JP2706492B2 - Method of synthesizing diamond powder - Google Patents
Method of synthesizing diamond powderInfo
- Publication number
- JP2706492B2 JP2706492B2 JP63274730A JP27473088A JP2706492B2 JP 2706492 B2 JP2706492 B2 JP 2706492B2 JP 63274730 A JP63274730 A JP 63274730A JP 27473088 A JP27473088 A JP 27473088A JP 2706492 B2 JP2706492 B2 JP 2706492B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- plasma
- diamond
- powder
- diamond powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910003460 diamond Inorganic materials 0.000 title claims description 41
- 239000010432 diamond Substances 0.000 title claims description 41
- 239000000843 powder Substances 0.000 title claims description 33
- 238000000034 method Methods 0.000 title claims description 25
- 230000002194 synthesizing effect Effects 0.000 title claims description 10
- 238000001816 cooling Methods 0.000 claims description 27
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 19
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- 239000007787 solid Substances 0.000 claims description 7
- 239000011541 reaction mixture Substances 0.000 claims description 6
- 238000010574 gas phase reaction Methods 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 230000001376 precipitating effect Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 description 46
- 238000006243 chemical reaction Methods 0.000 description 23
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 16
- 229910052786 argon Inorganic materials 0.000 description 8
- -1 ethylene, propylene Chemical group 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 239000000112 cooling gas Substances 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Natural products CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000004430 X-ray Raman scattering Methods 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- LVZWSLJZHVFIQJ-UHFFFAOYSA-N Cyclopropane Chemical compound C1CC1 LVZWSLJZHVFIQJ-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- FXXACINHVKSMDR-UHFFFAOYSA-N acetyl bromide Chemical compound CC(Br)=O FXXACINHVKSMDR-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229940050176 methyl chloride Drugs 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/25—Diamond
- C01B32/26—Preparation
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明はダイヤモンド粉末の合成方法に関するもので
ある。Description: TECHNICAL FIELD The present invention relates to a method for synthesizing diamond powder.
[従来の技術] 従来気相法によるダイヤモンド粉末の合成方法として
は次の2つの方法が知られている。[Prior Art] Conventionally, the following two methods are known as methods for synthesizing diamond powder by a gas phase method.
(1)特開昭62−158195に示されるように、炭化水素を
含む有機化合物または炭素材を高温の熱プラズマ中に投
入し、分解または蒸発させてダイヤモンドを析出させる
方法。この公報に記載の方法では、反応器に冷却用のガ
スを注入することにより生成した活性種を非限定的な空
間において冷却してダイヤモンド粉末を析出させる。(1) As shown in JP-A-62-158195, a method in which an organic compound containing a hydrocarbon or a carbon material is introduced into a high-temperature thermal plasma, and is decomposed or evaporated to precipitate diamond. In the method described in this publication, active species generated by injecting a cooling gas into a reactor are cooled in a non-limited space to precipitate diamond powder.
(2)特開昭63−156009に示させるように、高周波プラ
ズマまたはマイクロ波プラズマ中に炭素を含む有機化合
物と水素の混合ガスを導入し、同時にダイヤモンド生成
のための核をプラズマ中に投入してその上にダイヤモン
ドを析出させる方法。(2) As shown in JP-A-63-156009, a mixed gas of an organic compound containing carbon and hydrogen is introduced into a high-frequency plasma or a microwave plasma, and simultaneously, a nucleus for diamond generation is introduced into the plasma. Method of depositing diamond on it.
[発明が解決しようとする課題] しかしながらこれらの方法には次のような欠点があ
る。すなわち、(1)の方法では、冷却用ガスを活性種
を含む反応混合物に、非限定的な、比較的自由な空間に
おいて混合することにより冷却し、ダイヤモンド粉末を
析出させるものであるために、活性種の過飽和度を余り
高くすることができず、ダイヤモンドの析出量は極めて
少ない。また(2)の方法では、ダイヤモンド生成のた
めの核を最初から導入するために純度が悪く、かつ生成
した粉末は核としていれた異物質とダイヤモンドとの複
合粉末もしくは混合粉末となる、という欠点を有してい
た。[Problems to be Solved by the Invention] However, these methods have the following disadvantages. That is, in the method (1), the cooling gas is mixed with the reaction mixture containing the active species in a non-limited, relatively free space to thereby cool and precipitate the diamond powder. The degree of supersaturation of the active species cannot be made too high, and the amount of diamond deposited is extremely small. Further, the method (2) has a disadvantage that the purity is poor because a nucleus for diamond generation is introduced from the beginning, and the generated powder is a composite powder or a mixed powder of diamond and a foreign substance used as a nucleus. Had.
そこで本発明の目的は、上記欠点を解消し純度のよい
ダイヤモンド粉末を効率よく、高い生産性で析出させる
合成方法を提供することにある。Accordingly, an object of the present invention is to provide a synthesis method for solving the above-mentioned disadvantages and efficiently depositing high-purity diamond powder with high productivity.
[課題を解決するための手段] 本発明者らは、ダイヤモンド粉末の合成方法について
鋭意研究を重ねた結果、減圧下において炭素源をプラズ
マ中で反応させることにより生成した活性種を含む反応
混合物を、冷却用の固体と接触させることにより、前記
の目的を達成しうることを見いだし、本発明を完成する
に至った。[Means for Solving the Problems] As a result of intensive studies on a method for synthesizing diamond powder, the present inventors have found that a reaction mixture containing active species generated by reacting a carbon source in plasma under reduced pressure is used. It has been found that the above object can be achieved by contact with a solid for cooling, and the present invention has been completed.
すなわち、本発明は、減圧下、水素ガスの存在下にお
いてプラズマ中で炭素源を反応させ、生成した活性種を
含む気相の反応混合物を固体からなる冷却体と接触させ
て急冷することによりダイヤモンド粉末を析出させるこ
とからなるダイヤモンド粉末の合成方法を提供するもの
である。That is, the present invention provides a diamond source by reacting a carbon source in a plasma in the presence of hydrogen gas under reduced pressure, bringing a gaseous reaction mixture containing the generated active species into contact with a solid cooling body, and rapidly cooling the diamond. An object of the present invention is to provide a method for synthesizing a diamond powder by depositing the powder.
本発明で用いられるプラズマは、後述のガスを放電さ
せることにより得られるが、放電に用いる電源は特に制
限されず、例えば、直流、高周波、マイクロ波、低周波
交流のいずれか、もしくはこれらの重畳したもの、ある
いは直流に磁場を印加したものであってもよい。The plasma used in the present invention is obtained by discharging a gas described below, but the power source used for the discharge is not particularly limited, and may be, for example, any of direct current, high frequency, microwave, low frequency alternating current, or a superposition thereof. Or a direct current applied with a magnetic field.
また本発明でプラズマ発生に使用するガスとしては、
水素ガス、アルゴン、ネオン、ヘリウム、キセノン等の
不活性ガス、および炭素源である物質から選ばれる少な
くとも1種を用いることができ、単独または2種以上の
混合ガスとして用いられる。また、これに窒素やアンモ
ニア等のガスが共存してもかまわない。代表的には、水
素ガス、不活性ガス、またはこれらの混合ガスが用いら
れる。The gas used for plasma generation in the present invention includes:
At least one selected from an inert gas such as hydrogen gas, argon, neon, helium, and xenon, and a substance serving as a carbon source can be used, and used alone or as a mixed gas of two or more types. Also, a gas such as nitrogen or ammonia may coexist. Typically, a hydrogen gas, an inert gas, or a mixed gas thereof is used.
本発明で用いる炭素源はプラズマ炎中で解離して炭素
を含むイオン種、ラジカル種等の活性種を生成するもの
であれば気体、液体または固体のいずれであってもよ
い。この炭素源としては、例えばメタン、エタン、プロ
パン等の飽和炭化水素、エチレン、プロピレン、アセチ
レン等の不飽和脂肪族、ベンゼン等の芳香族炭化水素、
シクロヘキサン、シクロプロパン等の脂環式炭化水素、
エタノール、プロパノール、tert−ブチルアルコール等
のアルコール類、ジメチルエーテル、ジエチルエーテル
等のエーテル類、ホルムアルデヒド、アセトアルデヒド
等のアルデヒド類、アセトン等のケトン類、塩化メチ
ル、臭化アセチル等のハロゲン化物、ギ酸、酢酸等の脂
肪酸、シュウ酸、マロン酸等のカルボン酸、ギ酸メチ
ル、ギ酸エステル等のエステル類、酢酸アミド等の酸ア
ミド類、メチルアミン、トリメチルアミン等のアミン
類、ポリエチレン、ポリプロピレン等の高分子化合物、
チオフィン等のイオウ(S)を含む有機化合物、ホスフ
ィン等のリン(P)を含む有機化合物、一酸化炭素、二
酸化炭素、黒鉛等が挙げられる。これらの炭素源となる
物質は、一種または二種以上でも用いることができる。
炭素源が液体または固体の場合は通常アルゴン、ヘリウ
ム等の不活性ガスもしくは水素ガスをキャリア−ガスと
して使用すればよい。The carbon source used in the present invention may be any of gas, liquid and solid as long as it dissociates in a plasma flame to generate active species such as ionic species and radical species containing carbon. As this carbon source, for example, methane, ethane, saturated hydrocarbons such as propane, ethylene, propylene, unsaturated aliphatics such as acetylene, aromatic hydrocarbons such as benzene,
Alicyclic hydrocarbons such as cyclohexane and cyclopropane,
Alcohols such as ethanol, propanol and tert-butyl alcohol, ethers such as dimethyl ether and diethyl ether, aldehydes such as formaldehyde and acetaldehyde, ketones such as acetone, halides such as methyl chloride and acetyl bromide, formic acid, acetic acid Fatty acids such as oxalic acid, carboxylic acids such as malonic acid, esters such as methyl formate and formate, acid amides such as acetic acid amide, amines such as methylamine and trimethylamine, and high molecular compounds such as polyethylene and polypropylene;
Organic compounds containing sulfur (S) such as thiophin, organic compounds containing phosphorus (P) such as phosphine, carbon monoxide, carbon dioxide, graphite, and the like can be given. One or more of these carbon source substances can be used.
When the carbon source is a liquid or solid, an inert gas such as argon or helium or a hydrogen gas may be used as a carrier gas.
本発明の方法においては、炭素源のプラズマ中での反
応は、水素ガスの存在下で行われるが、この水素ガス
は、プラズマ発生用のガスとして反応系に導入されても
よいし、例えば後述の実施例におけるシースガスのよう
な形でプラズマ発生用ガスとは別に反応系に導入されて
もよい。勿論、両方の形で導入されてもよい。In the method of the present invention, the reaction of the carbon source in the plasma is performed in the presence of hydrogen gas.The hydrogen gas may be introduced into the reaction system as a gas for plasma generation, for example, as described below. May be introduced into the reaction system separately from the plasma generating gas in the form of a sheath gas in the embodiment. Of course, it may be introduced in both forms.
また、炭素源も、前記のようにプラズマ発生用ガス成
分として導入してもよいし、または生成したプラズマに
別途導入してもよい。Further, the carbon source may be introduced as a gas component for plasma generation as described above, or may be separately introduced into the generated plasma.
プラズマ発生用ガスおよび炭素源の導入方法の好まし
い1態様としては、水素または水素と不活性ガスとの混
合ガスを放電に供してプラズマを発生させ、該プラズマ
に炭素源を導入する方法が挙げられる。As a preferred embodiment of the method of introducing the plasma generating gas and the carbon source, a method of subjecting hydrogen or a mixed gas of hydrogen and an inert gas to discharge to generate plasma, and introducing a carbon source into the plasma is given. .
本発明の方法においては、通常、反応系に水素ガスと
炭素源とが連続的に導入されることが好ましいが、導入
される炭素源と水素ガスとの単位時間当たりの比は、炭
素原子数/水素原子数の比が0.0001〜10となる範囲が好
ましい。この比率が大きすぎるとアモルファス炭素、黒
鉛等の非ダイヤモンド質炭素によるといわれる構造を持
つ物質が析出し易くなる、低すぎるとダイヤモンド生成
が困難になる。In the method of the present invention, it is usually preferable that the hydrogen gas and the carbon source are continuously introduced into the reaction system, but the ratio of the introduced carbon source and the hydrogen gas per unit time is determined by the number of carbon atoms. It is preferable that the ratio of the number of hydrogen atoms be in the range of 0.0001 to 10. If the ratio is too large, a substance having a structure called non-diamond carbon such as amorphous carbon or graphite tends to be precipitated, and if it is too low, it becomes difficult to form diamond.
本発明の方法においては、反応は減圧下で行うことが
必要であり、例えば、10〜400torrの範囲である。In the method of the present invention, the reaction needs to be performed under reduced pressure, for example, in the range of 10 to 400 torr.
本発明の方法で用いられる冷却体の材料としては、例
えば、銅、モリブデン、タングステン、シリコン、ステ
ンレス、タンタル、黒鉛等の単体;石英ガラス、アルミ
ナ、炭化珪素、窒化ケイ素、炭化ホウ素、窒化アルミニ
ウム、窒化ホウ素等の化合物が挙げることができ、好ま
しくは、モリブデン、窒化ホウ素、シリコン等である。
この冷却体は、例えば、水等の冷媒で冷却されているこ
とが望ましい。冷却体の温度は、例えば400〜1400℃で
ある。As the material of the cooling body used in the method of the present invention, for example, a simple substance such as copper, molybdenum, tungsten, silicon, stainless steel, tantalum, graphite; quartz glass, alumina, silicon carbide, silicon nitride, boron carbide, aluminum nitride, Compounds such as boron nitride can be given, and preferred are molybdenum, boron nitride, silicon and the like.
This cooling body is desirably cooled by a coolant such as water. The temperature of the cooling body is, for example, 400 to 1400 ° C.
冷却体は、プラズマ中で生成した活性種が効率よく接
触するように反応器内に配置される。例えば、後記の実
施例では、プラズマ流の延長方向に活性種を含む反応混
合物が流れ、その延長方向に配置さている冷却体に衝突
するので効率よく冷却体と接触し、冷却される。その結
果、冷却体と接触後、その近傍では活性種の過飽和度が
高まり、ダイヤモンド粉末が効率よく析出する。The cooling body is arranged in the reactor so that active species generated in the plasma come into efficient contact with each other. For example, in the embodiments described later, the reaction mixture containing the active species flows in the direction of extension of the plasma flow, and collides with the cooling member arranged in the direction of extension of the reaction mixture. As a result, after contact with the cooling body, the degree of supersaturation of the active species increases in the vicinity thereof, and diamond powder is efficiently deposited.
本発明の方法を実施例を図面に基ずいて説明すると、
第1図は直流放電を用い、水冷の冷却体により冷却を行
ないダイヤモンドを合成する方法を実施するための装置
例を示し、第2図は高周波放電を用い、水冷の冷却体に
より冷却を行ないダイヤモンド粉末を合成する方法の装
置例を示す。An embodiment of the method of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of an apparatus for implementing a method of synthesizing diamond by cooling with a water-cooled cooling body using a direct current discharge, and FIG. 2 shows a diamond cooled with a water-cooled cooling body using a high-frequency discharge. An apparatus example of a method for synthesizing a powder will be described.
第1図において、1は直流プラズマトーチ、2は直流
電源、3は水冷反応容器、4は上下動及び回転が可能な
冷却用の水冷の冷却体、5はプラズマ発生用ガス導入
口、6は原料ガス導入口、7はシースガス(水冷反応容
器内壁に沿って螺旋状に流下するガス)導入口(シース
ガスが螺旋状に流下するようにノズル(図示せず)が直
径方向から接線方向に傾斜している)、8はガス供給装
置、9は排気バルブの開閉度の調整によって反応容器内
の圧力調整が可能な真空排気装置を示す。In FIG. 1, 1 is a DC plasma torch, 2 is a DC power supply, 3 is a water-cooled reaction vessel, 4 is a water-cooled cooling body capable of moving up and down and rotating, 5 is a gas inlet for plasma generation, 6 is A raw material gas inlet 7 is a sheath gas (gas that spirally flows down along the inner wall of the water-cooled reaction vessel). An inlet (not shown) whose nozzle (not shown) is tangentially inclined from the diameter direction so that the sheath gas spirally flows down. , 8 denotes a gas supply device, and 9 denotes a vacuum exhaust device capable of adjusting the pressure in the reaction vessel by adjusting the degree of opening and closing of an exhaust valve.
ダイヤモンド粉末の合成に当たっては、例えば、反応
系内を0.01torr以上の真空度まで真空排気を行なう。次
に5よりプラズマ発生用ガスとしてアルゴンを流し放電
させてプラズマを発生させる。さらに7よりシースガ
ス、この場合雰囲気調整及び反応ガスとして水素ガスま
たは不活性ガスと水素ガスの混合ガスを流す。冷却体を
プラズマ流の延長線上の図示の所定位置に設置した後、
原料を6よりプラズマ炎中に導入する。9の真空排気装
置によって反応容器内圧を制御して反応を行なわせる。
プラズマ炎中で生成した活性種は冷却体4に衝突して冷
却を受けることにより、固体となり、結晶化し、粒成長
してダイヤモンド粉末となる。生成したダイヤモンド粉
末は気体の流れに運ばれ冷却体周囲の水冷反応容器内壁
に堆積する。なお活性種の一部は冷却体上において固体
となり、結晶化、粒成長してダイヤモンド膜もしくはダ
イヤモンド粒となることがある。In synthesizing the diamond powder, for example, the inside of the reaction system is evacuated to a vacuum of 0.01 torr or more. Next, from step 5, argon is flowed as a plasma generation gas to discharge and generate plasma. Further, a sheath gas, in this case, a hydrogen gas or a mixed gas of an inert gas and a hydrogen gas is flowed as an atmosphere control and a reaction gas in this case. After installing the cooling body at the predetermined position shown on the extension of the plasma flow,
The raw material is introduced into the plasma flame from 6. The reaction is carried out by controlling the internal pressure of the reaction vessel by the evacuation device 9.
The active species generated in the plasma flame collides with the cooling body 4 and is cooled, whereby it becomes a solid, crystallizes and grows into a diamond powder. The generated diamond powder is carried by the gas flow and is deposited on the inner wall of the water-cooled reaction vessel around the cooling body. Some of the active species may become solid on the cooling body and crystallize and grow to form a diamond film or diamond grains.
第2図において、10は高周波発生用のコイル、11は高
周波電源、12は冷却用ガス導入口であり、他の第1図と
同一番号を付したものは第1図の場合と同一要素であ
る。ダイヤモンドの合成にあたっては反応系内を0.01to
rrまで真空排気後、5よりプラズマ発生用ガスとしてア
ルゴンガス、7よりシースガスとしてアルゴンを流して
高周波プラズマを発生させる。さらに雰囲気調整用及び
反応用ガスとして水素ガスをシースガスに加える。さら
に6より原料をプラズマ中に導入し反応容器内圧を所定
圧に調整して反応を行なわせる。直流電源を用いたとき
と同様に、冷却用の基体周囲の水冷反応容器内壁にダイ
ヤモンド粉末が堆積する。In FIG. 2, reference numeral 10 denotes a high-frequency generating coil, 11 denotes a high-frequency power supply, 12 denotes a cooling gas inlet, and the same reference numerals as in FIG. 1 denote the same elements as those in FIG. is there. When synthesizing diamond, 0.01 to
After evacuating to rr, an argon gas is supplied as a plasma generation gas from 5 and an argon gas as a sheath gas from 7 to generate high frequency plasma. Further, hydrogen gas is added to the sheath gas as a gas for adjusting the atmosphere and as a reaction gas. Further, starting from 6, the raw material is introduced into the plasma, and the reaction is carried out by adjusting the internal pressure of the reaction vessel to a predetermined pressure. As in the case of using the DC power supply, diamond powder is deposited on the inner wall of the water-cooled reaction vessel around the cooling substrate.
実施例1 第1図に示した装置を用い、真空排気装置9により、
反応系内を0.01torrまで排気後、プラズマ発生用ガスと
してアルゴンを17l/min、水素ガスを3l/min.流し、直流
プラズマを発生させ、シースガス導入口7より水素ガス
を5l/min.流した。ついで原料ガス導入口6よりアセチ
レンを0.8l/min.流し1時間反応を行なった。このとき
の、直流電源入力は8kW、反応容器内圧は100torr、冷却
体の位置は直流トーチより下方90mmの位置に設定した。
その結果、反応容器内壁に白っぽい粉6gが析出した。Example 1 Using the device shown in FIG.
After evacuation of the reaction system to 0.01 torr, 17 l / min of argon and 3 l / min of hydrogen gas were flowed as plasma generation gas to generate DC plasma, and 5 l / min of hydrogen gas was flowed from the sheath gas inlet 7. . Then, acetylene was flowed at 0.8 l / min. At this time, the DC power input was set to 8 kW, the internal pressure of the reaction vessel was set to 100 torr, and the position of the cooling body was set to a position 90 mm below the DC torch.
As a result, 6 g of whitish powder precipitated on the inner wall of the reaction vessel.
得られた粉末はX線回析及びラマン散乱スペクトル測
定結果を、それぞれ、第3図、第4図に示す。第4図で
は、ダイヤモンド結晶に由来する1333cm-1付近にのみピ
ークが観察された。これらの結果より立方晶ダイヤモン
ドであることがわかった。なお、走査電子顕微鏡観察よ
り得られたダイヤモンド粉末は、粒子が分割されておら
ず完全な形を保っており、気相中で核生成、成長したも
のであることがわかった。The results of X-ray diffraction and Raman scattering spectrum measurement of the obtained powder are shown in FIGS. 3 and 4, respectively. In FIG. 4, a peak was observed only at around 1333 cm −1 derived from the diamond crystal. From these results, it was found to be cubic diamond. In addition, it was found from the scanning electron microscope observation that the diamond powder obtained was not divided and kept a perfect shape, and had been nucleated and grown in the gas phase.
実施例2 第2図に示す装置を用い、真空排気装置9により装置
内を約0.01torrまで真空引きした後、プラズマ発生用ガ
ス導入口5よりアルゴンガスを18l/min.シースガス導入
口7よりアルゴンガスを30l/min.流し、高周波プラズマ
を発生させた。プラズマ発生後、プラズマガスにヘリウ
ムガス3l/min.、シースガスに水素ガス15l/min.を加え
た。原料ガス導入口より5l/min.のアルゴンガスをキャ
リア−ガスとして、エタノール蒸気0.75/min.をプラズ
マ中に導入し30分間反応を行なった。このときの高周波
電源入力は60kWであり、反応容器内圧は400torr、冷却
体の位置は高周波コイルより下方100mmの位置に設定し
た。その結果、冷却体周囲の反応容器内壁に白〜薄グレ
ーの粉末4gが得られた。この得られた粉末は、X線回析
及びラマン散乱スペクトル測定、走査型電子顕微鏡観察
の結果より、実施例1と同様な立方晶ダイヤモンドであ
った。Example 2 Using the apparatus shown in FIG. 2, the inside of the apparatus was evacuated to about 0.01 torr by the vacuum evacuation apparatus 9, and then 18 l / min of argon gas was introduced from the plasma generation gas inlet 5. Gas was flowed at 30 l / min. To generate high frequency plasma. After plasma generation, helium gas 3 l / min. Was added to the plasma gas, and hydrogen gas 15 l / min. Was added to the sheath gas. Ethanol vapor 0.75 / min. Was introduced into the plasma using 5 l / min. Of argon gas as a carrier gas from the raw material gas inlet, and a reaction was carried out for 30 minutes. At this time, the high-frequency power input was 60 kW, the internal pressure of the reaction vessel was set at 400 torr, and the position of the cooling body was set at a position 100 mm below the high-frequency coil. As a result, 4 g of a white to light gray powder was obtained on the inner wall of the reaction vessel around the cooling body. The obtained powder was a cubic diamond similar to that of Example 1 based on the results of X-ray diffraction, Raman scattering spectrum measurement, and scanning electron microscope observation.
比較例1 冷却体を用いず、それ以外は実施例1と同様の条件で
ダイヤモンド粉末の合成を1時間行なった。その結果、
反応容器内壁に薄黄色の粉末0.1gが析出した。この粉末
は、X線回析、ラマン散乱スペクトル測定の結果より立
方晶ダイヤモンドであった。Comparative Example 1 A diamond powder was synthesized for one hour under the same conditions as in Example 1 except that no cooling body was used. as a result,
0.1 g of a pale yellow powder precipitated on the inner wall of the reaction vessel. The powder was a cubic diamond based on the results of X-ray diffraction and Raman scattering spectrum measurements.
比較例2 実施例2の装置を用い、冷却体を用いず12の冷却ガス
導入口より水素ガス30l/min,を導入し冷却ガスによって
急冷し、その他の条件は実施例2と同様にしてダイヤモ
ンド粉末の合成を30分間行なった。Comparative Example 2 Using the apparatus of Example 2, 30 l / min of hydrogen gas was introduced from the 12 cooling gas inlets without using a cooling body, and quenched with the cooling gas. The synthesis of the powder was carried out for 30 minutes.
その結果、灰色〜黒色の粉末0.2gが析出した。得られ
た粉末はX線回析及びマラン散乱スペクトルの結果よ
り、少量の非晶質炭素を含む立方晶ダイヤモンド粉末で
あることがわかった。As a result, 0.2 g of a gray-black powder was precipitated. From the results of X-ray diffraction and Maran scattering spectra, the obtained powder was found to be a cubic diamond powder containing a small amount of amorphous carbon.
[発明の効果] 本発明の方法によれば、非ダイヤモンド質炭素を含ま
ない高純度なダイヤモンド粉末を効率よく、高い生産性
で製造することができる。[Effect of the Invention] According to the method of the present invention, high-purity diamond powder containing no non-diamond carbon can be produced efficiently and with high productivity.
第1図、第2図は、本発明の方法を実施するための装置
例を示す概略図で、第1図は実施例1で用いた直流放
電、第2図は実施例2で用いた高周波放電の反応装置を
示す。第3図は、実施例1で得られたダイヤモンド粉末
のX線回折図であり、第4図はそのラマン散乱スペクト
ルを示す。 1.直流プラズマトーチ 2.直流電源 3.水冷反応容器 4.上下動及び回転が可能な冷却用の冷却体 5.プラズマ発生用ガス導入口 6.原料ガス導入口 7.シースガスの導入口 8.ガス供給装置 9.真空排気装置 10.高周波発生用のコイル 11.高周波電源 12.冷却用のガス導入口1 and 2 are schematic views showing an example of an apparatus for carrying out the method of the present invention. FIG. 1 is a direct current discharge used in Example 1, and FIG. 1 shows a discharge reactor. FIG. 3 is an X-ray diffraction diagram of the diamond powder obtained in Example 1, and FIG. 4 shows its Raman scattering spectrum. 1. DC plasma torch 2. DC power supply 3. Water-cooled reaction vessel 4. Cooling body that can move up and down and rotate 5. Gas inlet for plasma generation 6. Source gas inlet 7. Sheath gas inlet 8. Gas supply device 9. Vacuum exhaust device 10. Coil for high frequency generation 11. High frequency power supply 12. Gas inlet for cooling
Claims (1)
マ中で炭素源を反応させ、生成した活性種を含む気相の
反応混合物を固体からなる冷却体と接触させて急冷する
ことによりダイヤモンド粉末を析出させることからなる
ダイヤモンド粉末の合成方法。A diamond powder is prepared by reacting a carbon source in a plasma under reduced pressure in the presence of hydrogen gas in a plasma, bringing a produced gas-phase reaction mixture containing active species into contact with a solid cooling body and rapidly cooling the mixture. A method for synthesizing diamond powder, comprising precipitating diamond.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63274730A JP2706492B2 (en) | 1988-10-31 | 1988-10-31 | Method of synthesizing diamond powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63274730A JP2706492B2 (en) | 1988-10-31 | 1988-10-31 | Method of synthesizing diamond powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02120219A JPH02120219A (en) | 1990-05-08 |
JP2706492B2 true JP2706492B2 (en) | 1998-01-28 |
Family
ID=17545777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63274730A Expired - Fee Related JP2706492B2 (en) | 1988-10-31 | 1988-10-31 | Method of synthesizing diamond powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2706492B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE180021T1 (en) * | 1994-02-23 | 1999-05-15 | Linde Ag | METHOD FOR PRODUCING DIAMOND LAYERS |
JP3460594B2 (en) * | 1997-10-09 | 2003-10-27 | 三菱マテリアル株式会社 | Seed diamond powder with excellent adhesion to artificial diamond film formation surface |
US9969620B2 (en) * | 2014-03-31 | 2018-05-15 | Case Western Reserve University | Nanoscale diamond particles and method of forming nanoscale diamond particles |
WO2023191664A1 (en) * | 2022-03-29 | 2023-10-05 | Алитет Зигмович ЧЕПОНАС | Method for growing diamonds |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0255297A (en) * | 1988-08-22 | 1990-02-23 | Idemitsu Petrochem Co Ltd | Method for synthesizing diamond |
-
1988
- 1988-10-31 JP JP63274730A patent/JP2706492B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02120219A (en) | 1990-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4767608A (en) | Method for synthesizing diamond by using plasma | |
US4816286A (en) | Process for synthesis of diamond by CVD | |
US4989542A (en) | Apparatus for synthesizing diamond | |
JPS5927753B2 (en) | Diamond synthesis method | |
JP2706492B2 (en) | Method of synthesizing diamond powder | |
JPS61286299A (en) | Preparation of diamond | |
JPH0518796B2 (en) | ||
JPH0372038B2 (en) | ||
JPS6221757B2 (en) | ||
JPS6033300A (en) | Process and apparatus for synthesizing diamond in gaseous phase | |
JPS6054996A (en) | Diamond synthesis method | |
JPH035314A (en) | Method for synthesizing diamond powder | |
JPH02192415A (en) | Syntheses of diamond powder | |
JPH01197391A (en) | Method for synthesizing diamond | |
JPS63117993A (en) | Device for synthesizing diamond in vapor phase | |
JPS593098A (en) | Synthesizing method of diamond | |
JPS63270393A (en) | Diamond synthesis method | |
JP2610505B2 (en) | Gas phase synthesis of diamond | |
JPH0665744A (en) | Production of diamond-like carbon thin film | |
JPH085748B2 (en) | Gas phase synthesis of diamond | |
JPS6265997A (en) | Method and apparatus for synthesizing diamond | |
JPH0346438B2 (en) | ||
JPS60200896A (en) | Synthesis method of fibrous diamond | |
JP3093836B2 (en) | Diamond film fabrication method | |
JPS63117996A (en) | Device for synthesizing diamond in vapor phase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |