[go: up one dir, main page]

JP2698598B2 - Waveform measuring device - Google Patents

Waveform measuring device

Info

Publication number
JP2698598B2
JP2698598B2 JP8209888A JP8209888A JP2698598B2 JP 2698598 B2 JP2698598 B2 JP 2698598B2 JP 8209888 A JP8209888 A JP 8209888A JP 8209888 A JP8209888 A JP 8209888A JP 2698598 B2 JP2698598 B2 JP 2698598B2
Authority
JP
Japan
Prior art keywords
digital signal
output
speed
signal processing
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8209888A
Other languages
Japanese (ja)
Other versions
JPH01253673A (en
Inventor
亙児 苅部
Original Assignee
日本ヒューレット・パッカード株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ヒューレット・パッカード株式会社 filed Critical 日本ヒューレット・パッカード株式会社
Priority to JP8209888A priority Critical patent/JP2698598B2/en
Publication of JPH01253673A publication Critical patent/JPH01253673A/en
Application granted granted Critical
Publication of JP2698598B2 publication Critical patent/JP2698598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、高速信号波形を高精度で測定する装置に関
する。
Description: TECHNICAL FIELD The present invention relates to an apparatus for measuring a high-speed signal waveform with high accuracy.

〔発明の技術的背景及びその問題点〕[Technical background of the invention and its problems]

従来、高速信号波形を測定するには高速オシロスコー
プやサンプリングスコープで直接測定を行っていた。し
かしこの様な方法で充分な精度を望むことは難しい。そ
こで、ステップ信号が比較的簡単に充分、精度良く発生
できることを利用し、これを基準として測定系を含む測
定装置を補正し、これによって被測定信号を精出良く測
定する装置が考えられた。特願昭62−140614(特開昭63
−304175)にこの方式が述べられている。
Conventionally, high-speed signal waveforms have been measured directly with a high-speed oscilloscope or sampling scope. However, it is difficult to obtain sufficient accuracy in such a method. Therefore, there has been proposed an apparatus which utilizes the fact that a step signal can be generated relatively easily and sufficiently accurately and corrects a measuring apparatus including a measuring system on the basis of the step signal, thereby measuring the signal under measurement with good precision. Japanese Patent Application No. 62-140614 (Japanese Unexamined Patent Publication No.
This method is described in US Pat.

上記特願では波高レベルが平坦である基準パルス波を
サンプリングし、デジタル化して基準データを得、前記
基準データに基づきフーリエ変換し、また理想ステップ
波のフーリエ変換と前記基準データに基づいたフーリエ
変換とから測定系のセトリング特性を求めていた。具体
的には振幅のある値(例えば50%)の点を時間基準とし
て、前記基準データに基づいたフーリエ変換と前記理想
ステップ波のフーリエ変換とを正規化し所望の測定系補
正データを得ていた。
In the above patent application, a reference pulse wave having a flat crest level is sampled, digitized to obtain reference data, Fourier-transformed based on the reference data, and a Fourier transform of an ideal step wave and a Fourier transform based on the reference data. Thus, the settling characteristics of the measurement system were determined. Specifically, using a point of a certain value of the amplitude (for example, 50%) as a time reference, Fourier transform based on the reference data and Fourier transform of the ideal step wave are normalized to obtain desired measurement system correction data. .

この方法で基準パルス波と理想ステップ波のタイミン
グ合わせを行うと、夫々の信号のデューティ比が正確に
50%となる訳ではないので高次の高調波成分が著しく低
下し補正データに誤差を生じる。矩形波の周波数成分は
第3図に示すようにSin(X)/X上に現われるので、デ
ューティ比50%の奇数次成分の場合以外では周期的に振
幅が低下することになる。また振幅の値を時間基準の条
件としているので、測定系の誤差を含んでしまう。
When the timing of the reference pulse wave and the ideal step wave are adjusted by this method, the duty ratio of each signal will be accurate.
Since it is not 50%, higher-order harmonic components are remarkably reduced, causing errors in the correction data. Since the frequency component of the rectangular wave appears on Sin (X) / X as shown in FIG. 3, the amplitude periodically decreases except in the case of an odd-order component having a duty ratio of 50%. In addition, since the value of the amplitude is used as the time-based condition, an error of the measurement system is included.

さらにこの方法では基準パルス波を測定した基準デー
タと理想ステップ波の夫々のフーリエ変換を比較し測定
系の誤差を得ているが、実際の基準パルスには、ある程
度の立上り・立下り時間およびリンギング等のゆらぎが
含まれている。そのため、高速域になればなる程、基準
パルスと理想ステップ波のずれは大きくなり精度が悪化
してしまう。
Furthermore, in this method, the error of the measurement system is obtained by comparing the Fourier transform of the reference data obtained by measuring the reference pulse wave with the Fourier transform of the ideal step wave, but the actual reference pulse has a certain rise and fall time and ringing. Etc. are included. For this reason, the shift between the reference pulse and the ideal step wave increases as the speed increases, and the accuracy deteriorates.

〔発明の目的〕[Object of the invention]

本発明は高速信号波形の高精度測定を行なう装置を提
供することを目的としている。
An object of the present invention is to provide an apparatus for performing high-accuracy measurement of a high-speed signal waveform.

〔発明の概要〕[Summary of the Invention]

本発明の一実施例によれば、基準となる信号を発生す
るための高速パルス発生装置と、被測定信号と、入力し
たアナログ信号の所定のレベルをデジタル変換して出力
する高速測定系と、前記被測定信号と前記高速パルス発
生装置の出力とを選択的に前記高速測定系の入力に接続
する第1スイッチと、前記高速パルス発生装置の電流、
温度などのパラメータを抽出するパラメータ抽出装置
と、前記高速パルス発生装置の既知の回路パラメータ
と、前記回路パラメータと前記パラメータ抽出装置との
情報を基に前記高速パルス発生装置の信号をシミュレー
トする回路シミュレータと、デジタル信号処理を行なう
第1デジタル信号処理装置(DSP)、第2DSPと、前記高
速測定系の出力に前記第1DSP、第2DSPのそれぞれの入力
を選択的に接続する第2スイッチと、前記高速パルス発
生装置の出力を前記高速測定系によって測定したデータ
と前記回路シミュレータの出力とから前記第1DSPにより
算出された特性データを記憶し、その出力を前記第2DSP
に送る特性データ記憶装置と、から成り前記第2DSPは前
記被測定信号を前記高速測定系によって測定したデータ
と前記特性データ記憶装置からのデータとを基に前記高
速測定系の誤差を補正し、高精度の高速測定出力を発生
する測定装置が提供される。
According to one embodiment of the present invention, a high-speed pulse generator for generating a reference signal, a signal to be measured, and a high-speed measurement system that converts a predetermined level of an input analog signal into a digital signal and outputs the digital signal, A first switch for selectively connecting the signal under measurement and an output of the high-speed pulse generator to an input of the high-speed measurement system;
A parameter extracting device for extracting a parameter such as a temperature; a circuit for simulating a signal of the high-speed pulse generating device based on known circuit parameters of the high-speed pulse generating device and information of the circuit parameters and the parameter extracting device. A simulator, a first digital signal processor (DSP) for performing digital signal processing, a second DSP, and a second switch for selectively connecting the respective inputs of the first and second DSPs to the output of the high-speed measurement system; The characteristic data calculated by the first DSP from the data of the output of the high-speed pulse generator measured by the high-speed measurement system and the output of the circuit simulator is stored, and the output is stored in the second DSP.
The second DSP corrects the error of the high-speed measurement system based on the data measured by the high-speed measurement system and the data from the characteristic data storage device, the second DSP comprising: A measuring device for producing a high-accuracy high-speed measuring output is provided.

〔発明の実施例〕(Example of the invention)

第1図に本発明の第1実施例を示す。同図において、
初めにスイッチ2は高速パルス発生装置7側に接続さ
れ、スイッチ4はDSP8側に接続されている。この状態に
おいて、高速パルス発生装置7の信号はスイッチ2を介
して高速測定系3(アナログ入力、デジタル出力)で測
定される。この測定データは、スイッチ4を介してDSP8
に送られる。また高速パルス発生装置7の電流、温度な
どのパラメータは、パラメータ抽出装置10によって取り
出され回路シミュレータ12に送られる。回路シミュレー
タ12では、既知である高速パルス発生装置7の回路パラ
メータである回路パラメータ11と前記パラメータ抽出装
置10との情報を基に高速パルス発生装置7の信号をシミ
ュレートしDSP8に送出する。DSP8はこれら2つのデータ
を基に高速測定系3の特性データを算出し特性データ記
憶装置9に蓄積させる。次に、スイッチ2とスイッチ4
を切り換え、被測定信号1を高速測定系3で測定する。
これにより得られたデータはスイッチ4を介してDSP5に
送出する。DSP5では前述で得られた特性データを基に高
速測定系3の誤差を補正し高精度な高速測定出力を出力
する。
FIG. 1 shows a first embodiment of the present invention. In the figure,
First, the switch 2 is connected to the high-speed pulse generator 7 side, and the switch 4 is connected to the DSP 8 side. In this state, the signal of the high-speed pulse generator 7 is measured by the high-speed measurement system 3 (analog input, digital output) via the switch 2. This measurement data is transmitted to DSP 8 via switch 4.
Sent to Parameters such as current and temperature of the high-speed pulse generator 7 are extracted by the parameter extracting device 10 and sent to the circuit simulator 12. The circuit simulator 12 simulates a signal of the high-speed pulse generator 7 based on the information of the circuit parameter 11 which is a known circuit parameter of the high-speed pulse generator 7 and the information of the parameter extracting device 10, and sends the signal to the DSP 8. The DSP 8 calculates the characteristic data of the high-speed measurement system 3 based on these two data and stores it in the characteristic data storage device 9. Next, switch 2 and switch 4
And the high-speed measurement system 3 measures the signal under test 1.
The data thus obtained is sent to the DSP 5 via the switch 4. The DSP 5 corrects an error in the high-speed measurement system 3 based on the characteristic data obtained as described above and outputs a high-precision high-speed measurement output.

上記操作のうち特性データを得るまでの一連の信号の
様子を第2図に示す。同図において、高速パルス発生装
置7の出力は高速測定系3で測定され、高速測定系3
の出力のように立上り、立下りの乱れた信号として観
測される。ただし、これらの信号は繰り返し信号を用い
必ず信号の前縁と後縁が連続となるようにする。
FIG. 2 shows a series of signals until the characteristic data is obtained in the above operation. In the figure, the output of the high-speed pulse generator 7 is measured by the high-speed measurement system 3,
Is observed as a signal with rising and falling disturbances like the output of However, these signals use a repetitive signal, and the leading edge and the trailing edge of the signal are always continuous.

このように測定した信号を一時FFTによって周波数軸
上に変換し基本波成分の実成分・虚成分の比からパルス
の位置情報を抽出する。同時に2次高調波成分からデュ
ーティ比を算出する。すなわちデューティ比50%の場
合、偶数次成分はSin(X)/X=0となるので消失する
が、50%からずれていると完全には消失しない点に着目
し、X=2π付近のSin(X)/の逆関数あるいはニュ
ートン法などによって2次高調波の位相を求めると、Si
n(X)/Xはパルス幅を変数とする周期関数なのでデュ
ーティ比を求めることができる。位置情報とデューティ
比情報を元にして高速測定系出力を規格化する。具体
的には位置補正は出力の前縁・後縁のデータを移動さ
せ、デューティ比補正は出力の立上り、立下りの過渡
現象が充分に収束した部分を補間し伸縮する。
The signal measured in this manner is transformed on the frequency axis by a temporary FFT, and pulse position information is extracted from the ratio between the real component and the imaginary component of the fundamental wave component. At the same time, the duty ratio is calculated from the second harmonic component. That is, when the duty ratio is 50%, the even-order component disappears because Sin (X) / X = 0, but attention is paid to the fact that it does not completely disappear when the duty ratio deviates from 50%. When the phase of the second harmonic is obtained by the inverse function of (X) / or Newton's method, the Si
Since n (X) / X is a periodic function using the pulse width as a variable, the duty ratio can be obtained. The output of the high-speed measurement system is standardized based on the position information and the duty ratio information. Specifically, the position correction moves the data of the leading edge and the trailing edge of the output, and the duty ratio correction interpolates and expands and contracts a portion where the transient phenomena of the output rise and fall sufficiently converge.

以上の処理で得られた規格化測定出力を再びFFTを行
なうと偶数次成分がなく、奇数次成分を高次まで得るこ
とができる。比較をシミュレータ出力についても正確に
位置合わせやデューティ比が50%とはならない場合には
上記と同様な処理を施しFFTを行ない奇数次成分を高次
まで得る。規格化された測定出力とシミュレータ出力か
らFFTを行なって得た奇数次成分を比較し、高速測定系
3の特性データを得る。偶数次成分は全て規格化の誤差
であり特性データには使わない。また、上記FFTは複素
数で計算し特性データも複素数として得ると、直交変換
により利得と位相を基本波からの相対値として得られ
る。基本波周波数は充分に低く正確である。よって特性
データによって高次までの利得と位相の絶対値を得られ
る。
When the FFT is performed again on the normalized measurement output obtained by the above processing, there is no even-order component and an odd-order component can be obtained to a higher order. When the position of the simulator output is not accurately adjusted and the duty ratio does not become 50%, the same processing as described above is performed to perform FFT to obtain odd-order components up to higher orders. The odd-order components obtained by performing the FFT from the standardized measurement output and the simulator output are compared, and the characteristic data of the high-speed measurement system 3 is obtained. All even-order components are errors of normalization and are not used for characteristic data. Further, when the FFT is calculated with a complex number and the characteristic data is also obtained as a complex number, the gain and phase can be obtained as a relative value from the fundamental wave by orthogonal transform. The fundamental frequency is sufficiently low and accurate. Therefore, the gain and the absolute value of the phase up to the higher order can be obtained by the characteristic data.

次にスイッチ2とスイッチ4を切り換え被測定信号1
を測定し特性データと共にDSP5により補正を行ない高精
度な高速測定出力を求める。この場合の補正は周波数軸
上で乗算し時間軸上に変換しても良いし、予め特性デー
タを時間軸上に変換しておきコンボリューションによっ
て所望の出力を求めても良い。
Next, switch 2 and switch 4 are switched and the signal under measurement 1
Is measured and corrected with DSP5 along with the characteristic data to obtain a high-accuracy high-speed measurement output. The correction in this case may be multiplied on the frequency axis and converted on the time axis, or the characteristic data may be converted on the time axis in advance and a desired output may be obtained by convolution.

上記実施例において、デューティ比を50%はせずに、
そのまま規格化せずに振幅の低下する次数を求め、特性
データから削除しても良い。また、特性データの分解能
をある程度細かく取り、各データ間は直線近似により求
めることで被測定信号入力の測定条件を変えても再度特
性データをとり直さなくても良くできる。
In the above embodiment, without setting the duty ratio to 50%,
The order in which the amplitude decreases may be obtained without standardization as it is and deleted from the characteristic data. In addition, the resolution of the characteristic data is taken to a certain degree of fineness, and the data between the data is obtained by linear approximation, so that it is not necessary to change the measurement condition of the input of the signal under measurement and to collect the characteristic data again.

また、第1図の参照番号5、8、9、12のデータ処理
部分をコンピューターのソフトウェアにより行いシステ
ムを簡略化できる。また、デューティ比を2次高調波か
ら得ずに他の成分から求めても良い。また、回路シミュ
レータの結果を既知のデータとして、特性データを求め
る都度計算しなくても良い。
In addition, the data processing portions denoted by reference numerals 5, 8, 9, and 12 in FIG. 1 can be performed by computer software to simplify the system. Further, the duty ratio may be obtained from another component without obtaining the duty ratio from the second harmonic. Further, it is not necessary to calculate each time characteristic data is obtained by using the result of the circuit simulator as known data.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように、本発明によれば高速
測定系の誤差をほぼ完全に除去し高精度な測定ができ
る、セトリング特性のようなステップ状の波形のみなら
ず、あらゆる波形の高精度な高速測定が実現できる等の
多大な効果を有するものである。
As is clear from the above description, according to the present invention, high-precision measurement of a high-speed measurement system can be performed almost completely and high-precision measurement can be performed. It has tremendous effects such as realizing high speed measurement.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す図、第2図は第1図に
示す装置の動作を説明するための図、第3図はSin
(X)/Xを表わす図である。 2、4:スイッチ、3:高速測定系 5、8:DSP、7:高速パルス発生装置 9:特性データ記憶装置、10:パラメータ抽出装置 11:回路パラメータ、12:回路シミュレータ
FIG. 1 is a view showing an embodiment of the present invention, FIG. 2 is a view for explaining the operation of the apparatus shown in FIG. 1, and FIG.
It is a figure showing (X) / X. 2, 4: switch, 3: high-speed measurement system 5, 8: DSP, 7: high-speed pulse generator 9: characteristic data storage device, 10: parameter extraction device 11: circuit parameters, 12: circuit simulator

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基準となる信号を発生する基準信号発生装
置と、 測定の対象となる被測定信号と、 入力したアナログ信号の所定のレベルをデジタル変換し
て出力する高速測定装置と、 前記被測定信号と前記基準信号発生装置の出力とを選択
的に前記高速測定装置の入力に接続する第1スイッチ
と、 前記基準信号発生装置の電流、温度などのパラメータを
抽出するパラメータ抽出装置と、 前記基準信号発生装置の既知の回路パラメータと、 前記回路パラメータと前記パラメータ抽出装置との情報
を基に前記基準信号発生装置の信号をシミュレートとす
る回路シミュレータと、 デジタル信号処理を行なう第1デジタル信号処理装置、
第2デジタル信号処理装置 と、 前記高速測定装置の出力に前記第1デジタル信号処理装
置、第2デジタル信号処理装置のそれぞれの入力を選択
的に接続する第2スイッチと、 前記基準信号発生装置の出力を前記高速測定装置によっ
て測定したデータと前記回路シミュレータの出力とから
前記第1デジタル信号処理装置により算出された特性デ
ータを記憶し、その出力を前記第2デジタル信号処理装
置に送る特性データ記憶装置と、 から成り、前記第2デジタル信号処理装置は前記被測定
信号を前記高速測定装置によって測定したデータと前記
特性データ記憶装置からのデータとを基に前記高速測定
装置の誤差を補正し、高精度の高速測定出力を発生する
ことを特徴とする波形測定装置。
A reference signal generating device for generating a reference signal; a signal to be measured to be measured; a high-speed measuring device for converting a predetermined level of an input analog signal into a digital signal and outputting the digital signal; A first switch for selectively connecting a measurement signal and an output of the reference signal generation device to an input of the high-speed measurement device; a parameter extraction device for extracting parameters such as current and temperature of the reference signal generation device; A known circuit parameter of a reference signal generator, a circuit simulator for simulating a signal of the reference signal generator based on information of the circuit parameter and the parameter extractor, and a first digital signal for performing digital signal processing Processing equipment,
A second digital signal processing device; a second switch for selectively connecting respective inputs of the first digital signal processing device and the second digital signal processing device to an output of the high-speed measurement device; Characteristic data storage for storing characteristic data calculated by the first digital signal processing device from data whose output is measured by the high-speed measuring device and output of the circuit simulator, and sending the output to the second digital signal processing device Wherein the second digital signal processing device corrects the error of the high-speed measuring device based on the data measured by the high-speed measuring device and the data from the characteristic data storage device, A waveform measuring device for generating a high-accuracy high-speed measurement output.
JP8209888A 1988-04-01 1988-04-01 Waveform measuring device Expired - Lifetime JP2698598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8209888A JP2698598B2 (en) 1988-04-01 1988-04-01 Waveform measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8209888A JP2698598B2 (en) 1988-04-01 1988-04-01 Waveform measuring device

Publications (2)

Publication Number Publication Date
JPH01253673A JPH01253673A (en) 1989-10-09
JP2698598B2 true JP2698598B2 (en) 1998-01-19

Family

ID=13764941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8209888A Expired - Lifetime JP2698598B2 (en) 1988-04-01 1988-04-01 Waveform measuring device

Country Status (1)

Country Link
JP (1) JP2698598B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7330061B2 (en) * 2006-05-01 2008-02-12 International Business Machines Corporation Method and apparatus for correcting the duty cycle of a digital signal
CN102955080A (en) * 2011-08-16 2013-03-06 重庆融海超声医学工程研究中心有限公司 Portable measuring instrument and measuring method for electrical parameters
CN103293420B (en) * 2013-06-06 2016-01-20 中国电子科技集团公司第四十一研究所 A kind of multiparameter digital signal processing hardware circuit and multiparameter disposal route

Also Published As

Publication number Publication date
JPH01253673A (en) 1989-10-09

Similar Documents

Publication Publication Date Title
US6549859B1 (en) Method of time stamping a waveform edge of an input signal
US6556156B1 (en) Circuit and method for calibrating the phase shift between a plurality of digitizers in a data acquisition system
US8290032B2 (en) Distortion identification apparatus, test system, recording medium and distortion identification method
US8280667B2 (en) Test apparatus, performance board and calibration board
JP3745962B2 (en) Interleave AD conversion waveform digitizer device and test device
US4928251A (en) Method and apparatus for waveform reconstruction for sampled data system
JPH0447330B2 (en)
US20110254721A1 (en) Method for Compensating a Frequency Characteristic of an Arbitrary Waveform Generator
US20090082981A1 (en) Method and apparatus for measurement of amplitude of periodic signal and method and apparatus for test of magnetic head
US8358682B2 (en) Signal processing apparatus, test system, distortion detecting apparatus, signal compensation apparatus, analytic signal generating apparatus, recording medium and analytic signal generating method
US6240130B1 (en) Method and apparatus to measure jitter.
JP3234339B2 (en) Power measuring apparatus and method
JP2698598B2 (en) Waveform measuring device
JP2867769B2 (en) Sound measurement method and device
JP3167472B2 (en) Method for measuring SN ratio of analog-to-digital converter
JP4526891B2 (en) Delay amount measuring method and measuring apparatus
JP2663904B2 (en) Transfer function evaluation device
JPH01153949A (en) Method of acquiring and processing spin echo nuclear magnetic resonance spectrum
JPH0894690A (en) Servo analyzer
JPH0634681A (en) Fft analyzer
JPS63304175A (en) Settling characteristic measuring method
JPH0630445B2 (en) D / A converter test method
Pogliano Tracking generator of calibrated harmonics
JPH0580091A (en) Frequency characteristic measurement method
JPH01197676A (en) Measuring instrument for transmission characteristic

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11