JP2706789B2 - Large aperture ratio lens for close-up photography - Google Patents
Large aperture ratio lens for close-up photographyInfo
- Publication number
- JP2706789B2 JP2706789B2 JP28837788A JP28837788A JP2706789B2 JP 2706789 B2 JP2706789 B2 JP 2706789B2 JP 28837788 A JP28837788 A JP 28837788A JP 28837788 A JP28837788 A JP 28837788A JP 2706789 B2 JP2706789 B2 JP 2706789B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- group
- unit
- distance
- lens group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Lenses (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、大口径比でありながらバックフォーカス及
び射出瞳が極めて長く、物体距離無限遠から撮影倍率1/
2倍まで収差補正が良好になされた近接撮影可能な大口
径比レンズに関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention has a large aperture ratio, an extremely long back focus and an exit pupil, and a shooting magnification of 1 / infinity from an infinite object distance.
The present invention relates to a large-aperture-ratio lens capable of performing close-up photography with aberration correction favorably performed up to twice.
(従来技術) ENG用TVレンズと呼ばれる報道用TVレンズにおいて
は、レンズバックに3色分解プリズムが挿入される為に
バックフォーカスが非常に長いこと、カラーシェーディ
ングを起こさない為に射出瞳が長いこと、CCD3板カメラ
に使用される場合は、特に倍率の色収差が小さいことな
ど設計上のいろいろな条件が要求される。(Prior art) A news TV lens called an ENG TV lens has a very long back focus because a three-color separation prism is inserted into the lens back, and a long exit pupil to prevent color shading. When used in a CCD three-plate camera, various design conditions are required, such as a small chromatic aberration of magnification.
従来、これらの条件を全て満足したENG用TVレンズで
ありながら、物体距離無限遠から撮影倍率1/2までの近
距離撮影が可能な、いわゆる大口径比マクロレンズは存
在しなかった。Heretofore, there has been no so-called large aperture ratio macro lens that can perform short-range shooting from infinity at an object distance to a photographic magnification of 1/2, despite being an ENG TV lens satisfying all of these conditions.
(発明の目的) 本発明の目的は、バックフォーカスが焦点距離を約80
%程度と長く、口径比1:1.4程度、画角約12.6゜の物体
距離無限遠から撮影倍率1/2倍まで収差補正が良好にな
された、ENG用マクロレンズとして使用できる大口径比
レンズを提供することにある。(Object of the Invention) It is an object of the present invention that the back focus has a focal length of about 80.
Providing a large aperture ratio lens that can be used as a macro lens for ENG, with aberrations corrected from infinity at an object distance of approx. Is to do.
(発明の構成) 本発明は、光の入射する側から順に正の屈折力を有す
る第Iレンズ群、絞り、正の屈折力を有する第IIレンズ
群、正の屈折力を有する第IIIレンズ群から成り、物体
距離無限遠から近距離に合焦する際、第I・第IIレンズ
群及び絞りが一体として繰り出され、 第Iレンズ群は、正レンズの第1群及び像側に凹面を
向けた負メニスカスレンズの第2群から成り、第IIレン
ズ群は物体側に凹面を向けた負レンズと像側に凸面を向
けた正レンズの接合レンズである第3群、及びそれぞれ
正レンズの第4群、第5群から成り、第IIIレンズ群
は、少なくとも1枚の凹レンズと1枚の凸レンズの複合
レンズである第6群で構成され、 f :全系の焦点距離 f :第Iレンズ群の合成焦点距離 I f :第IIレンズ群の合成焦点距離 II D3 :第IIレンズ群中の第3群、凹レンズと凸レンズの接
合レンズの合成厚さ Ds3:絞りから第IIレンズ群中の第3群までの間隔 ν1:第1群のアツベ数 の各条件を満足し、バックフォーカス及び射出瞳の長い
ことを特徴とする近接撮影可能な大口径比レンズであ
る。(Constitution of the Invention) The present invention provides, in order from the light incident side, an I-th lens unit having a positive refractive power, an aperture, a second lens unit having a positive refractive power, and a third lens unit having a positive refractive power. When focusing from infinity to a short distance from the object distance, the first and second lens units and the aperture are extended integrally, and the first lens unit has a concave surface facing the first unit and the image side of the positive lens. The second lens group is composed of a negative lens having a concave surface facing the object side and a positive lens having a convex surface facing the image side. The third lens group is composed of a sixth group, which is a compound lens of at least one concave lens and one convex lens, f: Focal length of the entire system f: Composite focal length of the I-th lens group If: Composite focal length of the II-th lens group II D 3 : Combination of the third group in the II-th lens group, a cemented lens of a concave lens and a convex lens Thickness Ds 3 : Distance from the stop to the third group in the second lens group ν 1 : Satisfies each condition of the first group, and has a long back focus and a long exit pupil. It is a large aperture ratio lens.
本発明はまた、光の入射する側から順に正の屈折力を
有する第Iレンズ群、絞り、正の屈折力を有する第IIレ
ンズ群、正の屈折力を有する第IIIレンズ群から成り、
物体距離無限遠から近距離に合焦する際、第I・第IIレ
ンズ群及び絞りが一体として繰り出され、 第Iレンズ群は、正レンズの第1群及び物体側に凸面
を向けた正レンズと像側に凹面を向けた負レンズとの複
合レンズの第2群からなり、第IIレンズ群は物体側に凹
面を向けた負レンズと像側に凸面を向けた正レンズの接
合レンズである第3群、及びそれぞれ正レンズの第4
群、第5群から成り、第IIIレンズ群は、少なくとも1
枚の凹レンズと1枚の凸レンズの複合レンズである第6
群で構成され、 f :全系の焦点距離 f :第Iレンズ群の合成焦点距離 I f :第IIレンズ群の合成焦点距離 II D3 :第IIレンズ群中の第3群、凹レンズと凸レンズの接
合レンズの合成厚さ Ds3:絞りから第IIレンズ群中の第3群までの間隔 ν1:第1群のアツベ数 の各条件を満足し、バックフォーカス及び射出瞳の長い
ことを特徴とする近接撮影可能な大口径比レンズであ
る。The present invention also includes an I-th lens group having a positive refractive power in order from the light incident side, an aperture, a second lens group having a positive refractive power, and a third lens group having a positive refractive power,
When focusing from infinity to a short distance from the object distance, the first and second lens units and the diaphragm are extended as one unit. The first lens unit includes a first lens unit of the positive lens and a positive lens having a convex surface facing the object side. The second lens group is a cemented lens of a negative lens having a concave surface facing the object side and a positive lens having a convex surface facing the image side. The third group and the fourth of each positive lens
The third lens group includes at least one group.
The sixth lens, which is a compound lens of one concave lens and one convex lens
Composed of groups, f: Focal length of the entire system f: Composite focal length of the I-th lens group If: Composite focal length of the II-th lens group II D 3 : Combination of the third group in the II-th lens group, a cemented lens of a concave lens and a convex lens Thickness Ds 3 : Distance from the stop to the third group in the second lens group ν 1 : Satisfies each condition of the first group, and has a long back focus and a long exit pupil. It is a large aperture ratio lens.
一般に、ガウス型レンズは、撮影距離変化による収差
変動が比較的小さい、大口径に強いレンズタイプとされ
ているが、近距離撮影になるに従い、画面周辺部の結像
性能が悪化する。これは、主に軸外光に外向性のコマ収
差が発生することによるもので、撮影倍率1/2倍まで収
差を良好に保とうとすると、やはり、何らかのフローテ
ィング機構を設けて、このコマ収差を補正する必要があ
る。本発明では、無限遠から近距離物点に合焦する際、
第III群を固定したまま、第I・第IIレンズ群及び絞り
を一体として繰り出すことによって、この問題を解決し
た。In general, a Gaussian lens is a lens type that has a relatively large aberration and a small variation in aberration due to a change in photographing distance. This is mainly because out-of-axis coma aberration is generated in off-axis light.If it is desired to maintain the aberration well up to a photographic magnification of 1/2, it is necessary to provide a floating mechanism to reduce this coma aberration. It needs to be corrected. In the present invention, when focusing from infinity to a short distance object point,
This problem was solved by moving out the I and II lens units and the diaphragm as one unit while keeping the III group fixed.
撮影距離による収差変動を少なくするためには、絞り
に対して対称形となるレンズ構成で、各レンズで発生す
る収差をそれぞれ小さく押える形のものが望ましく、ガ
ウスタイプは、この要求を満たしている。しかし、ENG
用TVレンズとして必要な充分長いバックフォーカスを得
るためには、絞りより前の第Iレンズ群の屈折力が絞り
より後の第IIレンズ群の屈折力に比べ著しく弱くなって
くる傾向になる。In order to reduce the aberration variation due to the shooting distance, it is desirable to use a lens configuration that is symmetrical with respect to the aperture and that is capable of minimizing the aberration generated by each lens, and the Gaussian type satisfies this requirement. . But ENG
In order to obtain a sufficiently long back focus necessary for a TV lens for use, the refractive power of the first lens group before the stop tends to be significantly weaker than the refractive power of the second lens group after the stop.
撮影倍率1/2倍までの近距離撮影用光学系にしようと
する場合、第Iレンズ群の屈折力を弱めすぎると、物体
から出た光束が、第Iレンズ群であまり収斂されず、無
限遠物点に対して収斂光束であったものが、近距離物点
に対しては発散光束になってしまう。この発散性が強す
ぎると、第IIレンズ群での収差補正の負担が増加する。
無限遠から近距離撮影になるに従い、球面収差と非点収
差がオーバーになってくるが、これらの収差の変動が増
加し、無限遠から撮影倍率1/2倍まで収差を良好に補正
し得る構成にすることが難しくなる。In the case of an optical system for short-distance photographing up to a photographing magnification of 1/2, if the refractive power of the I-th lens unit is too weak, the light flux coming out of the object is not converged very much by the I-th lens unit and becomes infinite. What is a convergent light beam for a distant object point becomes a divergent light beam for a near object point. If the divergence is too strong, the burden of aberration correction in the second lens group increases.
Spherical aberration and astigmatism become larger as the distance from infinity to short-distance shooting increases.However, the fluctuation of these aberrations increases, and a configuration that can favorably correct aberrations from infinity to a photographic magnification of 1/2 times. It becomes difficult to do.
従って、無限遠物点に対しては、第Iレンズ群から出
てきた光束が弱い収斂光束であり、撮影倍率1/2倍の近
距離物点に対しては、弱い発散光束であるように構成す
ることが望ましい。Therefore, for an object point at infinity, the light beam emerging from the first lens unit is a weak convergent light beam, and for a short-distance object point with a photographic magnification of 1/2, it is a weak divergent light beam. It is desirable to configure.
前記条件(i)において、f1が上限をこえると、第II
レンズ群の収差補正の負担が増加して、撮影距離変化に
よる収差の変動を小さく押えることが難しくなる。下限
を越えると、バックフォーカスを長くすることが難しく
なる。Wherein the condition (i), when f 1 exceeds the upper limit, the II
The load of aberration correction of the lens group increases, and it becomes difficult to suppress the fluctuation of aberration due to the change of the photographing distance. If the lower limit is exceeded, it becomes difficult to increase the back focus.
本発明は、撮影倍率1/2倍までの近距離撮影を可能と
する為、前述のように、近距離物点に合焦する際、第II
Iレンズ群を固定したまま第I、第IIレ群及び絞りが一
体として繰り出されるフローティング機構を採用してい
る。According to the present invention, in order to enable short-distance shooting up to a magnification of 1/2, as described above, when focusing on a short-distance object point, the second
A floating mechanism is used in which the I-th lens group, the II-th lens group, and the aperture are unified while the I-lens group is fixed.
近距離物点合焦の為に繰り出される第I・第IIレンズ
群及び絞りの繰り出し量を小さくするためには、第I、
第IIレンズ群の合成焦点距離を出来るだけ短かくしてお
く必要がある。このことは、第IIIレンズ群、即ち第6
群の合成焦点距離を非常に長くすることになり、デッド
スペースが増え、バックフォーカスを短くする原因にな
る。In order to reduce the amount of extension of the first and second lens units and the aperture that are extended for focusing on a short-distance object point, the first,
It is necessary to keep the combined focal length of the second lens group as short as possible. This means that the third lens group, namely the sixth
The combined focal length of the group becomes very long, which increases the dead space and shortens the back focus.
又、大口径比化を得ることを目的としているので、第
II・第IIIレンズ群のレンズ厚さが厚くなったり、レン
ズ枚数が増えたりして、これもバックフォーカスを短か
くする原因になる。Also, since the purpose is to obtain a large aperture ratio,
The lens thickness of the II / III lens group is increased or the number of lenses is increased, which also causes the back focus to be shortened.
従って、ENG用TVレンズとして必要とされる長いバッ
クフォーカスを得るためには、条件(i)だけでは不充
分である。それを補うものとして、第3群の物体側の凹
面を強くすれば、バックフォーカスを長く出来るが、第
IIレンズ群の合成パワーは正であり、第4・第5群のパ
ワーをより強くすることにより、軸外のコマ収差が増加
し、球面収差も大きくなる。その結果、第IIレンズ群中
の第3群の凹レンズと凸レンズの合成厚を厚くして光束
をはね上げている。Therefore, the condition (i) alone is not sufficient to obtain a long back focus required as a TV lens for ENG. To compensate for this, if the concave surface on the object side of the third lens unit is strengthened, the back focus can be lengthened.
The combined power of the II lens group is positive, and by increasing the power of the fourth and fifth groups, off-axis coma aberration increases and spherical aberration increases. As a result, the combined thickness of the concave lens and the convex lens of the third group in the second lens group is increased, and the luminous flux is rejected.
前記条件(ii)において、D3が上限を超えると、この
レンズ構成では、撮影距離変化による倍率の色収差の変
動が大きくなりすぎる。下限を越えると、バックフォー
カスを充分長くすることが難しくなる。射出瞳位置は、
絞りから第IIレンズ群の間隔DS3と第IIレンズ群の合成
焦点距離fIIの関係でほぼ決定される。In the condition (ii), when D 3 exceeds the upper limit, in this lens configuration, variation in lateral chromatic aberration due to focusing distance change becomes too large. If the lower limit is exceeded, it becomes difficult to make the back focus sufficiently long. The exit pupil position is
The distance D S3 of the II lens group from the diaphragm is substantially determined by the relationship of the II lens group combined focal length f II.
射出瞳を長くする為には、DS3を長くするか第IIレン
ズ群の合成焦点距離を短かくする必要がある。第Iレン
ズ群を出た光束は、物体距離無限では弱い収斂光束なの
で、絞りから第IIレンズ群の間隔DS3を長くしてバック
フォーカスを保とうとすれば、第Iレンズ群の合成焦点
距離を長くし、第IIレンズ群の合成焦点距離を短かくす
ることになる。In order to lengthen the exit pupil, it is necessary to lengthen DS3 or shorten the composite focal length of the second lens group. The luminous flux exiting the I-th lens group is a weak convergent luminous flux at an infinite object distance. Therefore, if the distance D S3 from the stop to the second lens group is increased to maintain the back focus, the combined focal length of the I-th lens group is reduced. In other words, the composite focal length of the second lens group is shortened.
前記条件(iii)において、fII/DS3が上限を越える
と、射出瞳が伸びない。下限を越えると撮影距離変化に
よる球面収差・非点収差・倍率の色収差の変動を小さく
押えられない。CCD3板カメラ用に使用可能なためには、
倍率の色収差を充分に小さくしておくことが必要であ
る。撮影距離変化による倍率の色収差の変動を小さくす
るには、近距離時に繰り出される第Iレンズ群・第IIレ
ンズ群の倍率の色収差の変化量をそれぞれ小さくする必
要がある。特に、第IIレンズ群は屈折力が強いので倍率
の色収差の変動を小さく押えなければならないが、軸上
の色収差は物体距離無限遠から近距離になるに従い、比
較的大きいアンダーに変化する。そのため、第Iレンズ
群は、物体距離無限遠から近距離になるに従ってそれを
打ち消すように、軸上の色収差は比較的大きくオーバー
に変化させ、しかも倍率の色収差の変化量は小さく押え
るようにしなければならない。In the above condition (iii), if f II / DS 3 exceeds the upper limit, the exit pupil does not extend. If the lower limit is exceeded, fluctuations of spherical aberration, astigmatism, and chromatic aberration of magnification due to a change in shooting distance cannot be suppressed to a small extent. To be usable for CCD3 board camera,
It is necessary to keep the chromatic aberration of magnification sufficiently small. In order to reduce the variation of the chromatic aberration of magnification due to the change in the photographing distance, it is necessary to reduce the amount of change in the chromatic aberration of magnification of the I-th lens unit and the II-th lens unit which is extended at a short distance. In particular, since the second lens group has a strong refractive power, the fluctuation of the chromatic aberration of magnification must be kept small, but the axial chromatic aberration changes to a relatively large under value as the object distance from infinity to short distance. Therefore, the I-th lens unit must change the axial chromatic aberration relatively large and excessively so as to cancel the object distance infinity from infinity to a short distance, and also suppress the change amount of the chromatic aberration of magnification to be small. No.
以上のように条件(iv)は、第IIレンズ群で発生した
撮影距離変化による軸上色収差の変化量を出来るだけ小
さくし、全体として軸上・倍率の色収差を良好に保つた
めの条件である。As described above, the condition (iv) is a condition for minimizing the amount of change of the axial chromatic aberration caused by the change in the photographing distance generated in the second lens group, and for maintaining the axial and lateral chromatic aberrations as a whole as good as possible. .
(実施例) 次に本発明の数値実施例のデーターを示す。ここで、
f,FNo.,2ω,BF,Exp.は無限遠物体に合焦したときの全系
の焦点距離、口径比、画角、バックフォーカス、及び結
像面からの射出瞳位置を表わし、Riは物体側より第i番
目のレンズ面の曲率半径、diは物体側より順に第i番目
のレンズ厚及び空気間隔、Niとνiは各々物体側より第
i番目の硝子のd線の屈折率とd線に対するアツベ数を
表わす。(Example) Next, data of a numerical example of the present invention will be shown. here,
f, FNo., 2ω, BF, Exp. represent the focal length, aperture ratio, angle of view, back focus, and exit pupil position from the imaging plane of the entire system when focusing on an object at infinity, and Ri is The radius of curvature of the i-th lens surface from the object side, di is the i-th lens thickness and air spacing in order from the object side, and Ni and νi are the d-line refractive index and d of the i-th glass from the object side, respectively. Represents the Atsube number for the line.
尚、レンズバック挿入硝子は、厚さ33.5mmで硝材はNd
=1.55920、νd=53.90の平行平面硝子と厚さ10.75mm
の硝材はNd=1.51633、νd=64.15の平行平面硝子であ
る。In addition, the lens back insertion glass is 33.5 mm thick and the glass material is Nd
= 1.55920, νd = 53.90 parallel plane glass and thickness 10.75mm
Is a parallel-plane glass with Nd = 1.51633 and vd = 64.15.
〔実施例1〕 f=1.0 FNo.=1.4 2ω=12.4゜ BF=0.778 Exp.=−14.844 R1 = 0.7436 d1 =0.121 N1=1.72342 ν1=37.95 R2 = 6.2374 d2 =0.020 R3 = 0.6455 d3 =0.119 N2=1.74320 ν2=49.31 R4 = 0.3643 d4 =0.178 R5 = ∞ d5 d5 =0.178 R6 =−0.3607 d6 =0.158 N3=1.80518 ν3=25.43 R7 = 2.6753 d7 =0.178 N4=1.58913 ν4=61.18 R8 =−0.5937 d8 =0.004 R9 =−22.2512 d9 =0.113 N5=1.80610 ν5=40.95 R10=−0.7998 d10=0.004 R11= 1.4870 d11=0.079 N6=1.64000 ν6=60.09 R12=−14.9842 d12=*可変 R13=−1.0237 d13=0.020 N7=1.64769 ν7=33.80 R14= 0.7449 d14=0.079 R15= 1.0665 d15=0.125 N8=1.72342 ν8=37.95 R16=−0.8947 物体距離d0 =∞のとき、d12=0.089 物体距離d0 =1.769のとき即ち撮影倍率β=−0.5のと
き d12=0.572 〔実施例2〕 f=1.0 FNo.=1.4 2ω=12.6゜ BF=0.803 Exp.=−5.805 R1 = 1.5082 d1 =0.122 N1=1.75520 ν1=27.51 R2 =−13.6927 d2 =0.08 R3 = 0.7524 d 3=0.09 N2=1.71300 ν2=53.84 R4 = 1.4000 d4 =0.026 N3=1.64769 ν3=33.80 R5 = 0.4833 d5 =0.2 R6 = ∞ d6 =0.2 R7 =−0.4351 d7 =0.2 N4=1.80518 ν4=25.43 R8 = 15.4036 d8 =0.24 N5=1.77250 ν5=49.60 R9 =−0.7086 d9 =0.004 R10=−13.8990 d10=0.084 N6=1.77250 ν6=49.60 R11=−1.4750 d11=0.004 R12= 1.8215 d12=0.072 N7=1.62041 ν7=60.28 R13=−6.6155 d13=*可変 R14=−2.2419 d14=0.02 N8=1.51742 ν8=52.41 R15= 0.8668 d15=0.02 R16= 1.1309 d16=0.12 N9=1.69680 ν9=55.53 R17=−1.8727 B.F 物体距離d0 =∞のとき、d13=0.072 物体距離d0 =1.811のとき即ち撮影倍率β=−0.5のと
き d13=0.708 〔実施例3〕 f=1.0 FNo.=1.4 2ω=12.6゜ BF=0.799 Exp.=−40.963 R1 = 1.1665 d1 =0.122 N1=1.64769 ν1=33.80 R2 =−49.0204 d2 =0.090 R3 = 0.7833 d3 =0.090 N2=1.71300 ν2=53.84 R4 = 1.4606 d4 =0.026 N3=1.58144 ν3=40.75 R5 = 0.4492 d5=0.144 R6 = ∞ d6 =0.278 R7 =−0.4268 d7 =0.200 N4=1.80518 ν4=25.43 R8 = 11.2447 d8 =0.240 N5=1.77250 ν5=49.60 R9 =−0.6963 d9 =0.004 R10=−8.8437 d10=0.080 N6=1.77250 ν6=49.60 R11=−1.3846 d11=0.004 R12= 1.6707 d12=0.078 N7=1.60311 ν7=60.70 R13=−7.2030 d13=*可変 R14=−1.9048 d14=0.020 N8=1.51742 ν8=52.41 R15= 0.8654 d15=0.015 R16= 1.1251 d16=0.116 N9=1.69680 ν9=55.53 R17=−1.6927 物体距離d0 =∞のとき d13=0.074 物体距離d0 =1.728のとき即ち撮影倍率β=−0.5のと
き d13=0.710 (発明の効果) 本発明のレンズは、このような構成によって、大口径
でありながらバックフォーカス及び射出瞳が極めて長
い、無限遠から1/2倍まで収差補正が良好になされた近
距離撮影用レンズを実現することができる。[Example 1] f = 1.0 FNo. = 1.4 2ω = 12.4 ゜ BF = 0.778 Exp. = − 14.844 R 1 = 0.7436 d 1 = 0.121 N 1 = 1.72342 ν 1 = 37.95 R 2 = 6.2374 d 2 = 0.020 R 3 = 0.6455 d 3 = 0.119 N 2 = 1.74320 ν 2 = 49.31 R 4 = 0.3643 d 4 = 0.178 R 5 = ∞ d 5 d 5 = 0.178 R 6 = -0.3607 d 6 = 0.15818 N 3 = 1.80518 ν 3 = 25.43 R 7 = 2.6753 d 7 = 0.178 N 4 = 1.58913 ν 4 = 61.18 R 8 = -0.5937 d 8 = 0.004 R 9 = -22.2512 d 9 = 0.113 N 5 = 1.80610 ν 5 = 40.95 R 10 = -0.7998 d 10 = 0.004 R 11 = 1.4870 d 11 = 0.079 N 6 = 1.64000 v 6 = 60.09 R 12 = -14.9842 d 12 = * Variable R 13 = -1.0237 d 13 = 0.020 N 7 = 1.64769 v 7 = 33.80 R 14 = 0.7449 d 14 = 0.079 R 15 = 1.0665 d 15 = 0.125 N 8 = 1.72342 ν 8 = 37.95 R 16 = -0.8947 When the object distance d 0 = d, d 12 = 0.089 When the object distance d 0 = 1.769, that is, when the photographing magnification β = -0.5 D 12 = 0.572 [Example 2] f = 1.0 FNo. = 1.4 2ω = 12.6 ゜ BF = 0.8 . 03 Exp = - 5.805 R 1 = 1.5082 d 1 = 0.122 N 1 = 1.75520 ν 1 = 27.51 R 2 = -13.6927 d 2 = 0.08 R 3 = 0.7524 d 3 = 0.09 N 2 = 1.71300 ν 2 = 53.84 R 4 = 1.4000 d 4 = 0.026 N 3 = 1.64769 ν 3 = 33.80 R 5 = 0.4833 d 5 = 0.2 R 6 = ∞ d 6 = 0.2 R 7 = -0.4351 d 7 = 0.2 N 4 = 1.80518 ν 4 = 25.43 R 8 = 15.4036 d 8 = 0.24 N 5 = 1.77250 ν 5 = 49.60 R 9 = -0.7086 d 9 = 0.004 R 10 = -13.8990 d 10 = 0.084 N 6 = 1.77250 ν 6 = 49.60 R 11 = -1.4750 d 11 = 0.004 R 12 = 1.8215 d 12 = 0.072 N 7 = 1.62041 ν 7 = 60.28 R 13 = -6.6155 d 13 = * variable R 14 = -2.2419 d 14 = 0.02 N 8 = 1.51742 ν 8 = 52.41 R 15 = 0.8668 d 15 = 0.02 R 16 = 1.1309 when d 16 = 0.12 N 9 = 1.69680 ν 9 = 55.53 R 17 = -1.8727 BF object distance d 0 = ∞, when d 13 = 0.072 object distance d 0 = ie imaging magnification beta = -0.5 when 1.811 d 13 = 0.708 example 3 f = 1.0 FNo = 1.4 2ω = 12.6 ° BF = 0.799 Exp = -.. 4 0.963 R 1 = 1.1665 d 1 = 0.122 N 1 = 1.64769 ν 1 = 33.80 R 2 = −49.0204 d 2 = 0.090 R 3 = 0.7833 d 3 = 0.090 N 2 = 1.71300 ν 2 = 53.84 R 4 = 1.4606 d 4 = 0.026 N 3 = 1.58144 ν 3 = 40.75 R 5 = 0.4492 d 5 = 0.144 R 6 = ∞ d 6 = 0.278 R 7 = -0.4268 d 7 = 0.200 N 4 = 1.80518 ν 4 = 25.43 R 8 = 11.2447 d 8 = 0.240 N 5 = 1.77250 ν 5 = 49.60 R 9 = -0.6963 d 9 = 0.004 R 10 = -8.8437 d 10 = 0.080 N 6 = 1.77250 ν 6 = 49.60 R 11 = -1.3846 d 11 = 0.004 R 12 = 1.6707 d 12 = 0.078 N 7 = 1.60311 ν 7 = 60.70 R 13 = −7.2030 d 13 = * variable R 14 = −1.9048 d 14 = 0.020 N 8 = 1.51742 ν 8 = 52.41 R 15 = 0.8654 d 15 = 0.015 R 16 = 1.1251 d 16 = 0.116 N 9 = 1.69680 ν 9 = 55.53 R 17 = −1.6927 When the object distance d 0 = ∞ d 13 = 0.074 When the object distance d 0 = 1.728, that is, when the photographing magnification β = −0.5 d 13 = 0.710 Effect) The lens of the present invention has such a configuration, It is possible to realize a short-distance photographing lens which has a large aperture, a very long back focus and an exit pupil, and excellent aberration correction from infinity to 1/2 times.
第1図、第6図、第11図は本発明による実施例1、2、
3の無限遠撮影状態のレンズ構成図、第2図、第7図、
第12図は実施例1、2、3の無限遠撮影状態のザイデル
収差係数、第3図、第8図、第13図は実施例1、2、3
の撮影倍率1/2倍時のザイデル収差係数、第4図、第9
図、第14図は実施例1、2、3の無限遠撮影状態の収差
図、第5図、第10図、第15図は実施例1、2、3の撮影
倍率1/2倍時の収差図である。 SA……球面収差 CM……コマ収差 AS……非点収差 DS……歪曲収差 PT……ペッツバール L……軸上色収差 T……倍率の色収差 主波長……587.56nm 第2波長……460nm1, 6, and 11 show Embodiments 1 and 2 according to the present invention.
3, a lens configuration diagram at infinity shooting state 3, FIG. 7, FIG.
FIG. 12 shows the Seidel aberration coefficient of the first, second, and third embodiments in the infinity photographing state. FIGS. 3, 8, and 13 show the first, second, and third embodiments.
Coefficient of Seidel aberration at 1/2 × magnification of FIG. 4, FIG.
FIG. 14 is an aberration diagram of the first, second, and third embodiments at infinity photographing, and FIGS. 5, 10, and 15 are diagrams of the first, second, and third embodiments at a photographing magnification of 1/2. It is an aberration figure. SA: spherical aberration CM: coma aberration AS: astigmatism DS: distortion aberration PT: Petzval L: axial chromatic aberration T: chromatic aberration of magnification Principal wavelength: 587.56 nm Second wavelength: 460 nm
Claims (2)
る第Iレンズ群、絞り、正の屈折力を有する第IIレンズ
群、正の屈折力を有する第IIIレンズ群から成り、物体
距離無限遠から近距離に合焦する際、第I・第IIレンズ
群及び絞りが一体として繰り出され、 第Iレンズ群は、正レンズの第1群及び像側に凹面を向
けた負メニスカスレンズの第2群から成り、第IIレンズ
群は物体側に凹面を向けた負レンズと像側に凸面を向け
た正レンズの接合レンズである第3群、及びそれぞれ正
レンズの第4群、第5群から成り、第IIIレンズ群は、
少なくとも1枚の凹レンズと1枚の凸レンズの複合レン
ズである第6群で構成され、 f :全系の焦点距離 f :第Iレンズ群の合成焦点距離 I f :第IIレンズ群の合成焦点距離 II D3 :第IIレンズ群中の第3群、凹レンズと凸レンズの接
合レンズの合成厚さ Ds3:絞りから第IIレンズ群中の第3群までの間隔 ν1:第1群のアツベ数 の各条件を満足し、バックフォーカス及び射出瞳の長い
ことを特徴とする近接撮影可能な大口径比レンズ。1. An object comprising an I-th lens unit having a positive refractive power, a stop, a II-th lens unit having a positive refractive power, and a III-lens group having a positive refractive power in order from the side where light enters. When focusing from a distance infinity to a short distance, the first and second lens units and the diaphragm are extended as one unit. The first lens unit is a first lens unit of the positive lens and a negative meniscus lens having a concave surface facing the image side. The second lens unit includes a second lens unit, a second lens unit, a third lens unit that is a cemented lens of a negative lens having a concave surface facing the object side and a positive lens having a convex surface facing the image side, and a fourth lens unit and a fifth lens unit, respectively. The third lens group,
A sixth lens group, which is a compound lens of at least one concave lens and one convex lens, f: Focal length of the entire system f: Composite focal length of the I-th lens group If: Composite focal length of the II-th lens group II D 3 : Combination of the third group in the II-th lens group, a cemented lens of a concave lens and a convex lens Thickness Ds 3 : Distance from the stop to the third group in the second lens group ν 1 : Satisfies each condition of the first group, and has a long back focus and a long exit pupil. Large aperture ratio lens.
る第Iレンズ群、絞り、正の屈折力を有する第IIレンズ
群、正の屈折力を有する第IIIレンズ群から成り、物体
距離無限遠から近距離に合焦する際、第I・第IIレンズ
群及び絞りが一体として繰り出され、 第Iレンズ群は、正レンズの第1群及び物体側に凸面を
向けた正レンズと像側に凹面を向けた負レンズとの複合
レンズの第2群からなり、第IIレンズ群は物体側に凹面
を向けた負レンズと像側に凸面を向けた正レンズの接合
レンズである第3群、及びそれぞれ正レンズの第4群、
第5群から成り、第IIIレンズ群は、少なくとも1枚の
凹レンズと1枚の凸レンズの複合レンズである第6群で
構成され、 f :全系の焦点距離 f :第Iレンズ群の合成焦点距離 I f :第IIレンズ群の合成焦点距離 II D3 :第IIレンズ群中の第3群、凹レンズと凸レンズの接
合レンズの合成厚さ Ds3:絞りから第IIレンズ群中の第3群までの間隔 ν1:第1群のアツベ数 の各条件を満足し、バックフォーカス及び射出瞳の長い
ことを特徴とする近接撮影可能な大口径比レンズ。2. An object comprising an I-th lens unit having a positive refractive power, a stop, a II-th lens unit having a positive refractive power, and a III-lens group having a positive refractive power, in order from the light incident side. When focusing from infinity to infinity, the first and second lens units and the aperture are extended as one unit. The first lens unit is composed of the first lens unit and the positive lens having a convex surface facing the object side. The second lens group is a cemented lens composed of a negative lens having a concave surface facing the object side and a positive lens having a convex surface facing the image side. Group, and a fourth group of positive lenses, respectively.
The fifth lens group, the third lens group includes a sixth lens unit that is a compound lens of at least one concave lens and one convex lens, f: Focal length of the entire system f: Composite focal length of the I-th lens group If: Composite focal length of the II-th lens group II D 3 : Combination of the third group in the II-th lens group, a cemented lens of a concave lens and a convex lens Thickness Ds 3 : Distance from the stop to the third group in the second lens group ν 1 : Satisfies each condition of the first group, and has a long back focus and a long exit pupil. Large aperture ratio lens.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28837788A JP2706789B2 (en) | 1988-11-15 | 1988-11-15 | Large aperture ratio lens for close-up photography |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28837788A JP2706789B2 (en) | 1988-11-15 | 1988-11-15 | Large aperture ratio lens for close-up photography |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02134610A JPH02134610A (en) | 1990-05-23 |
JP2706789B2 true JP2706789B2 (en) | 1998-01-28 |
Family
ID=17729413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28837788A Expired - Fee Related JP2706789B2 (en) | 1988-11-15 | 1988-11-15 | Large aperture ratio lens for close-up photography |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2706789B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3588161A1 (en) | 2018-06-19 | 2020-01-01 | Ricoh Company, Ltd. | Imaging lens system and imaging device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4996151B2 (en) * | 2006-07-13 | 2012-08-08 | 株式会社シグマ | Macro lens |
JP5714535B2 (en) * | 2011-04-18 | 2015-05-07 | 株式会社シグマ | Imaging optical system with anti-vibration mechanism |
US9864167B2 (en) | 2014-09-17 | 2018-01-09 | Ricoh Company, Ltd. | Image forming lens and image capturing device |
CN119355926A (en) * | 2024-12-24 | 2025-01-24 | 深圳市爵影科技有限公司 | Medium-telephoto prime photography lens |
-
1988
- 1988-11-15 JP JP28837788A patent/JP2706789B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3588161A1 (en) | 2018-06-19 | 2020-01-01 | Ricoh Company, Ltd. | Imaging lens system and imaging device |
Also Published As
Publication number | Publication date |
---|---|
JPH02134610A (en) | 1990-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3478637B2 (en) | Small zoom lens | |
JP2628633B2 (en) | Compact zoom lens | |
JPH08313803A (en) | Wide angle lens | |
JPH09325274A (en) | Zoom lens | |
JPH0356607B2 (en) | ||
JP4289958B2 (en) | Zoom lens and imaging apparatus having the same | |
JPH06201988A (en) | Large aperture ratio internal focusing telephoto lens | |
JPH08313802A (en) | Wide angle lens | |
JP2001318314A (en) | Zoom lens and optical apparatus using it | |
JPH07107577B2 (en) | Zoom lenses | |
JPH05224119A (en) | Large-diameter intermediate telephoto lens | |
JPH0642017B2 (en) | Compact zoom lens | |
JP2001154093A (en) | Small-sized high variable power wide-angle zoom lens | |
JP2003161877A (en) | Macro lens and camera equipped with the same | |
JP3160846B2 (en) | Telephoto zoom lens | |
JP2569302B2 (en) | Compact zoom lens | |
JP3821330B2 (en) | Zoom lens | |
JPH0727976A (en) | Small-sized two-group zoom lens system | |
JP2546293B2 (en) | Small zoom lens | |
JP3268824B2 (en) | Small two-group zoom lens | |
JP2761920B2 (en) | Small wide-angle zoom lens | |
JP2706789B2 (en) | Large aperture ratio lens for close-up photography | |
JP4817551B2 (en) | Zoom lens | |
JP2676400B2 (en) | High magnification compact zoom lens | |
JP3234618B2 (en) | Large aperture medium telephoto lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |