JP2710115B2 - Optical gas concentration measurement device - Google Patents
Optical gas concentration measurement deviceInfo
- Publication number
- JP2710115B2 JP2710115B2 JP31423488A JP31423488A JP2710115B2 JP 2710115 B2 JP2710115 B2 JP 2710115B2 JP 31423488 A JP31423488 A JP 31423488A JP 31423488 A JP31423488 A JP 31423488A JP 2710115 B2 JP2710115 B2 JP 2710115B2
- Authority
- JP
- Japan
- Prior art keywords
- optical path
- optical
- gas
- path difference
- span
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、大気等に含まれる特定ガスの濃度を、ガス
の屈折率に基づいて測定する光学式ガス濃度測定装置、
より詳しくは基準ガスと被測定ガスの屈折率の差により
生じる干渉縞を基準位置に調整する校正技術に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an optical gas concentration measuring device for measuring the concentration of a specific gas contained in the atmosphere or the like based on the refractive index of the gas.
More specifically, the present invention relates to a calibration technique for adjusting an interference fringe caused by a difference in refractive index between a reference gas and a measured gas to a reference position.
(従来技術) 光学式ガス濃度測定装置は、基準ガスが流入する第1
のセルと、被測定ガスが流入する第2のセルを併設し、
これらのセルに同一光源からの光を通過させることによ
りガスの密度の差に起因して干渉縞を生じさせ、特定の
干渉縞の移動量を光電検出器により出力レベル変化とし
て検出するように構成されている。(Prior Art) An optical gas concentration measuring device is a first type in which a reference gas flows.
And a second cell into which the gas to be measured flows,
By passing light from the same light source through these cells, interference fringes are generated due to the difference in gas density, and the amount of movement of specific fringes is detected as a change in output level by a photoelectric detector. Have been.
(発明が解決しようとする課題) このような装置にあっては、基準濃度のガスに対する
特定干渉縞の発生位置が測定精度に大きく影響を与える
ため、通常光源と検出器を結ぶ光路に光路差調整溶の光
学部材、例えば光学楔を挿入して、検査治具を用いて干
渉縞が基準位置となるように螺子等の調整部材により光
学楔を移動させることが行なわれている。(Problems to be Solved by the Invention) In such an apparatus, since the generation position of the specific interference fringe with respect to the gas of the reference concentration greatly affects the measurement accuracy, the optical path difference between the light source and the detector is usually different. An optical member for adjustment, for example, an optical wedge is inserted, and the optical wedge is moved by an adjusting member such as a screw using an inspection jig so that the interference fringe becomes a reference position.
しかしながら、人手にたよるために校正結果に個人差
を生じて信頼性の低下を招くばかりでなく、校正周期が
長くなり測定結果の信頼性を低下させるという問題があ
った。However, there is a problem that not only the calibration result is caused due to the manual operation, but the calibration result is caused to vary from individual to individual, and the reliability is deteriorated. In addition, the calibration cycle is lengthened and the reliability of the measurement result is reduced.
本発明はこのような問題に鑑みてなされたものであっ
て、人手を介することなく自動的に校正を行なうことが
できる新規な光学式ガス濃度測定装置を提供することに
ある。The present invention has been made in view of such a problem, and an object of the present invention is to provide a novel optical gas concentration measurement device that can automatically perform calibration without manual operation.
(課題を解決するための手段) このような問題を解消するために本発明においては、
被測定ガスが流入する第1の光学セルと、屈折率が既知
のガスが流入する第2の光学セルに同一光源からの光束
を入射させ、前記二種類のガスの屈折率の差を干渉縞の
移動量として光電検出手段により電気信号に変換するガ
ス濃度測定装置において、前記光学セルの光路に挿入さ
れた光路に挿入された光路差補正手段と、該光路差補正
手段を駆動する駆動機構と、前記光路差補正手段が初期
位置に到達したことを検出する手段と、前記光路差補正
手段が初期位置から一方向への移動に伴って変化する光
電検出器からの信号の2つの極値から適正な測定レンジ
を決定するスパン演算手段、該スパン演算手段からのデ
ータによりスパンを設定するスパン設定手段、校正時に
前記光学セルに導入されるガスに対応して前記スパン演
算手段から出力されるべき測定値を設定する基準値設定
手段、前記光路差補正部材が他方向に移動したとき、前
記基準値設定手段とスパン設定手段からの出力を比較し
て一致した時点で前記光路差補正部材の移動を停止させ
る比較手段と、校正開始時に前記2つの光学セルに同一
のガスを注入する手段を備えるようにした。(Means for Solving the Problems) In order to solve such a problem, in the present invention,
A light beam from the same light source is incident on a first optical cell into which a gas to be measured flows and a second optical cell into which a gas having a known refractive index flows, and the difference between the refractive indices of the two gases is determined by interference fringes. In a gas concentration measuring device that converts an amount of movement into an electric signal by photoelectric detection means, an optical path difference correction means inserted in an optical path inserted in an optical path of the optical cell, and a driving mechanism for driving the optical path difference correction means Means for detecting that the optical path difference correction means has reached the initial position, and means for detecting the optical path difference correction means from two extreme values of a signal from the photoelectric detector which changes with movement in one direction from the initial position. Span calculating means for determining an appropriate measurement range, span setting means for setting a span based on data from the span calculating means, output from the span calculating means corresponding to gas introduced into the optical cell during calibration. When the optical path difference correction member moves in the other direction, the output from the reference value setting means and the output from the span setting means are compared with each other, and when the optical path difference correction member agrees, the optical path difference correction member is set. And a means for injecting the same gas into the two optical cells at the start of calibration.
(作用) 測定レンジの上限、及び下限を検出器出力の2つの極
値に基づいて割出し、この決定されたレンジでもって指
定された基準値に光路差補正部材をセットさせることに
より、発光素子や検出器の経年変化、及び光学部材の汚
染などに起因する出力レベルの変動を補正するととも
に、特別な校正治具や人手を要することなく、光学系の
汚染や劣化による出力レベルの経時的な変動を自動的に
補正することができる。(Action) The upper limit and the lower limit of the measurement range are determined based on the two extreme values of the detector output, and the optical path difference correction member is set to the reference value specified by the determined range, thereby obtaining the light emitting element. Of output levels due to aging of the sensor and detectors, and contamination of optical components, etc., and the output level over time due to contamination and deterioration of the optical system can be corrected without the need for special calibration jigs or human intervention. Fluctuations can be automatically corrected.
(実施例) そこで、以下に本発明の詳細を図示した実施例に基づ
いて説明する。(Embodiment) Therefore, the details of the present invention will be described below based on an illustrated embodiment.
第1図は本発明の一実施例を示すものであって、図中
符号1、2は、それぞれ被測定ガス、及び基準ガスがそ
れぞれ流入する光学セルで、光軸が平行となるように配
置され、プリズム等の平行光束発生部材3を介して光源
4からの光が入射している。FIG. 1 shows an embodiment of the present invention. In the figure, reference numerals 1 and 2 denote optical cells into which a gas to be measured and a reference gas respectively flow, which are arranged so that their optical axes are parallel. The light from the light source 4 is incident through a parallel light beam generating member 3 such as a prism.
出射側には、後述する光路差補正部材5を介して収束
部材6が対向配置され、ここで生じる干渉縞の位置を光
電検出器7のレベル変化として検出するように構成され
ている。On the emission side, a converging member 6 is disposed to face through an optical path difference correcting member 5 described later, and is configured to detect the position of the interference fringe generated here as a level change of the photoelectric detector 7.
5は、前述した光路差補正部材で、第2図に示したよ
うにレバー20により回動する軸21に光路間隔1を隔てて
断面矩形のガラス片22、23を一定の角度θを開け、少な
くとも一方を軸周りに相対的に移動可能とするように螺
子24により固定して、伝動機構を介してパルスモータ8
により軸21を回動させるように構成されている。9は、
位置検出用スイッチで、光路差補正部材5が測定レンジ
外に設定された初期位置まで待避したとき、位置検出板
10により作動する位置に配置されている。5 is an optical path difference correction member as described above, and as shown in FIG. 2, a glass section 22, 23 having a rectangular cross section is formed at a fixed angle θ on an axis 21 rotated by a lever 20 with an optical path interval 1 therebetween. At least one is fixed by a screw 24 so as to be relatively movable around the axis, and the pulse motor 8 is
Thus, the shaft 21 is rotated. 9 is
When the optical path difference correction member 5 is retracted to the initial position set outside the measurement range by the position detection switch, the position detection plate
It is located at the position activated by 10.
15は外部スイッチ16やキーボード18からの指令を受け
る校正装置で、これの実施例を第3図に基づいて以下に
詳説する。Reference numeral 15 denotes a calibration device which receives commands from the external switch 16 and the keyboard 18, and an embodiment of the calibration device will be described in detail below with reference to FIG.
符号30は、パルス発生回路で、校正指令回路41から校
正指令信号が入力した時点で光路差補正部材5を初期位
置S(第5図)の方向に、また位置検出用スイッチ9
からの信号が入力した時点で第1の方向に、さらに第
2の極値を越えた時点で反転させ、さらに比較回路39か
らの信号が入力した時点でパルス出力を停止して光路差
補正部材5の移動を停止させるように構成されている。Reference numeral 30 denotes a pulse generating circuit which, when a calibration command signal is inputted from the calibration command circuit 41, moves the optical path difference correcting member 5 in the direction of the initial position S (FIG. 5) and the position detecting switch 9
The signal is inverted in the first direction when the signal from the comparator 39 is input, and when the signal exceeds the second extreme value, and the pulse output is stopped when the signal from the comparison circuit 39 is input, and the optical path difference correcting member is stopped. 5 is stopped.
32は、第1極値検出回路で、光路差補正部材5が初期
位置から折返して検出器7の出力が最初の極値、この実
施例では極小値を示したときに信号を出力して、パルス
発生回路30からのパルスを出力してパルスモータ8を作
動させ、同時にこのときの検出器7の出力、つまり極小
値を第1極値記憶回路33に格納させるものである。34
は、第2極値検出回路で、光路差補正部材5の移動によ
り第2の極値、この実施例では極大値が出力したとき、
これを検出して信号を出力して、パルス発生回路30の作
動を停止させるとともに、このときの検出器7の出力、
つまり極大値を第2極値記憶回路34に格納させるもので
ある。37は、スパン演算回路で、第1、第2極値記憶回
路33、34からのデータを読み出し極値間での出力が比較
的高い直線性を有する領域、例えば極大値の8.5%と91.
5%のレベルを算出して一方をスパンの下限値、他方を
上限値として上限値及び下限値間のレベル差をガス濃度
に対応するように演算し、この演算結果をスパン設定回
路38にガス濃度として設定するものである。Numeral 32 denotes a first extremum detection circuit, which outputs a signal when the optical path difference correction member 5 returns from the initial position and the output of the detector 7 shows the first extremum, in this embodiment, the extremum, The pulse from the pulse generation circuit 30 is output to operate the pulse motor 8, and at the same time, the output of the detector 7, that is, the minimum value, is stored in the first extreme value storage circuit 33. 34
Is a second extreme value detection circuit, which outputs a second extreme value, in this embodiment, a maximum value, by the movement of the optical path difference correction member 5,
This is detected and a signal is output to stop the operation of the pulse generation circuit 30. At this time, the output of the detector 7
That is, the maximum value is stored in the second extreme value storage circuit 34. Reference numeral 37 denotes a span operation circuit which reads data from the first and second extreme value storage circuits 33 and 34 and has a relatively high linearity in the output between the extreme values, for example, 8.5% of the maximum value and 91.
The level of 5% is calculated, and one is set as the lower limit of the span, and the other is set as the upper limit, and the level difference between the upper limit and the lower limit is calculated so as to correspond to the gas concentration. This is set as the density.
39は、比較回路で、スパン設定回路38からの出力が後
述する基準値設定回路40からの値に一致したとき、もし
くはスパン演算回路37で算出された上下限値の内基準値
設定回路40で指定された方に一致したときパルス発生回
路30の作動を停止させて光路差補正部材5の移動を停止
させるものである。Reference numeral 39 denotes a comparison circuit which is used when the output from the span setting circuit 38 matches a value from a reference value setting circuit 40, which will be described later, or within the upper / lower limit value calculated by the span calculation circuit 37. When the value coincides with the designated one, the operation of the pulse generation circuit 30 is stopped and the movement of the optical path difference correction member 5 is stopped.
40は、前述の基準値設定回路で、基準ガスの濃度や、
ガス発熱量の測定に有っては基準ガスの発熱量を絶対
値、もしくは相対値で入力するとともに、基準ガスを使
用しない場合にはスパン演算回路37で算出された上下限
値の一方を指定するように構成されている。なお、図中
符号41は、校正指令ボタンもしくは内蔵タイマーにより
校正信号を出力する校正指令回路を示す。Reference numeral 40 denotes the reference value setting circuit described above.
When measuring the calorific value of the gas, enter the calorific value of the reference gas as an absolute value or a relative value, and when not using the reference gas, specify one of the upper and lower limits calculated by the span calculation circuit 37 It is configured to be. Reference numeral 41 in the figure denotes a calibration command circuit that outputs a calibration signal using a calibration command button or a built-in timer.
次に、このように構成した装置の動作を第4図に示し
たフローチャートに基づいて説明する。Next, the operation of the device configured as described above will be described based on the flowchart shown in FIG.
一方のセル2を基準ガス源14に、また他方のセル1に
第1の電磁弁12を介して被測定ガス取入れ口19と、第2
の電磁弁13を介して基準ガス源14に接続する。One of the cells 2 is connected to the reference gas source 14 and the other cell 1 is connected to the measured gas inlet 19 via the first solenoid valve 12 and to the second cell 1.
Is connected to the reference gas source 14 via the solenoid valve 13 of FIG.
このような接続を終えた段階で、第1の電磁弁12を開
放し、また第2の電磁弁13を閉止して測定動作に入る
と、被測定ガス取入れ口19から流入したガスは、基準ガ
スとの濃度差、つまり屈折率の差に比例して干渉縞移動
を起こさせ、光電検出器7により電気信号に変換されて
測定回路により基準ガスとの濃度差として測定される。When the connection is completed, the first solenoid valve 12 is opened, and the second solenoid valve 13 is closed to start the measurement operation. The interference fringes move in proportion to the concentration difference from the gas, that is, the difference in the refractive index, is converted into an electric signal by the photoelectric detector 7, and is measured by the measuring circuit as the concentration difference from the reference gas.
一方、校正が必要となった段階で、外部スイッチ16の
操作、もしくは校正指令回路41のタイマー信号により校
正指令信号が出力すると、第1の電磁弁12が閉止し、ま
た第2の電磁弁13が開放されて測定セル1に基準ガス源
14から基準ガスが流入する。同時にパルス発生回路30
は、パルス信号を出力してパルスモータ8を作動させて
光路差補正部材5を一方の方向、この実施例では出力レ
ベルが減少する方向(第5図イ 経 路)に移動さ
せ、極小点を通過させてさらに同方向に移動させる。こ
のようにして初期位置Sに到達すると、位置検出用スイ
ッチ9から初期位置到達信号が出力する。パルス発生回
路30は、この信号を受けてパルスモータ8を逆転させ、
光路差補正部材5を今通過した極小値の方向に移動させ
る。検出器7から第1の極値、この実施例では極小値が
出力すると、第1極小値検出回路32は信号を出力して、
検出器7の出力レベル、つまり極小値を第1の極小値記
憶回路33に格納させる。On the other hand, when calibration is required, when the external switch 16 is operated or a calibration command signal is output by a timer signal of the calibration command circuit 41, the first solenoid valve 12 is closed, and the second solenoid valve 13 is closed. Is opened and the reference gas source is
From 14 the reference gas flows. Simultaneously pulse generation circuit 30
Is to output a pulse signal and operate the pulse motor 8 to move the optical path difference correcting member 5 in one direction, in this embodiment, in the direction in which the output level decreases (a path in FIG. 5), and to set the minimum point. Pass through and move in the same direction. When the initial position S is reached in this way, an initial position reaching signal is output from the position detection switch 9. The pulse generating circuit 30 receives this signal and rotates the pulse motor 8 in the reverse direction.
The optical path difference correction member 5 is moved in the direction of the minimum value that has just passed. When the detector 7 outputs the first extreme value, in this embodiment, the minimal value, the first minimal value detection circuit 32 outputs a signal,
The output level of the detector 7, that is, the minimum value, is stored in the first minimum value storage circuit 33.
さらに光路差補正部材5が移動を続けて、検出器7か
ら第2の極値、この実施例では極大値が出力すると、第
2極値検出回路34がこれを検出してこの極大値を第2の
極値記憶回路36に格納させる。Further, when the optical path difference correction member 5 continues to move and the second extreme value, that is, the maximum value in this embodiment, is output from the detector 7, the second extreme value detection circuit 34 detects this and detects this maximum value as the second maximum value. 2 is stored in the extreme value storage circuit 36.
パルス発生回路30は、光路差補正部材5が第2の極値
を所定ステップ通過した段階で停止する。スパン演算回
路37は、第1、及び第2極値記憶回路33、36に格納され
ているデータ、つまりガス濃度に対応するように演算さ
れた光電検出器7からの信号の極小値L1、極大値L2、及
び光路差補正部材移動量nを読み出し、極大値と極小値
との差の8.5%の値、及び91.5%の値を求め、これら値
に極小値をプラスした値を演算し、これら2つ値をそれ
ぞれ下限値L1′、及び上限値L2′とするとともに、この
上下限値間での1ステップ当りの値を演算し、これらの
値に基づいてスパン設定回路38によりスパンの調整を行
なわせる。これにより、光学部材の劣化や汚染などに起
因する検出器出力の変動に関わりなく、スパンが設定さ
れることになる。The pulse generation circuit 30 stops when the optical path difference correction member 5 has passed the second extreme value by a predetermined step. The span calculation circuit 37 calculates the data stored in the first and second extreme value storage circuits 33 and 36, that is, the minimum value L1 and the maximum value of the signal from the photoelectric detector 7 calculated so as to correspond to the gas concentration. The value L2 and the movement amount n of the optical path difference correction member are read, 8.5% of the difference between the maximum value and the minimum value, and 91.5% of the value are obtained, and the value obtained by adding the minimum value to these values is calculated. The two values are defined as a lower limit L1 'and an upper limit L2', respectively, and a value per step between the upper and lower limits is calculated, and the span is adjusted by a span setting circuit 38 based on these values. Let them do it. As a result, the span is set irrespective of fluctuations in the detector output due to deterioration or contamination of the optical member.
スパン調整が終了した段階で、パルス発生回路30は、
逆位相のパルスを出力してパルスモータ8を逆転させ、
光路差補正部材5を極大値を通過させて初期位置Sに向
けて移動させる。When the span adjustment is completed, the pulse generation circuit 30
A pulse of the opposite phase is output to rotate the pulse motor 8 in reverse,
The optical path difference correction member 5 is moved toward the initial position S after passing the local maximum value.
比較回路39は、この光路差調整部材5の移動の過程で
スパン設定回路38からの出力と基準値設定回路からの信
号を比較し、両者が一致した時点で信号を出力してパル
ス発生回路30の動作を停止させる。The comparison circuit 39 compares the output from the span setting circuit 38 with the signal from the reference value setting circuit in the course of the movement of the optical path difference adjusting member 5, and outputs a signal when the two coincide with each other to output the pulse generation circuit 30. Stop the operation of.
これにより、光学補正部材5は、発光素子4、検出器
7さらにはセル1、2などの劣化や汚染に起因する出力
変化を補正した状態のもとで、基準値設定回路40により
指定された値にセットされたことになる。As a result, the optical correction member 5 is specified by the reference value setting circuit 40 in a state where the output change caused by the deterioration or contamination of the light emitting element 4, the detector 7, and the cells 1 and 2 has been corrected. It will be set to the value.
第6図(イ)及至(ハ)は、本発明を適用した装置の
セル周りの一実施例を示すものであって、図中符号は5
0、51は、それぞれ測定セル52と基準セル53の光軸方向
に配設された入射用プリズムと、出射用プリズムで、測
定セル52及び基準セル53を軸方向に配設され、光源54か
ら光電検出器に至る測定光路を形成している。この光路
中、この実施例では、セルの出射光側と出射用プリズム
51との間には、第2図に示した杆20により回動可能な軸
21を光軸に直角に設け、これの下部にセル52、53に対向
するようにガラス板22、23を取り付けてなる光路調整部
材5が配設されている。FIGS. 6 (a) to 6 (c) show an embodiment around the cell of the apparatus to which the present invention is applied.
Reference numerals 0 and 51 denote an entrance prism and an exit prism respectively arranged in the optical axis direction of the measurement cell 52 and the reference cell 53.The measurement cell 52 and the reference cell 53 are arranged in the axial direction. A measurement optical path leading to the photoelectric detector is formed. In this optical path, in this embodiment, the outgoing light side of the cell and the outgoing prism
A shaft rotatable by the rod 20 shown in FIG.
An optical path adjusting member 5 is provided, which is provided at a right angle to the optical axis and has glass plates 22 and 23 attached to the lower part thereof so as to face the cells 52 and 53.
60は、作動杆で、パルスモータ61と輪列62を介して接
続されて、パルスモータ61の回転に比例して軸方向に移
動するように基板63に取り付けられ、先端には杆20がバ
ネ64により常時当接しており、また後端には初期位置検
出用の検出板68を長溝を介して螺子69、69により位置調
節可能に取り付け、これに対向させて位置検出用スイッ
チ70を配置して構成されている。Reference numeral 60 denotes an operating rod, which is connected to a pulse motor 61 via a train wheel 62, and is attached to a substrate 63 so as to move in the axial direction in proportion to the rotation of the pulse motor 61, and the rod 20 has a spring at its tip. 64, and a detection plate 68 for initial position detection is attached to the rear end via a long groove so that the position can be adjusted by screws 69, 69, and a position detection switch 70 is arranged opposite to this. It is configured.
ところで、この実施例においてはガスの濃度を光学的
に測定する場合に例を取って説明したが、ガスの屈折率
が発熱量と相関することを積極的に利用した光学式ガス
発熱量測定装置、つまり、第7図に示したようにガス取
入れ口を燃料ガス供給管路Gに、また基準ガス取入れ口
に発熱量が既知のガスを封入したボンベ70を接続し、基
準ガスと被測定燃料ガスの屈折率の差を検出し、これを
発熱量換算回路71により最終的に熱量に換算して表示す
る光学式ガス発熱量測定装置に適用しても同様の作用を
奏することは明らかである。By the way, in this embodiment, an example has been described in which the gas concentration is optically measured. However, an optical gas calorific value measuring apparatus that positively utilizes that the refractive index of the gas correlates with the calorific value is described. That is, as shown in FIG. 7, a gas inlet is connected to the fuel gas supply pipe G, and a cylinder 70 filled with a gas having a known calorific value is connected to the reference gas inlet. It is apparent that the same effect is obtained even when applied to an optical gas calorific value measuring device that detects a difference in the refractive index of gas and finally converts and detects the calorific value by the calorific value conversion circuit 71. .
なお、この実施例においては極値の発生点を初期位置
とし、ここからのパルスモータの駆動ステップ数により
測定レンジの上下限を割出しているが、初期位置設定部
材、この実施例ではスイッチから信号が出力された位置
を初期位置にとり、ここからのステップ数でもって上下
限を割出すようにしても同様の作用を奏することは明ら
かである。In this embodiment, the point of occurrence of the extreme value is set as the initial position, and the upper and lower limits of the measurement range are determined by the number of drive steps of the pulse motor from here, but the initial position setting member, in this embodiment, the switch Obviously, the same operation can be obtained even if the position where the signal is output is set as the initial position and the upper and lower limits are determined by the number of steps from this position.
また、この実施例においては、検出器7の出力レベル
を検出して所定の位置に光路差補正部材を移動させるよ
うにしているが、基準位置からのパルスモータへの駆動
パルス数を計数したり、位置検出手段を用い、光路差補
正部材を設定すべき検出器レベルの値を示す計数値、も
しくは位置検出手段のデータに対応させるよう、つまり
計数値や位置データを仲介にしても同様の作用を奏する
ことは明らかである。In this embodiment, the output level of the detector 7 is detected to move the optical path difference correction member to a predetermined position. However, the number of drive pulses from the reference position to the pulse motor is counted. Using the position detecting means, the optical path difference correction member is set to correspond to the count value indicating the detector level value to be set or the data of the position detecting means. Obviously,
さらに、本発明においては極小側に初期位置を設定し
ているが、初期位置を極大側に設けて、極大側から極小
側に向けて移動させて測定レンジ限界のレベル測定を、
また極小値側から極大側に移動させながら初期位置への
セットを行なうようにしても同様の作用を奏することは
明らかである。Furthermore, in the present invention, the initial position is set on the minimum side, but the initial position is provided on the maximum side, and the level measurement of the measurement range limit is performed by moving from the maximum side to the minimum side,
It is apparent that the same effect is obtained even when the setting to the initial position is performed while moving from the minimum value side to the maximum value side.
さらに、この実施例においては、2つの光学セルに基
準ガスを注入して構成するようにしているが、被測定ガ
スや空気を用いても同様の作用を奏することは明らかで
ある。Further, in this embodiment, the reference gas is injected into the two optical cells. However, it is obvious that the same effect can be obtained by using the gas to be measured or air.
(効果) 以上説明したように本発明においては、測定ガスが流
入する第1の光学セルと、屈折率が既知のガスが流入す
る第2の光学セルに同一光源からの光束を入射させ、二
種類のガスの屈折率の差を干渉縞の移動量として光電検
出手段により電気信号に変換するガス濃度測定装置にお
いて、光学セルの光路に挿入された光路に挿入された光
路差補正手段と、光路補正手段を駆動する駆動機構と、
光路差補正手段が初期位置に到達したことを検出する手
段と、光路補正手段が初期位置から一方向への移動に伴
って変化する光電検出器からの信号の2つの極値から適
正な測定レンジを決定するスパン演算手段、スパン演算
手段からのデータによりスパンを設定するスパン設定手
段、校正時に光学セルに導入されるガスに対応してスパ
ン演算手段から出力されるべき測定値を設定する基準値
設定手段、光路差補正部材が他方向に移動したとき、基
準値設定手段とスパン設定手段からの出力を比較して一
致した時点で光路差補正部材の移動を停止させる比較手
段と、校正開始時に2つの光学セルに同一のガスを注入
する手段を備えたので、測定レンジの上限、及び下限を
検出器出力の2つの極値に基づいて割出し、この決定さ
れたレンジでもって指定された基準値に光路差補正部材
をセットさせることにより、発光素子や検出器の経年変
化、及び光学部材の汚染などに起因する出力レベルの変
動を補正するとともに、特別な校正治具や人手を要する
ことなく、光学系の汚染や劣化による出力レベルの経時
的な変動を自動的に補正することができ、タイマー等に
より時刻を設定しておくことにより装置の休止時を見計
って定期的に校正することができる。(Effects) As described above, in the present invention, a light beam from the same light source is made incident on the first optical cell into which the measurement gas flows, and into the second optical cell into which the gas having a known refractive index flows. In a gas concentration measuring device for converting a difference in refractive index between different types of gases into an electric signal by photoelectric detection means as a movement amount of an interference fringe, an optical path difference correction means inserted in an optical path inserted in an optical path of an optical cell; A drive mechanism for driving the correction means,
A means for detecting that the optical path difference correcting means has reached the initial position, and an appropriate measuring range based on two extreme values of the signal from the photoelectric detector which change with movement in one direction from the initial position. Calculating means, a span setting means for setting a span based on data from the span calculating means, a reference value for setting a measured value to be output from the span calculating means corresponding to a gas introduced into the optical cell at the time of calibration. When the setting means and the optical path difference correction member move in the other direction, the output from the reference value setting means and the output from the span setting means are compared and the comparison means stops the movement of the optical path difference correction member at the time of coincidence. Since a means for injecting the same gas into the two optical cells is provided, the upper and lower limits of the measurement range are determined based on the two extreme values of the detector output, and the determined range is used. By setting the optical path difference correction member to the specified reference value, it is possible to correct output level fluctuations caused by aging of light emitting elements and detectors and contamination of optical members, etc. It is possible to automatically correct fluctuations in the output level over time due to contamination or deterioration of the optical system without the need for Can be calibrated.
第1図は本発明の一実施例を示す装置の構成図、第2図
(イ)(ロ)は、それぞれ同上装置における光路差補正
部材の一実施例を示す側面図と正面図、第3図は同上装
置における校正回路の一実施例を示すブロック図、第
4、5図はそれぞれ同上装置の動作を示すフローチャー
トと説明図、第6図(イ)及至(ハ)はそれぞれ本発明
の他の実施例を示す装置の上面図、正面図、及び光路差
補正機構の近傍の裏面図、第7図は本発明の他の実施例
を示すブロック図である。 1、2……セル、3……光束分割部材 4……光源、5……収束部材 6……光路差補正部材、7……光電検出器 8……カム、9……位置検出用スイッチ、10……位置検
出板 12、13……ガス切換用止弁 14……基準ガス源FIG. 1 is a structural view of an apparatus showing an embodiment of the present invention, and FIGS. 2 (a) and 2 (b) are a side view and a front view, respectively, showing an embodiment of an optical path difference correcting member in the apparatus. 4 is a block diagram showing an embodiment of the calibration circuit in the above-mentioned apparatus, FIGS. 4 and 5 are flowcharts and explanatory diagrams showing the operation of the above-mentioned apparatus, respectively, and FIGS. FIG. 7 is a block diagram showing another embodiment of the present invention. FIG. 7 is a top view, a front view, and a rear view showing the vicinity of an optical path difference correcting mechanism. 1, 2, cell 3, light beam splitting member 4, light source 5, converging member 6, optical path difference correcting member 7, photoelectric detector 8, cam 9, position switch 10 Position detector plate 12, 13 Gas switching stop valve 14 Reference gas source
Claims (1)
屈折率が既知のガスが流入する第2の光学セルに同一光
源からの光束を入射させ、前記二種類のガスの屈折率の
差を干渉縞の移動量として光電検出手段により電気信号
に変換するガス濃度測定装置において、前記光学セルの
光路に挿入された光路に挿入された光路差補正手段と、
該光路差補正手段を駆動する駆動機構と、前記光路差補
正手段が初期位置に到達したことを検出する手段と、前
記光路差補正手段が初期位置から一方向への移動に伴っ
て変化する光電検出器からの信号の2つの極値から適正
な測定レンジを決定するスパン演算手段、該スパン演算
手段からのデータによりスパンを設定するスパン設定手
段、校正時に前記光学セルに導入されるガスに対応して
前記スパン演算手段から出力されるべき測定値を設定す
る基準値設定手段、前記光路差補正部材が他方向に移動
したとき、前記基準値設定手段とスパン設定手段からの
出力を比較して一致した時点で前記光路差補正部材の移
動を停止させる比較手段と、校正開始時に前記2つの光
学セルに同一のガスを注入する手段を備えてなる光学式
ガス濃度測定装置。1. A first optical cell into which a gas to be measured flows,
A light beam from the same light source is incident on a second optical cell into which a gas having a known refractive index flows, and the difference between the refractive indices of the two types of gases is converted into an electric signal by a photoelectric detection unit as the amount of movement of interference fringes. In the gas concentration measurement device, optical path difference correction means inserted in the optical path inserted in the optical path of the optical cell,
A drive mechanism for driving the optical path difference correction means, a means for detecting that the optical path difference correction means has reached the initial position, and a photoelectric mechanism which changes as the optical path difference correction means moves from the initial position to one direction. Span calculating means for determining an appropriate measurement range from two extreme values of a signal from a detector, span setting means for setting a span based on data from the span calculating means, corresponding to gas introduced into the optical cell during calibration Reference value setting means for setting a measurement value to be output from the span calculation means, and when the optical path difference correction member moves in the other direction, the output from the reference value setting means and the output from the span setting means are compared. An optical gas concentration measuring device comprising: comparing means for stopping the movement of the optical path difference correction member at the time of coincidence; and means for injecting the same gas into the two optical cells at the start of calibration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31423488A JP2710115B2 (en) | 1988-12-12 | 1988-12-12 | Optical gas concentration measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31423488A JP2710115B2 (en) | 1988-12-12 | 1988-12-12 | Optical gas concentration measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02159541A JPH02159541A (en) | 1990-06-19 |
JP2710115B2 true JP2710115B2 (en) | 1998-02-10 |
Family
ID=18050899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31423488A Expired - Fee Related JP2710115B2 (en) | 1988-12-12 | 1988-12-12 | Optical gas concentration measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2710115B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2517388B2 (en) * | 1989-03-20 | 1996-07-24 | 日本特殊陶業株式会社 | Concentration measuring device and concentration measuring method |
-
1988
- 1988-12-12 JP JP31423488A patent/JP2710115B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02159541A (en) | 1990-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4483618A (en) | Laser measurement system, virtual detector probe and carriage yaw compensator | |
CN105066889A (en) | A portable thin film thickness measuring device and a film thickness measuring method thereof | |
CN108692812A (en) | A kind of blackbody chamber spectral absorption measuring device and method | |
CN104868355A (en) | Power-stabilizing laser output device | |
US7495754B2 (en) | Differential refractometer and its adjusting method | |
US3637310A (en) | Liquid chromatograph for identifying chemical components by means of spectrometer | |
JP2710115B2 (en) | Optical gas concentration measurement device | |
US4325634A (en) | Slit width calibrator for monochromator | |
KR102194321B1 (en) | Continuously measurable spectroscopic ellipsometer | |
CN116336995A (en) | A small-angle inspection device and a small-angle inspection method based on the principle of autocollimation | |
US4429968A (en) | Automatic focus control device | |
US5659393A (en) | Method of and device for measuring the refractive index of wafers of vitreous material | |
US5255066A (en) | Measuring device for track building machines | |
US4424700A (en) | Calibration fault detector and automatic calibrator | |
CN113483649B (en) | A blind area inspection device and method of use of a magnetostrictive displacement sensor | |
JP2858630B2 (en) | FTIR moving mirror controller | |
TW202134594A (en) | Device for measuring a substrate and method for correcting cyclic error components of an interferometer | |
JPS63222207A (en) | Apparatus for measuring depth of recessed part and thickness of film | |
SU1346945A1 (en) | Device for checking thickness of film in course of applying it on large optical component | |
SU529995A1 (en) | Apparatus for controlling the loading of raw materials into a glass melting furnace | |
JPH04361522A (en) | Shutter control device | |
JPH05107273A (en) | Voltage detector | |
CN110879042A (en) | Optical path and method for non-contact measurement of lens group using LED light source | |
JPS57178105A (en) | Measuring method for pitch between distance pulses in distance measurement | |
JPH0772013A (en) | Ellipsometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |