ikegaya 1-1-1, Koyokita, Itami-shi, Hyogo Sumitomo Electric Industries, Ltd. Itami Works (72) Inventor Naoji Fujimori 1-chome, Koyokita, Itami-shi, Hyogo No. 1-1 In Itami Works of Sumitomo Electric Industries, Ltd. (56) References JP-A-62-107068 (JP, A) JP-A-63-33570 (JP, A) JP-A-64-52699 (JP, A) ) JP-A-63-55197 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】支持部材にろう付けして工具とするか又は
そのまま単体工具とする多結晶ダイヤモンドであって、
厚さが50μm以上、平均結晶粒径が50μm以下であり、
ラマン分光分析によるダイヤモンド炭素(X)と非ダイ
ヤモンド炭素(Y)のピーク比(Y/X)が0.2以下、比抵
抗が107Ω・cm以上であることを特徴とする工具用多結
晶ダイヤモンド。
Claims: 1. A polycrystalline diamond which is brazed to a support member to form a tool or as a single tool as it is,
The thickness is 50 μm or more, the average crystal grain size is 50 μm or less,
A polycrystalline diamond for tools, having a peak ratio (Y / X) of diamond carbon (X) to non-diamond carbon (Y) of 0.2 or less and a specific resistance of 10 7 Ω · cm or more by Raman spectroscopy.
【請求項2】支持部材にろう付けして工具とするか又は
そのまま単体工具とする多結晶ダイヤモンドであって、
厚さが50μm以上、平均結晶粒径が50μm以下であり、
波長600nmでの可視光透過率が10%以上であることを特
徴とする工具用多結晶ダイヤモンド。
2. A polycrystalline diamond which is brazed to a support member to form a tool or as a single tool as it is,
The thickness is 50 μm or more, the average crystal grain size is 50 μm or less,
Polycrystalline diamond for tools, having a visible light transmittance of 10% or more at a wavelength of 600 nm.
【請求項3】支持部材にろう付けして工具とするか又は
そのまま単体工具とする多結晶ダイヤモンドであって、
厚さが50μm以上、平均結晶粒径が50μm以下であり、
100KHzでの誘電損失が0.2以下であることを特徴とする
工具用多結晶ダイヤモンド。
3. Polycrystalline diamond brazed to a support member to form a tool or as a single tool,
The thickness is 50 μm or more, the average crystal grain size is 50 μm or less,
Polycrystalline diamond for tools characterized by having a dielectric loss of 0.2 or less at 100 KHz.
JP1051485A 1989-03-03 1989-03-03 Polycrystalline diamond for tools Expired - Lifetime JP2710287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1051485A JP2710287B2 (en) 1989-03-03 1989-03-03 Polycrystalline diamond for tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1051485A JP2710287B2 (en) 1989-03-03 1989-03-03 Polycrystalline diamond for tools

Publications (2)

Publication Number Publication Date
JPH02232106A JPH02232106A (en) 1990-09-14
JP2710287B2 true JP2710287B2 (en) 1998-02-10

Family

ID=12888263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1051485A Expired - Lifetime JP2710287B2 (en) 1989-03-03 1989-03-03 Polycrystalline diamond for tools

Country Status (1)

Country Link
JP (1) JP2710287B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296803A (en) * 1988-05-25 1989-11-30 Matsushita Electric Ind Co Ltd Reference voltage circuit
JP2813077B2 (en) * 1991-05-30 1998-10-22 京セラ株式会社 Sliding member
JP4562844B2 (en) * 2000-02-23 2010-10-13 浜松ホトニクス株式会社 Photocathode and electron tube
JP5181785B2 (en) * 2008-02-08 2013-04-10 住友電気工業株式会社 Method for producing diamond polycrystalline substrate
EP3369492B1 (en) 2015-10-30 2020-09-02 Sumitomo Electric Industries, Ltd. Wear-resistant tool
US20220297201A1 (en) * 2019-09-18 2022-09-22 Sumitomo Electric Hardmetal Corp. Diamond cutting tool

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713298B2 (en) * 1985-10-31 1995-02-15 京セラ株式会社 Diamond coated cutting tools
JPS6333570A (en) * 1986-07-23 1988-02-13 Kyocera Corp Diamond coated cutting tool
JP2501589B2 (en) * 1986-07-23 1996-05-29 住友電気工業株式会社 Vapor-phase synthetic diamond and its synthesis method
JPS6355197A (en) * 1986-08-25 1988-03-09 Toshiba Corp Production of diamond having high purity

Also Published As

Publication number Publication date
JPH02232106A (en) 1990-09-14

Similar Documents

Publication Publication Date Title
EP0365218B1 (en) A polycrystal diamond fluted tool and a process for the production of the same
JPH11505483A (en) Corrosion and oxidation resistant grades of PCD / PCBN for wood processing applications
GB2522316A (en) Polycrystalline chemical vapour deposited diamond tool parts and methods of fabricating, mounting, and using the same
JP2949863B2 (en) High toughness polycrystalline diamond and method for producing the same
KR101104051B1 (en) Coated abrasive
JP2710287B2 (en) Polycrystalline diamond for tools
JPH0791651B2 (en) Diamond coated tungsten carbide based cemented carbide cutting tool chip
JPS63100182A (en) Cutting tool tip made of diamond-coated tungsten carbide-based sintered hard alloy
JPS59170262A (en) Surface-coated tool parts with excellent wear resistance
JP2557560B2 (en) Polycrystalline diamond cutting tool and manufacturing method thereof
JPH05253705A (en) Diamond cutting tool and manufacture thereof
JP2792136B2 (en) High toughness polycrystalline diamond and method for producing the same
JPH0679504A (en) Polycrystalline diamond cutting tool and manufacturing method thereof
JP2571821B2 (en) Method for producing granular polycrystalline diamond film
JPH04261703A (en) polycrystalline diamond cutting tools
JP3235206B2 (en) Diamond cutting tool and manufacturing method thereof
JPS59166671A (en) Surface-coated tool parts with excellent wear resistance
JPH0557508A (en) Vapor-phase synthetic diamond coated cutting tool
JPH01225774A (en) High-hardness polycrystalline diamond tool
JP3266417B2 (en) Manufacturing method of super-hard composite member
JPH08243804A (en) Diamond coated cemented-carbide-made cutting tool excellent in resistance against cutting damage
JPS59166673A (en) Surface-coated tool member excellent in wear resistance
JPH07100858B2 (en) Diamond coated tungsten carbide based cemented carbide cutting tool chip
JPH03281106A (en) Polycrystaline diamond tool and manufacture thereof
JPS635470B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12