[go: up one dir, main page]

JP2691784B2 - Projection display device - Google Patents

Projection display device

Info

Publication number
JP2691784B2
JP2691784B2 JP1333941A JP33394189A JP2691784B2 JP 2691784 B2 JP2691784 B2 JP 2691784B2 JP 1333941 A JP1333941 A JP 1333941A JP 33394189 A JP33394189 A JP 33394189A JP 2691784 B2 JP2691784 B2 JP 2691784B2
Authority
JP
Japan
Prior art keywords
light
polarized light
linearly polarized
polarization
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1333941A
Other languages
Japanese (ja)
Other versions
JPH03192319A (en
Inventor
信介 鹿間
正浩 臼井
博 木田
英一 都出
光重 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1333941A priority Critical patent/JP2691784B2/en
Publication of JPH03192319A publication Critical patent/JPH03192319A/en
Application granted granted Critical
Publication of JP2691784B2 publication Critical patent/JP2691784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,液晶ライトバルブ上に形成された画像をス
クリーン上に拡大投写する投写型表示装置に関し、特に
液晶ライトバルブの照明光源として無偏光の光を出射す
るランプを用いた投写型表示装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a projection display device for enlarging and projecting an image formed on a liquid crystal light valve onto a screen, and more particularly to a non-polarized light source as an illumination light source for the liquid crystal light valve. The present invention relates to a projection type display device using a lamp that emits light.

[従来の技術] 第7図は従来の投写型表示装置の光学系の説明図であ
る。図において、(1)は光源、(120)はランプ、(1
30)は反射鏡、(2)は光源(1)から出射する照明光
束、(3)は液晶ライトバルブ、(8),(9)は液晶
ライトバルブの前後に配置された偏光板、(4)は投写
レンズ、(5)はスクリーン、(10)はコンデンサレン
ズである。
[Prior Art] FIG. 7 is an explanatory diagram of an optical system of a conventional projection display device. In the figure, (1) is a light source, (120) is a lamp, and (1
Reference numeral 30 is a reflecting mirror, (2) is an illumination light flux emitted from the light source (1), (3) is a liquid crystal light valve, (8) and (9) are polarizing plates arranged before and after the liquid crystal light valve, and (4). ) Is a projection lens, (5) is a screen, and (10) is a condenser lens.

次に動作について説明する。光源(1)はランプ(12
0)と反射鏡(130)から成り、液晶ライトバルブ(3)
に照明光束(2)を照射する。ランプとしては、例えば
メタルハライドランプ,キセノンランプ等の放電ランプ
及びハロゲンランプ等が用いられる。液晶ライトバルブ
(3)の面上には後述するように画像が表示され、画像
の濃淡及び色に応じて面内の透過率が変化する。液晶ラ
イトバルブ(3)を透過した光束はさらに投写レンズ
(4)を透過して投写光(110)となり、スクリーン
(5)上に拡大結像され鑑賞に供される。なお、コンデ
ンサレンズ(10)は、照明光束を高効率で投写レンズに
入射し高輝度の投写画像を得るために設けられている。
Next, the operation will be described. The light source (1) is a lamp (12
0) and reflector (130), liquid crystal light valve (3)
The illumination luminous flux (2) is applied to the. As the lamp, for example, a discharge lamp such as a metal halide lamp or a xenon lamp and a halogen lamp are used. An image is displayed on the surface of the liquid crystal light valve (3) as described later, and the in-plane transmittance changes according to the shade and color of the image. The light beam transmitted through the liquid crystal light valve (3) is further transmitted through the projection lens (4) to become a projection light (110), and is enlarged and formed on a screen (5) for viewing. The condenser lens (10) is provided in order to make the illumination light flux enter the projection lens with high efficiency and obtain a high-luminance projection image.

次に、液晶ライトバルブ(3)の構成と動作につい
て、第8図により説明する。液晶(6)は2枚のガラス
基板(7)に挟まれ、さらに両側に偏光板(8),
(9)を配している。電圧無印加V=0(第8図
(a))においては、入射側偏光板(8)を透過した直
線偏光(2a)は、液晶(6)を透過する際に液晶の旋光
性によって偏光方向が90°回転し、入射側偏光板(8)
と偏光軸が直交するように配された出射側偏光板(9)
を透過する。一方、しきい値電圧Vth以上の電圧Vを印
加する(第8図(b))と、液晶の旋光性が小さくなっ
て、出射側偏光板(9)を透過する光量が電圧の増加に
伴って減少する。
Next, the structure and operation of the liquid crystal light valve (3) will be described with reference to FIG. The liquid crystal (6) is sandwiched between two glass substrates (7), and polarizing plates (8),
(9) is arranged. In the case where no voltage is applied V = 0 (FIG. 8 (a)), the linearly polarized light (2a) transmitted through the incident side polarization plate (8) is polarized by the optical rotatory power of the liquid crystal when transmitted through the liquid crystal (6). Is rotated by 90 ° and the incident side polarization plate (8)
And the output side polarizing plate (9) arranged so that the polarization axes thereof are orthogonal to each other.
Through. On the other hand, when a voltage V equal to or higher than the threshold voltage Vth is applied (FIG. 8 (b)), the optical rotatory power of the liquid crystal becomes small, and the amount of light transmitted through the emission side polarization plate (9) increases as the voltage increases. Decrease.

この様な透過率の制御作用を利用し、さらに、2次元
アレイ状に電極を構成することにより、2次元の画像表
示素子が形成できる。尚、上記液晶は旋光角が90°のTN
(Twisted Nematic)液晶をノーマリーホワイトモード
で使用した例について説明した。液晶相の種類,旋光角
の大きさ等については公知のごとく、上記の他にも変形
例が知られているが、本発明の主題と直接的に関係しな
いので説明を省略する。
A two-dimensional image display element can be formed by utilizing such a transmittance control action and further configuring electrodes in a two-dimensional array. The above liquid crystal is a TN with an optical rotation angle of 90 °.
(Twisted Nematic) An example of using liquid crystal in normally white mode was explained. As for the type of liquid crystal phase, the size of the optical rotation angle, and the like, as well known, other modified examples are known, but the description thereof is omitted because it is not directly related to the subject of the present invention.

さらに、第2の従来装置として、第9図に3枚の液晶
ライトバルブを用いた装置の光学系を示す。図におい
て、(1)は光源であり、具体的にはメタルハライドラ
ンプ,キセノンランプ,ハロゲンランプ等の白色光を発
生するランプ(120)と、反射鏡(130)から成る。
(2)は光源(1)を出射する照明光束、(14R),(1
4B)は色分離用ダイクロイックミラー、(15B),(15
G)は色合成用ダイクロイックミラー、(11),(12)
はミラー、(3R),(3G),(3B)は液晶ライトバル
ブ、(8R),(8G),(8B)は入射側偏光板、(9R),
(9G),(9B)は出射側偏光板、(10R),(10G),
(10B)はコンデンサレンズである。
Further, as a second conventional device, FIG. 9 shows an optical system of a device using three liquid crystal light valves. In the figure, (1) is a light source, which is specifically composed of a metal halide lamp, a xenon lamp, a halogen lamp or the like for generating white light, and a reflecting mirror (130).
(2) is an illumination luminous flux emitted from the light source (1), (14R), (1
4B) is a color separation dichroic mirror, (15B), (15
G) is a dichroic mirror for color synthesis, (11), (12)
Is a mirror, (3R), (3G) and (3B) are liquid crystal light valves, (8R), (8G) and (8B) are incident side polarization plates, (9R),
(9G) and (9B) are output side polarization plates, (10R), (10G),
(10B) is a condenser lens.

次に第2の従来装置の動作について説明する。 Next, the operation of the second conventional device will be described.

照明光束(2)は白色光源ランプ(120)を出射後、
反射鏡(130)で反射され光源(1)を出射する。ダイ
クロイックミラー(14R)は赤色光を反射し、青・緑色
光を透過する。又、ダイクロイックミラー(14B)は青
色光を反射し、緑色光を透過させる。従って、液晶ライ
トバルブ(3G),(3B),(3R)には、各々緑・青・赤
の照明光束が照射される。液晶ライトバルブ(3G),
(3B),(3R)には、特に図示しない外部回路によって
緑・青・赤の色光に相当する画像が形成され、照射光を
ライトバルブ面内で透過変調する。液晶ライトバルブ
(3G),(3B),(3R)の出射光は、青色光を反射する
ダイクロイックミラー(15B)、緑色光を反射するダイ
クロイックミラー(15G)及び反射ミラー(12)によっ
て合成光束(100)として投写レンズ(4)に入射し、
投写光束(110)としてスクリーン(5)上に結像さ
れ、拡大されたカラー画像が鑑賞に供される。なお、コ
ンデンサレンズ(10R),(10G),(10B)は、各々赤
・緑・青色光を高効率で投写レンズ(4)に入射させる
ために用いられる。又、各液晶ライトバルブ(3R),
(3G),(3B)の構成及び動作は、先に第8図で説明し
たものと同様である。
The illumination luminous flux (2) is emitted from the white light source lamp (120),
The light is reflected by the reflecting mirror (130) and emitted from the light source (1). The dichroic mirror (14R) reflects red light and transmits blue and green light. The dichroic mirror (14B) reflects blue light and transmits green light. Accordingly, the liquid crystal light valves (3G), (3B), and (3R) are irradiated with green, blue, and red illumination light beams, respectively. Liquid crystal light valve (3G),
In (3B) and (3R), an image corresponding to green, blue, and red color light is formed by an external circuit (not shown), and the irradiation light is transmission-modulated within the light valve plane. Light emitted from the liquid crystal light valves (3G), (3B), and (3R) is combined by a dichroic mirror (15B) that reflects blue light, a dichroic mirror (15G) that reflects green light, and a reflection mirror (12). Incident on the projection lens (4) as
An enlarged color image is formed on the screen (5) as a projected light flux (110) for viewing. The condenser lenses (10R), (10G), and (10B) are used to make red, green, and blue lights incident on the projection lens (4) with high efficiency. Also, each liquid crystal light valve (3R),
The configurations and operations of (3G) and (3B) are the same as those described above with reference to FIG.

[発明が解決しようとする課題] 従来の投写型表示装置は、以上のように構成されてい
るので、液晶ライトバルブで画像表示に利用される光束
は、前記入射側偏光板(8)又は(8R),(8G),(8
B)によって選択される直線偏光成分のみである。一
方、従来装置で使用されるランプ(120)は、メタルハ
ライドランプ,キセタノランプ,ハロゲンランプ等の無
偏光(自然偏光)光源であり、照明光(2)も無偏光で
あった。
[Problems to be Solved by the Invention] Since the conventional projection display device is configured as described above, the luminous flux used for image display in the liquid crystal light valve is the incident side polarization plate (8) or ( 8R), (8G), (8
Only the linearly polarized light component selected by B). On the other hand, the lamp (120) used in the conventional device is a non-polarized (naturally polarized) light source such as a metal halide lamp, a xetano lamp, and a halogen lamp, and the illumination light (2) is also non-polarized.

この結果、入射側偏光板(8)又は(8R),(8G),
(8B)を透過する際、照明光束(2)の約半分しか液晶
層内に入射していなかった。残り半分の光エネルギー
は、主に入射側偏光板(8)又は(8R),(8G),(8
B)に吸引されて熱となり、入射側偏光板(8)又は(8
R),(8G),(8B)の温度上昇による偏光特性劣化,
隣接する液晶層の温度上昇による液晶動作特性の変動等
の原因となっていた。
As a result, the incident side polarization plate (8) or (8R), (8G),
When passing through (8B), only about half of the illumination luminous flux (2) was incident on the liquid crystal layer. The other half of the light energy is mainly incident side polarization plate (8) or (8R), (8G), (8
B) is absorbed and turned into heat, and the incident side polarization plate (8) or (8
R), (8G), (8B) temperature rise deterioration of polarization characteristics,
This has been a cause of fluctuations in liquid crystal operating characteristics due to temperature rise of the adjacent liquid crystal layer.

本発明は上記のような問題点を解消するためになされ
たもので、照明光束のエネルギーを有効に利用し、かつ
入射側偏光板(8)又は(8R),(8G),(8B)の温度
上昇を防止でき、結果として高輝度な画像表示が実現で
きる投写型表示装置を得ることを目的とするものであ
る。
The present invention has been made to solve the above-mentioned problems, and effectively utilizes the energy of the illumination light flux, and further, the incident side polarization plate (8) or (8R), (8G), (8B) An object of the present invention is to obtain a projection display device capable of preventing temperature rise and consequently realizing high-luminance image display.

[課題を解決するための手段] 本発明に係る投写型表示装置は、無偏光光束を第1及
び第2の直線偏光光束に分離する偏光分離手段と、2つ
の互いに直交する反射面を有し、該直交反射面の交線が
前記第2の直線偏光光束の偏光方向と45°をなす基準角
の方向とした構成で、前記第2の直線偏光光束の偏光方
向を90°回転した第3の直線偏光光束として前記偏光分
離手段に再入射させる偏光回転手段と、前記第3の直線
偏光光束が前記偏光分離手段に再入射した後出射して得
られる光束を、前記第1の直線偏光光束とほぼ同じ進行
方向及び偏光方向を有する第4の直線偏光光束とする光
路変換手段とから構成され、前記第1の直線偏光光束お
よび前記第4の直線偏光光束により前記液晶ライトバル
ブを照明するものである。
[Means for Solving the Problem] A projection display apparatus according to the present invention has a polarization splitting means for splitting an unpolarized light flux into first and second linearly polarized light fluxes and two reflecting surfaces orthogonal to each other. A third line rotated by 90 ° with respect to the polarization direction of the second linearly polarized light beam, the crossing line of the orthogonal reflecting surfaces being a direction of a reference angle forming 45 ° with the polarization direction of the second linearly polarized light beam. Of the first linearly polarized light flux, and a polarization rotation means that re-enters the polarized light splitting means as a linearly polarized light flux of And an optical path conversion means for making a fourth linearly polarized light beam having substantially the same traveling direction and polarization direction as the above, and illuminating the liquid crystal light valve with the first linearly polarized light beam and the fourth linearly polarized light beam. Is.

いわば、光源から出射する無偏光である照明光束を直
線偏光に変換する光学手段を有し、液晶ライトバルブの
入射側偏光板の偏光軸と照明光束の直線偏光の方向を一
致するように構成したものである。
In other words, it has an optical means for converting an unpolarized illumination light beam emitted from a light source into a linearly polarized light, and is configured so that the polarization axis of the incident side polarization plate of the liquid crystal light valve and the direction of the linearly polarized light of the illumination light beam coincide with each other. It is a thing.

[作用] 上記のように照明光束を直線偏光化することにより、
入射側偏光板を透過する光量が倍増し、偏光板による吸
引も小さくできる。
[Operation] By linearizing the illumination light flux as described above,
The amount of light transmitted through the incident side polarization plate is doubled, and the suction by the polarization plate can be reduced.

さらに、前記光学手段によって直線偏光化された照明光
束の消光比が良好な場合には、入射側偏光板なしで装置
を構成できる。
Further, when the extinction ratio of the illumination light beam linearly polarized by the optical means is good, the device can be configured without the incident side polarization plate.

[実施例] 第1図は実施例1における投写型表示装置の光学系を
示す説明図である。図において、(20)は偏光分離手
段、(21)は偏光回転手段であり、2枚の互いに直交す
るミラー(21a),(21b)より構成されている。(23)
は光路変換手段である。
[Embodiment] FIG. 1 is an explanatory diagram showing an optical system of a projection display apparatus in Embodiment 1. In the figure, (20) is a polarized light separating means and (21) is a polarized light rotating means, which is composed of two mirrors (21a) and (21b) orthogonal to each other. (twenty three)
Is an optical path changing means.

次に実施例の動作について説明する。 Next, the operation of the embodiment will be described.

光源(1)より出射した照明光束(2)は従来例と同
様に無偏光状態であり、偏光分離手段の接合面(20a)
よって反射S偏光(30),透過P偏光(33a)に分離さ
れる。反射S偏光は偏光回転手段(21)に入射する。該
偏光回転手段(21)は、交線(22)が図のx方向からz
軸回りに基準角として45°回転した方向となるよう配置
された。直交するミラー(21a),(21b)から構成され
ており、後述するように入射光の偏光方向を90°回転し
て出射させる作用をする。
The illumination luminous flux (2) emitted from the light source (1) is in a non-polarized state as in the conventional example, and the joint surface (20a) of the polarization splitting means.
Therefore, it is separated into reflected S-polarized light (30) and transmitted P-polarized light (33a). The reflected S-polarized light enters the polarization rotating means (21). The polarization rotation means (21) has a line of intersection (22) z from the x direction in the drawing.
It was arranged so that it was rotated around the axis by 45 ° as a reference angle. It is composed of orthogonal mirrors (21a) and (21b), and has a function of rotating the polarization direction of incident light by 90 ° and emitting it, as described later.

従って、前記偏光回転手段に入射したS偏光(30)
は、P偏光(31)となって出射し、偏光分離手段(20)
をP偏光のまま透過し、光路変換手段(23)によって反
射され、前述の透過P偏光(33a)と同じ偏光方向・進
行方向の直線偏光(33b)としてコンデンサレンズ(1
0)を通して液晶ライトバルブ(3)に入射する。液晶
ライトバルブ(3)の入射側偏光板(8)の偏光軸は前
記入射直線偏光(33a),(33b)の方向と揃えて配置し
ている。この結果、従来の無偏光光束が入射する場合に
比べて約2倍の光エネルギーが液晶層に入射し、画像表
示に寄与する。液晶ライトバルブ(3)を出射した光は
従来例と同様に、投写レンズ(4)によって投写光(11
0)となり、スクリーン(5)上に拡大投写される。
Therefore, the S-polarized light (30) incident on the polarization rotation means
Is emitted as P-polarized light (31), and is output as polarized light separating means (20).
Is transmitted as P-polarized light as it is, is reflected by the optical path changing means (23), and is converted into linear polarized light (33b) having the same polarization direction and traveling direction as the transmitted P-polarized light (33a).
It is incident on the liquid crystal light valve (3) through 0). The polarization axis of the incident side polarization plate (8) of the liquid crystal light valve (3) is aligned with the direction of the incident linearly polarized light (33a), (33b). As a result, about twice as much light energy is incident on the liquid crystal layer as compared with the case where a conventional unpolarized light flux is incident, which contributes to image display. The light emitted from the liquid crystal light valve (3) is projected by the projection lens (4) as in the conventional example.
0), which is enlarged and projected on the screen (5).

次に、本発明において特徴的な偏光回転手段(21)の
動作について、第2図により詳述する。
Next, the operation of the polarization rotation means (21), which is a characteristic feature of the present invention, will be described in detail with reference to FIG.

第2図(a)は斜視図,第2図(b)は平面図を示し
ている。偏光回転手段(21)は互いに直交する光路変換
手段(21b)より構成されている。偏光回転手段(21)
に入射する光線(30)は図のように交線(22)に対して
45°をなす直線偏光(振幅E1)であり、等振幅の直交
成分x1,y1に分けられる。但し、y1の方向は交線(2
2)と平行にとった。図のようにx1,y1成分の光路変換
手段(21b)の反射による鏡像は順次x2,y2及びx3,y3
で示される方向になる。y3はy1と同一方向であり、x
3はx1と反対方向となっている。
2 (a) is a perspective view and FIG. 2 (b) is a plan view. The polarization rotating means (21) is composed of optical path changing means (21b) orthogonal to each other. Polarization rotation means (21)
The light ray (30) that is incident on the crossing line (22) is
It is a linearly polarized light (amplitude E 1 ) forming 45 ° and is divided into quadrature components x 1 and y 1 of equal amplitude. However, the direction of y 1 is the intersection line (2
I took it in parallel with 2). As shown in the figure, the mirror images of the x 1 , y 1 component reflected by the optical path changing means (21b) are sequentially x 2 , y 2 and x 3 , y 3.
The direction is indicated by. y 3 is in the same direction as y 1, and x
3 is opposite to x 1 .

従って、 x,y偏光の反射率がほぼ等しいこと x,y方向の偏光を反射する際の位相差が小さいこと という2つの条件を満たす場合に、x3,y3は等振幅で同
位相の成分となるので、偏光E3は図示したようにE1
直交する直線偏光となる。同様にして、第2図(a)で
光路変換手段(21b)に入射した直線偏光(E1方向の偏
光)は、光路変換手段(21b),(21a)で順次反射され
て、E1と直交する直線偏光となる。
Therefore, x, the reflectance of the y-polarized light is substantially equal x, when the phase difference of two conditions are satisfied that it is small at the time of reflecting the y direction of polarization, x 3, y 3 are the same phase with equal amplitude Since it becomes a component, the polarized light E 3 becomes a linearly polarized light orthogonal to E 1 as shown in the figure. Similarly, the linearly polarized light (polarized light in the E 1 direction) incident on the optical path changing means (21b) in FIG. 2 (a) is sequentially reflected by the optical path changing means (21b) and (21a), and becomes E 1 It becomes a linearly polarized light which is orthogonal to each other.

以上の様に、第1図において、偏光分離手段(20)で
反射されたS偏光(30)は、交線(22)に対して45°を
なす直線偏光であるため、偏光回転手段(21)によって
偏光方向が90°回転した状態で入射光と逆の進行方向に
反射され、P偏光(31)となって偏光分離手段(20)に
再入射し、そのまま透過P偏光(32)となって偏光分離
手段(20)を出射する。なお、光路変換手段(21b)
は、強い反射光(31)を得るために、上記,の条件
に加えて、 x,y方向の偏光の反射率が共に高いことが必要であ
る。これら,,の条件を満たす光路変換手段とし
ては、ガラス基板上に光学多層膜を形成して所望の特性
を実現する構成が好適である。しかし、単なる金属蒸着
光路変換手段(例えば、Al,Ag,Cr等をガラス基板上に蒸
着した光路変換手段)、または金属板光路変換手段等で
も、上記光学多層膜光路変換手段よりは改善度合が低い
ものの本発明の効果は得られる。これは、光線(31)が
偏光分離手段(20)を透過する際に、P偏光(32)に変
換され、光線(33a),(33b)の偏光方向が同じになる
ためである。
As described above, in FIG. 1, since the S-polarized light (30) reflected by the polarization splitting means (20) is linearly polarized light that forms 45 ° with respect to the intersection line (22), the polarization rotating means (21 ), The light is reflected in the traveling direction opposite to the incident light in a state where the polarization direction is rotated by 90 °, becomes P-polarized light (31) and re-enters the polarization splitting means (20), and becomes the transmitted P-polarized light (32) as it is. And emits the polarized light separating means (20). The optical path changing means (21b)
In order to obtain a strongly reflected light (31), in addition to the above conditions, it is necessary that both the reflectance of polarized light in the x and y directions be high. As an optical path changing means satisfying these conditions, it is preferable that an optical multilayer film is formed on a glass substrate to realize desired characteristics. However, even a simple metal vapor deposition optical path changing means (for example, an optical path changing means in which Al, Ag, Cr, etc. are vapor-deposited on a glass substrate) or a metal plate optical path changing means has a degree of improvement over the above optical multilayer film optical path changing means. Although low, the effect of the present invention can be obtained. This is because the light ray (31) is converted into P-polarized light (32) when passing through the polarization separation means (20), and the light rays (33a) and (33b) have the same polarization direction.

[他の実施例] 次に、本発明の第2の実施例について、第3図により
説明する。図において、(23a),(23b)は反射光路変
換手段である。光源(1)を出射した無偏光照明光
(2)は、偏光分離手段(20)によって、反射S偏光
(33a)と、透過P偏光(30)に分離される。透過P偏
光は偏光回転手段(21)に入射する。
[Other Embodiments] Next, a second embodiment of the present invention will be described with reference to FIG. In the figure, (23a) and (23b) are reflection optical path changing means. The non-polarized illumination light (2) emitted from the light source (1) is separated by the polarization splitting means (20) into reflected S-polarized light (33a) and transmitted P-polarized light (30). The transmitted P-polarized light enters the polarization rotating means (21).

偏光回転手段(21)は第1の実施例と同様に、x軸の
方向からz軸回りに45°回転した方向の交線(22)を有
する直交するミラー(21b)より構成されている。透過
P偏光(30)は交線(22)と45°をなすので、偏光回転
手段(21)によって偏光方向が90°回転され光線(30)
と逆方向に進行するS偏光(31)となる。S偏光(31)
は偏光分離手段(20)によって反射S偏光(32)とな
り、光路変換手段(23a),(23b)によって反射されて
前述の反射S偏光(33a)と同一の偏光方向・進行方向
を有する直線偏光(33b)となって、コンデンサレンズ
(10)を通して液晶ライトバルブ(3)に入射する。入
射側偏光板(8)の偏光軸は、前記入射直線偏光(33
a),(33b)の方向と揃えて配置してあり、従来のよう
に無偏光の照明光が入射する場合に比べて、約2倍の光
エネルギーが液晶層に入射し、画像表示に寄与する。液
晶ライトバルブを出射した光は従来例と同様に、投写レ
ンズ(4)によって投写光(110)となり、スクリーン
(5)上に拡大投写される。
Similar to the first embodiment, the polarization rotation means (21) is composed of orthogonal mirrors (21b) having an intersection line (22) in the direction rotated by 45 ° around the z axis from the x axis direction. Since the transmitted P-polarized light (30) forms an angle of 45 ° with the intersecting line (22), the polarization direction is rotated by 90 ° by the polarization rotating means (21) and the light beam (30).
And S-polarized light (31) traveling in the opposite direction. S polarization (31)
Is reflected S polarized light (32) by the polarization separation means (20), is reflected by the optical path conversion means (23a), (23b), and is linearly polarized light having the same polarization direction and traveling direction as the reflected S polarized light (33a). (33b) and enters the liquid crystal light valve (3) through the condenser lens (10). The polarization axis of the incident side polarization plate (8) is defined by the incident linearly polarized light (33
They are arranged in line with the directions of a) and (33b), and approximately twice as much light energy is incident on the liquid crystal layer as compared to the conventional case where unpolarized illumination light is incident, contributing to image display. To do. The light emitted from the liquid crystal light valve becomes projection light (110) by the projection lens (4) as in the conventional example, and is enlarged and projected on the screen (5).

次に、本発明の第3の実施例を第4図により説明す
る。本実施例は、第1の実施例を示す第1図の偏光分離
手段(20),偏光回転手段(21),光路変換手段(23)
を、第2の従来例を示す第9図の光学系に適用した例で
ある。第1の実施例同様に光線(33a),(33b)は同一
の偏光方向・進行方向を有する直線偏光となっている。
又、入射側偏光板(8R),(8G),(8B)の偏光軸は光
線(33a),(33b)の偏光方向と同一の向きに配置され
ている。以上の構成により、第1の実施例と同様に、液
晶ライトバルブの入射側偏光板による光エネルギー損失
を低減できる。
Next, a third embodiment of the present invention will be described with reference to FIG. This embodiment is the same as the polarization separating means (20), the polarization rotating means (21) and the optical path changing means (23) of FIG. 1 showing the first embodiment.
Is an example in which is applied to the optical system of FIG. 9 showing a second conventional example. Similarly to the first embodiment, the light rays (33a) and (33b) are linearly polarized light having the same polarization direction and traveling direction.
The polarization axes of the incident side polarization plates (8R), (8G) and (8B) are arranged in the same direction as the polarization directions of the light rays (33a) and (33b). With the above-described configuration, the light energy loss due to the incident side polarization plate of the liquid crystal light valve can be reduced as in the first embodiment.

次に、本発明の第4の実施例を第5図により説明す
る。本実施例では、第1の実施例を示す第1図の2つの
直線偏光(33a),(33b)中で液晶ライトバルブ(3)
よりも手前の位置に、新たにウェッジプリズム(50)を
配置している。その結果、光線(33a)および光線(33
b)で代表する各半光束は、ウェッジプリズムの中心線
(51)を境にして別々の方向に屈折されて光束(53),
(52)となり、液晶ライトバルブ(3)上の同一場所に
重なって照射される。光線(33a),(33b)は光路が異
なるので、第1図のように液晶ライトバルブ上の別の位
置に照射されると投写画像の輝度むら,色むらを生じる
ことが懸念される。しかし、本実施例では2つの半光束
が重なって照明されるので、このような問題が解決され
る。
Next, a fourth embodiment of the present invention will be described with reference to FIG. In this embodiment, the liquid crystal light valve (3) is included in the two linearly polarized lights (33a) and (33b) of FIG. 1 showing the first embodiment.
A wedge prism (50) is newly placed at a position closer than this. As a result, ray (33a) and ray (33
Each half-beam represented by b) is refracted in different directions with the center line (51) of the wedge prism as a boundary,
It becomes (52), and the same spot on the liquid crystal light valve (3) is overlapped and irradiated. Since the light paths of the light rays (33a) and (33b) are different from each other, it is feared that unevenness in brightness and color of the projected image may occur when the light rays are irradiated to another position on the liquid crystal light valve as shown in FIG. However, in the present embodiment, since the two half-beams are overlapped and illuminated, such a problem is solved.

次に本発明の第5の実施例を第6図により説明する。
本実施例では、第1の実施例を示す第1図の2つの直線
偏光(33a),(33b)中で液晶ライトバルブ(3)より
も手前の位置に、新たに正の円筒レンズ(55a),負の
円筒レンズ(55b)より成る光束径調整光学系(55)を
挿入している。略平行状態で入射する光線(33a),(3
3b)を正の円筒レンズ(55a)により集束光に変換し、
負の円筒レンズ(55b)で再び平行化することにより、
z方向の径が縮小された光束(58)が得られる。円筒レ
ンズ(55a),(55b)はy方向の光に対してはレンズ作
用がないので、y方向の光束径は変化しない。以上のよ
うに本実施例では、光束径調整光学系(55)でz方向の
光束径だけを独立に変化できるので、液晶ライトバルブ
のz,y方向の表示領域の大きさに応じて、最適な断面形
状を有する照明光束を得られる。特に、円筒レンズ(55
b)を透過した光束58が再び平行状態となるので、光束
調整光学系(55)を挿入することによって、それより後
段の光学系の設定に影響を及ぼすことがなく、また、円
筒レンズ(55b)とコンデンサレンズ(10)との離反距
離も自由に設定することができる。尚、z方向の光束径
を拡大するには、正,負の円筒レンズの順序を第6図と
逆にすればよい。又、光学系を小さく構成するには、公
知のフレネルレンズで円筒レンズ(55a),(55b)を構
成してもよい。
Next, a fifth embodiment of the present invention will be described with reference to FIG.
In this embodiment, a positive cylindrical lens (55a) is newly added at a position before the liquid crystal light valve (3) in the two linearly polarized lights (33a) and (33b) of FIG. 1 showing the first embodiment. ), And a beam diameter adjusting optical system (55) consisting of a negative cylindrical lens (55b) is inserted. Light rays (33a), (3
3b) is converted into focused light by a positive cylindrical lens (55a),
By collimating again with the negative cylindrical lens (55b),
A light beam (58) having a reduced diameter in the z direction is obtained. Since the cylindrical lenses (55a) and (55b) have no lens effect on the light in the y direction, the luminous flux diameter in the y direction does not change. As described above, in the present embodiment, since the light flux diameter adjusting optical system (55) can independently change only the light flux diameter in the z direction, it is optimal depending on the size of the display area in the z and y directions of the liquid crystal light valve. It is possible to obtain an illumination light flux having a different cross-sectional shape. In particular, the cylindrical lens (55
Since the light beam 58 that has passed through b) becomes parallel again, by inserting the light beam adjusting optical system (55), the setting of the optical system in the subsequent stage is not affected, and the cylindrical lens (55b The separation distance between the lens) and the condenser lens (10) can be freely set. In order to enlarge the light flux diameter in the z direction, the order of the positive and negative cylindrical lenses may be reversed from that shown in FIG. Further, in order to make the optical system small, the known Fresnel lenses may be used to form the cylindrical lenses (55a) and (55b).

以上の各実施例では、直交反射面の交線が45°をなす
基準角の方向とした場合について述べたが、この角度に
自由度があることは言うまでもない。即ち、前記45°の
角度が、仮にθ°ずれたとすると、偏光回転手段(21)
から出射される偏光(31)は2θ°ずれることになる
が、このずれ成分は偏光分離手段(20)で吸収され、そ
こから出射される偏光(32)は、ずれのない偏光とな
る。そして、この場合のエネルギー損失PLは、PL={1
−COS2(2θ)}であり、例えばθ=3°としても、PL
=0.0055と1%以下であり、この意味で、請求項1に記
載する角度45°の値に多少の自由度、幅をもたせても、
同項記載の発明の同一性を損なうものではない。
In each of the above embodiments, the case where the line of intersection of the orthogonal reflecting surfaces is set to the direction of the reference angle of 45 ° has been described, but it goes without saying that this angle has a degree of freedom. That is, if the angle of 45 ° is deviated by θ °, the polarization rotation means (21)
The polarized light (31) emitted from the device is deviated by 2θ °, but this deviated component is absorbed by the polarized light separating means (20), and the polarized light (32) emitted from the deviated component becomes a non-deviated polarized light. And the energy loss PL in this case is PL = {1
−COS 2 (2θ)}, even if θ = 3 °, PL
= 0.0055, which is 1% or less, and in this sense, even if the value of the angle of 45 ° described in claim 1 has some degree of freedom and width,
It does not impair the identity of the invention described in the same paragraph.

また、いずれも液晶ライトバルブ(3)または(3
R),(3G),(3B)の入射側偏光板(8)を従来構成
と同様に使用する場合について説明した。しかし、光束
(2)ら生成される光線(33a)(33b)は直線偏光であ
るため、液晶ライトバルブ(3)または(3R),(3
G),(3B)は、入射側偏光板(8)または(8R),(8
G),(8B)を用いなくても画像形成が可能である。偏
光板は偏光選択特性による光損失のほか、材料自身の吸
収損失があるが、上記のように入射側偏光板(8)また
は(8R),(8G),(8B)を省略すれば、材料の吸収損
失がなくせるので、より高輝度な投写型表示装置が実現
できる。
Also, both are liquid crystal light valves (3) or (3
The case where the incident side polarization plates (8) of (R), (3G) and (3B) are used in the same manner as the conventional configuration has been described. However, since the light rays (33a) (33b) generated from the light flux (2) are linearly polarized light, the liquid crystal light valve (3) or (3R), (3
G) and (3B) are incident side polarization plates (8) or (8R) and (8
Images can be formed without using G) and (8B). The polarizing plate has optical loss due to polarization selection characteristics and absorption loss of the material itself. However, if the incident side polarizing plate (8) or (8R), (8G), (8B) is omitted as described above, the material Since the absorption loss can be eliminated, a projection display device with higher brightness can be realized.

また、本発明の各実施例は液晶ライトバルブとして透
過型のものを使用しているが、反射型液晶ライトバルブ
を使用した投写型表示装置も公知である。本発明の核心
をなす偏光分離手段(20),偏光回転手段(21),光路
変換手段(23)または(23a),(23b)からなる直線偏
光化光学系は反射型液晶ライトバルブを使用した装置に
も問題なく適用できる。さらに、以上の実施例では液晶
ライトバルブとして、液晶の旋光性を利用した方式を例
にとって説明したが、このほかにも液晶の複屈折を電気
的に制御する方式、例えばECB(electrically controll
ed birefringence)形等も公知であり、これら入射側偏
光板を必要とする液晶ライトバルブを使用する投写型表
示装置にも、本発明が適用出来ることもちろんである。
また、ライトバルブの枚数も3枚に限らず3枚以上、あ
るいは1〜2枚でも問題なく適用できる。
Further, although each embodiment of the present invention uses a transmissive liquid crystal light valve, a projection display device using a reflective liquid crystal light valve is also known. A reflection type liquid crystal light valve is used as a linear polarization optical system including a polarization splitting means (20), a polarization rotating means (21), an optical path changing means (23) or (23a) and (23b), which are the core of the present invention. It can be applied to devices without problems. Further, in the above-mentioned embodiments, the liquid crystal light valve has been described by taking the system utilizing the optical rotatory power of the liquid crystal as an example. In addition to this, a system for electrically controlling the birefringence of the liquid crystal, for example, ECB (electrically controllable
The ed birefringence) type and the like are also known, and it goes without saying that the present invention can be applied to a projection type display device using a liquid crystal light valve that requires these incident side polarization plates.
Further, the number of light valves is not limited to three, and three or more, or one or two light valves can be applied without any problem.

[発明の効果] 以上に詳述したように、本発明の投写型表示装置によ
れば、光源から出射する無偏光の照明光束を液晶ライト
バルブに入射すべき偏光方向を有する直線偏光に変換す
る光学手段を具備しているので、液晶ライトバルブの入
射側偏光板を透過する光量が倍増し、高輝度な投写画像
を実現できる。また、従来問題であった入射側偏光板の
発熱による偏光特性の劣化,液晶の動作特性変動を低減
できる。さらに、従来必要であった液晶ライトバルブの
入射側偏光板を省略すれば、偏光板の材料自身の吸収損
失が無くなるので、より高輝度でかつ簡素な投写型表示
装置が実現できる。
[Effects of the Invention] As described in detail above, according to the projection display device of the present invention, the unpolarized illumination light flux emitted from the light source is converted into the linearly polarized light having the polarization direction to be incident on the liquid crystal light valve. Since the optical means is provided, the amount of light transmitted through the incident side polarization plate of the liquid crystal light valve is doubled, and a projected image with high brightness can be realized. Further, it is possible to reduce the deterioration of the polarization characteristics and the variation of the operation characteristics of the liquid crystal due to the heat generation of the incident side polarization plate, which have been problems in the past. Furthermore, by omitting the incident-side polarization plate of the liquid crystal light valve, which is conventionally required, the absorption loss of the material of the polarization plate itself is eliminated, so that a projection display device with higher brightness and simpler implementation can be realized.

【図面の簡単な説明】[Brief description of the drawings]

第1,3,4,5,6,図はそれぞれ本発明の実施例1,2,3,4,5に
おける投写型表示装置の光学系を示す説明図、第2図は
本発明の投写型表示装置に用いられる偏光回転手段の構
成と動作の説明図、第7,9図はそれぞれ従来の投写型表
示装置の光学系の説明図、第8図(a),(b)は液晶
ライトバルブの動作原理の説明図である。 図において、(3),(3R),(3G),(3B)は液晶ラ
イトバルブ、(4)は投写レンズ、(1)は光源手段、
(20)は偏光分離手段、(21)は偏光回転手段(23),
(23a),(23b)は光路変換手段である。 なお、各図中、同一符号は同一または相当部分を示す。
FIGS. 1, 3, 4, 5 and 6 are explanatory views showing an optical system of a projection type display device in Examples 1, 2, 3, 4 and 5, respectively, and FIG. 2 is a projection type of the present invention. FIG. 7 is an explanatory view of the configuration and operation of the polarization rotating means used in the display device, FIGS. 7 and 9 are explanatory views of the optical system of the conventional projection display device, and FIGS. 8 (a) and 8 (b) are liquid crystal light valves. FIG. 3 is an explanatory diagram of the operation principle of FIG. In the figure, (3), (3R), (3G), and (3B) are liquid crystal light valves, (4) is a projection lens, (1) is light source means,
(20) is a polarization separation means, (21) is a polarization rotation means (23),
(23a) and (23b) are optical path changing means. In the drawings, the same reference numerals indicate the same or corresponding parts.

フロントページの続き (72)発明者 都出 英一 京都府長岡京市馬場図所1番地 三菱電 機株式会社電子商品開発研究所内 (72)発明者 近藤 光重 京都府長岡京市馬場図所1番地 三菱電 機株式会社電子商品開発研究所内 (56)参考文献 特開 昭61−122626(JP,A) 特開 昭62−100702(JP,A) 特開 昭63−197913(JP,A) 特開 平3−157621(JP,A) 特開 平3−191318(JP,A)Front page continued (72) Inventor Eiichi Tode 1 Baba Institute, Nagaokakyo City, Kyoto Prefecture Electronic Product Development Laboratory, Mitsubishi Electric Corporation (72) Inventor Mitsushige Kondo 1 Baba Institute, Nagaokakyo Kyoto Prefecture Mitsubishi (56) Reference JP 61-122626 (JP, A) JP 62-100702 (JP, A) JP 63-197913 (JP, A) JP 3-157621 (JP, A) JP-A-3-191318 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】画像形成の為の液晶ライトバルブと、該液
晶ライトバルブに形成された画像を拡大投写する投写レ
ンズと、該ライトバルブを照明する無偏光光束を出射す
る光源手段よりなる光学系を有する投写型表示装置にお
いて、 前記無偏光光束を第1及び第2の直線偏光光束に分離す
る偏光分離手段と、2つの互いに直交する反射面を有
し、該直交反射面の交線を前記第2の直線偏光光束の偏
光方向と45°をなす基準角の方向とした構成で、前記第
2の直線偏光光束の偏光方向を90°回転した第3の直線
偏光光束として前記偏光分離手段に再入射させる偏光回
転手段と、前記第3の直線偏光光束が前記偏光分離手段
に再入射した後出射して得られる光束を、前記第1の直
線偏光光束と同じ進行方向及び偏光方向を有する第4の
直線偏光光束とする光路変換手段とから構成され、前記
第1の直線偏光光束及び前記第4の直線偏光光束により
前記液晶ライトバルブを照明することを特徴とする投写
型表示装置。
1. An optical system comprising a liquid crystal light valve for forming an image, a projection lens for enlarging and projecting an image formed on the liquid crystal light valve, and a light source means for emitting a non-polarized light beam for illuminating the light valve. In a projection display device having: a polarization splitting means for splitting the unpolarized light flux into first and second linearly polarized light fluxes, and two reflecting surfaces which are orthogonal to each other, and a line of intersection of the orthogonal reflecting surfaces is A configuration in which the polarization direction of the second linearly polarized light beam is at a reference angle of 45 °, and the polarization direction of the second linearly polarized light beam is rotated by 90 ° to the polarization separating means as a third linearly polarized light beam. A polarization rotation means for re-incident light, and a light flux obtained by re-incident light of the third linearly polarized light flux to the polarization splitting means, having the same traveling direction and polarization direction as the first linearly polarized light flux. 4 linearly polarized light flux That is composed of the optical path changing means, the projection display apparatus characterized by illuminating the liquid crystal light valve by the first linear polarized light and the fourth linearly polarized light.
【請求項2】第1及び第4の直線偏光光束の光路上で、
液晶ライトバルブよりも手前の位置に、正の円筒レンズ
と負の円筒レンズとより成る光束径調整光学系を挿入す
ることにより、前記両直線偏光光束を平行状態のまま、
光束軸に直角な一方向の光束径を調整可能としたことを
特徴とする請求項1記載の投写型表示装置。
2. On the optical paths of the first and fourth linearly polarized light beams,
By inserting a light beam diameter adjusting optical system consisting of a positive cylindrical lens and a negative cylindrical lens at a position in front of the liquid crystal light valve, both linearly polarized light beams remain parallel,
2. The projection display device according to claim 1, wherein the diameter of the light beam in one direction perpendicular to the light beam axis can be adjusted.
JP1333941A 1989-12-22 1989-12-22 Projection display device Expired - Fee Related JP2691784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1333941A JP2691784B2 (en) 1989-12-22 1989-12-22 Projection display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1333941A JP2691784B2 (en) 1989-12-22 1989-12-22 Projection display device

Publications (2)

Publication Number Publication Date
JPH03192319A JPH03192319A (en) 1991-08-22
JP2691784B2 true JP2691784B2 (en) 1997-12-17

Family

ID=18271689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1333941A Expired - Fee Related JP2691784B2 (en) 1989-12-22 1989-12-22 Projection display device

Country Status (1)

Country Link
JP (1) JP2691784B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594561A (en) * 1993-03-31 1997-01-14 Palomar Technologies Corporation Flat panel display with elliptical diffuser and fiber optic plate
AU6418398A (en) * 1997-03-25 1998-10-20 Sharp Kabushiki Kaisha A polarized-light converting optical system, a polarized-light converting elemental device, polarized-light converting elemental device array and projection-type display device using any one of those components

Also Published As

Publication number Publication date
JPH03192319A (en) 1991-08-22

Similar Documents

Publication Publication Date Title
JP3635867B2 (en) Projection type liquid crystal display device
US6196699B1 (en) Dual lamp illumination system and projection system incorporating same
US7119957B2 (en) Polarization luminaire and projection display
JPH02250026A (en) Polarization beam splitter device and light valve optical device using same
US6067128A (en) Liquid-crystal display projector including an optical path adjuster arranged in the light path from the light source to the liquid-crystal display element
JP4075284B2 (en) Illumination optics
US6746123B2 (en) Projector for preventing light loss
JP2000019455A (en) Liquid crystal projector device
US6152566A (en) Projector for modulating polarized luminous flux
JP3769980B2 (en) Projection display
JPH01302385A (en) Projection type display
JP2003241193A (en) Illumination device and display device
JP2861187B2 (en) Polarization conversion element for light source
JP2691784B2 (en) Projection display device
JP2005070089A (en) Image display device
JPH0756167A (en) Polarization light source and projection type liquid crystal display device using the same
JP3654798B2 (en) Image display device and lighting device
JP2691785B2 (en) Projection display device
KR100327197B1 (en) LCD projector with improved color uniformity
JPH04127120A (en) Projection type display device
JPH0772428A (en) Polarization light source device for projection type liquid crystal display device
JP3915712B2 (en) Polarization separating element and projection display device using the same
JPH05181089A (en) Polarized light illuminator and projection display device using the same
JPH0458242A (en) Projection type liquid crystal display device
JPH0534638A (en) Polarizing illuminator and projection display device using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees