[go: up one dir, main page]

JP2690551B2 - Drive circuit layout of three-phase motor - Google Patents

Drive circuit layout of three-phase motor

Info

Publication number
JP2690551B2
JP2690551B2 JP8520389A JP8520389A JP2690551B2 JP 2690551 B2 JP2690551 B2 JP 2690551B2 JP 8520389 A JP8520389 A JP 8520389A JP 8520389 A JP8520389 A JP 8520389A JP 2690551 B2 JP2690551 B2 JP 2690551B2
Authority
JP
Japan
Prior art keywords
semiconductor switching
phase
switching element
drive circuit
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8520389A
Other languages
Japanese (ja)
Other versions
JPH02266855A (en
Inventor
岩夫 嶋根
春美 武富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP8520389A priority Critical patent/JP2690551B2/en
Publication of JPH02266855A publication Critical patent/JPH02266855A/en
Application granted granted Critical
Publication of JP2690551B2 publication Critical patent/JP2690551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Frames (AREA)
  • Synchronous Machinery (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は三相電動機の駆動回路配置構造、特に、直
流電源の直流電流を半導体スイッチング素子により三相
交流電流に変換して三相巻線を通電する三相電動機の駆
動回路配置構造に関する。
Description: TECHNICAL FIELD The present invention relates to a drive circuit layout structure of a three-phase electric motor, and more particularly to a three-phase winding by converting a DC current of a DC power supply into a three-phase AC current by a semiconductor switching element. The present invention relates to a drive circuit layout structure for a three-phase electric motor that energizes a vehicle.

(従来の技術) 近年、自動車等のエンジンにあっては、特開昭62−26
8370号公報あるいは特開昭63−202255号公報に記載され
ているように、始動電動機として三相電動機を用い、こ
の三相電動機を交流発電機と一体に組み付けてエンジン
の始動と発電とを行うものが種々実用されている。例え
ば、前者の特開昭62−268370号公報のものは、回転子に
界磁用の永久磁石を、固定子に三相巻線を設け、この三
相巻線を転流回路と整流回路とに接続し、始動電動機と
して作動させる場合にはバッテリの出力を転流回路で三
相交流に変換して三相巻線に通電し、また、充電発電機
として作動させる場合には三相巻線に生じる三相交流出
力を整流回路で整流して取り出す。この転流回路はMOS
FET等の半導体スイッチング素子を三相巻線についてブ
リッジ状に結線して構成されるが、半導体スイッチング
素子はハウジングと一体に形成された円筒壁の内外両面
に支持し、この円筒壁を回転子本体の側面の環状の凹部
内に遊挿させて回転子本体に設けたファンで冷却するよ
うにしている。
(Prior Art) In recent years, in engines for automobiles, etc., Japanese Patent Laid-Open No. 62-26
As described in Japanese Patent No. 8370 or Japanese Patent Laid-Open No. 63-202255, a three-phase electric motor is used as a starting electric motor, and the three-phase electric motor is integrated with an AC generator to start an engine and generate electric power. Various things are in practical use. For example, in the former Japanese Patent Laid-Open No. 62-268370, a rotor is provided with a permanent magnet for a field, a stator is provided with a three-phase winding, and this three-phase winding is used as a commutation circuit and a rectifier circuit. When operating as a starter motor, the output of the battery is converted into a three-phase alternating current by a commutation circuit to energize the three-phase winding, and when operating as a charging generator, the three-phase winding is connected. The three-phase AC output generated at is rectified by a rectifier circuit and taken out. This commutation circuit is a MOS
A semiconductor switching element such as FET is configured by connecting three-phase windings in a bridge shape. The semiconductor switching element is supported on both inner and outer surfaces of a cylindrical wall integrally formed with the housing, and the cylindrical wall is mounted on the rotor body. The fan is provided in the rotor main body so as to be cooled by being loosely inserted in the annular recess on the side surface of the rotor.

(発明が解決しようとする課題) しかしながら、上述のような従来の三相電動機にあっ
ては、ハウジング内壁に回転子の凹部に遊挿する円筒壁
を形成して該円筒壁に半導体スイッチング素子を支持す
るため、半導体スイッチング素子の取付作業および半導
体素子相互あるいは制御回路との結線作業は作業者がハ
ウジング内に手を差し込んで行なわなければならず、そ
の作業が困難で、また、その結線も錯綜して回転子と干
渉するおそれも大きいという問題があった。
(Problems to be Solved by the Invention) However, in the conventional three-phase motor as described above, a cylindrical wall that is loosely inserted into the recess of the rotor is formed on the inner wall of the housing, and the semiconductor switching element is mounted on the cylindrical wall. In order to support the semiconductor switching elements, the work of attaching the semiconductor switching elements and connecting the semiconductor elements to each other or to the control circuit must be performed by inserting a hand into the housing by an operator, which is difficult and the connection is complicated. Then, there is a problem that there is a great possibility of interfering with the rotor.

この発明は、上記問題に鑑みてなされたもので、組立
作業が容易で、また、配線の簡素化を図ることができる
三相電動機の駆動回路配置構造を提供することを目的と
する。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a drive circuit layout structure for a three-phase electric motor that facilitates assembly work and simplifies wiring.

(課題を解決するための手段) この発明の三相電動機の駆動回路配置構造は、ハウジ
ングに回動軸を支持し、該回転軸またはハウジングの一
方に界磁発生用の磁極を、他方に三相巻線を固設すると
ともに、該三相巻線の3つの端子と結線された駆動回路
をハウジング内に収容し、駆動回路により直流電流を三
相電流に変換して三相巻線を通電する三相電動機におい
て、前記駆動回路は前記三相巻線の3つの端子について
それぞれ端子と電源との間に介在する電源側の半導体ス
イッチング素子および端子と接地との間に介在する接地
側の半導体スイッチング素子とを備え、これら6つの半
導体スイッチング素子を前記ハウジング内に前記回転軸
軸線に対し点対称的に配設された6つの基板に個別に支
持するとともに、前記半導体スイッチング素子に駆動信
号を出力する制御回路を前記各基板の配置中心に配設し
たことが要旨である。
(Means for Solving the Problems) In the drive circuit arrangement structure for a three-phase electric motor according to the present invention, a rotating shaft is supported by a housing, and one of the rotating shaft and the housing has a magnetic pole for generating a field and the other has three magnetic poles. The phase winding is fixed, and the driving circuit connected to the three terminals of the three-phase winding is housed in the housing, and the driving circuit converts the direct current into the three-phase current to energize the three-phase winding. In the three-phase motor, the drive circuit has three terminals of the three-phase winding, the power source side semiconductor switching element interposed between the terminal and the power source, and the ground side semiconductor element interposed between the terminal and the ground. A switching element, the six semiconductor switching elements are individually supported on six substrates arranged point-symmetrically with respect to the rotation axis in the housing, and the semiconductor switching element is provided. The gist is that a control circuit for outputting a drive signal to the child is arranged at the center of the arrangement of each substrate.

(作用) この発明にかかわる三相電動機の駆動回路配置構造に
よれば、各半導体スイッチング素子が制御回路の廻りに
同心状に設けられるため、各素子間および素子と制御回
路との間の結線の短縮化とともに結線長さの整合を図れ
る。そして、半導体スイッチング素子は基板によってハ
ウジングに支持されるため、基板と素子とをサブアッシ
イ化でき、素子の取付作業も容易である。
(Operation) According to the drive circuit layout structure of the three-phase electric motor according to the present invention, since each semiconductor switching element is provided concentrically around the control circuit, the connection between each element and between each element and the control circuit is prevented. Along with shortening, the connection length can be matched. Since the semiconductor switching element is supported by the housing on the housing, the board and the element can be sub-assembled, and the element mounting work is easy.

(実施例) 以下、この発明の実施例を図面を参照して説明する。Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図から第6図はこの発明の一実施例にかかる三相
電動機の駆動回路配置構造を充電発電機と一体に組み付
けたエンジンの始動・発電装置として表し、第1図がエ
ンジンからの動力伝達機構とともに示す全体断面図、第
2図が要部拡大断面図、第3図が第2図のIII−III矢視
断面図、第4図が第2図のIV−IV矢視断面図、第5図
(a)が主要部品の平面図、第5図(b)が第5図
(a)のV−V矢視断面図、第6図が一部の回路図であ
る。
1 to 6 show a drive circuit arrangement structure of a three-phase electric motor according to an embodiment of the present invention as an engine starter / generator assembled integrally with a charging generator, and FIG. 1 shows power from the engine. An overall sectional view shown together with a transmission mechanism, FIG. 2 is an enlarged sectional view of an essential part, FIG. 3 is a sectional view taken along the line III-III in FIG. 2, and FIG. 4 is a sectional view taken along the line IV-IV in FIG. FIG. 5 (a) is a plan view of main components, FIG. 5 (b) is a sectional view taken along the line VV of FIG. 5 (a), and FIG. 6 is a partial circuit diagram.

第1図において、Eはエンジン、Tは遊星歯車式の変
速装置、Sは三相電動機(始動電動機)と三相交流発電
機(充電発電機)とを一体化した始動発電機(以下、ス
タッグと称す)であり、エンジンEのクランク軸11は端
部にフランジ継手11aがスプライン等で設けられフラン
ジ継手11aを介して変速装置Tに連結されている。フラ
ンジ継手11aは外周部がボールベアリング12でエンジン
Eのクランクケース等に支持されている。
In FIG. 1, E is an engine, T is a planetary gear type transmission, S is a starter generator (hereinafter referred to as a stag) in which a three-phase electric motor (starting electric motor) and a three-phase AC generator (charging generator) are integrated. The crankshaft 11 of the engine E is provided with a flange joint 11a at its end by a spline or the like and is connected to the transmission T via the flange joint 11a. The outer periphery of the flange joint 11a is supported by a ball bearing 12 on the crankcase of the engine E or the like.

変速装置Tは、エンジンE外壁に固定されたハウジン
グ13内に、周知のサンギア14、プラネタリギア15、キャ
リヤ17およびリングギヤ16を有する1組の遊星歯車機構
Pが収容され、この遊星歯車機構Pのリングギヤ16がハ
ウジング13に設けられた電磁クラッチ18で拘束、解放さ
れて変速作動する。遊星歯車機構Pは、サンギア14が出
力軸19に一体に形成され、キャリヤ17がゴム等の弾性材
から成るブッシュ20を介して前述のフランジ継手11aに
接続され、出力軸19とキャリヤ17との間にクランク軸11
から出力軸19への動力伝達のみを許容するワンウェイク
ラッチ21が介設され、リングギヤ16に回転方向に一定間
隔で複数の係止孔(図示せず)が形成されている。図中
明示しないが、電磁クラッチ18は、ハウジング13に係止
爪をスプリングでリングギヤ16の係止孔から離間する方
向に付勢して揺動自在に支持し、エンジン起動時におい
てイグニッションキーの操作に応じ係止爪をソレノイド
で付勢して係止孔に係止させる。出力軸19にはハウジン
グ13外に突出した端部にクランクプーリ22が固設され、
このクランクプーリ22とスタッグSのシャフト23に設け
られたプーリ24との間にベルト25が動力伝達可能にに掛
装されている。この変速装置Tは、エンジン起動時等に
リングギヤ16を電磁クラッチ18で拘束し、スタッグSの
動力を減速してクランク軸11に伝達する。
The transmission T has a housing 13 fixed to the outer wall of the engine E and a set of planetary gear mechanisms P having a well-known sun gear 14, a planetary gear 15, a carrier 17, and a ring gear 16 accommodated therein. The ring gear 16 is restrained and released by an electromagnetic clutch 18 provided in the housing 13 to perform a shift operation. In the planetary gear mechanism P, the sun gear 14 is formed integrally with the output shaft 19, and the carrier 17 is connected to the above-described flange joint 11a via a bush 20 made of an elastic material such as rubber to connect the output shaft 19 and the carrier 17. Between the crankshaft 11
A one-way clutch 21 that allows only power transmission from the engine to the output shaft 19 is provided, and a plurality of locking holes (not shown) are formed in the ring gear 16 at regular intervals in the rotation direction. Although not clearly shown in the figure, the electromagnetic clutch 18 supports the housing 13 so that the locking claw is urged by a spring in a direction away from the locking hole of the ring gear 16 so as to be swingable, and the ignition key is operated when the engine is started. Accordingly, the locking claw is urged by the solenoid to be locked in the locking hole. A crank pulley 22 is fixedly provided on the output shaft 19 at an end portion protruding outside the housing 13,
A belt 25 is hung between the crank pulley 22 and a pulley 24 provided on the shaft 23 of the stag S so that power can be transmitted. In the transmission T, the ring gear 16 is restrained by an electromagnetic clutch 18 when the engine is started, and the power of the stag S is decelerated and transmitted to the crankshaft 11.

スタッグSは、2つの半体27,28を接合して成るハウ
ジング26がエンジンEの上部に取り付けられ、このハウ
ジング26にシャフト23が回転自在に支持されている。半
体27,28はそれぞれが円筒壁27a,28aと端壁27b,28bとを
有する略有底円筒状を成し、これら半体27,28は開口を
接続されて機構室29を画成している。半体28には端壁28
bに軸受孔32aおよび通気孔33aが、円筒壁28aに後述する
ステータコイルの左側部と近接して開放穴34aが形成さ
れ、また、半体27には端壁27bに軸受孔32bと外気孔33b
とが、円筒壁27aに後述するステータコイルの右側部と
近接して開放穴34bが形成されている。半体28の通気孔3
3aは端壁28bを貫通して後述する冷却風路と機構室29と
を連通し、各半体28,27の軸受孔32a,32bにはシャフト23
がボールベアリングを介して回転自在支持されている。
In the stag S, a housing 26 formed by joining two halves 27, 28 is attached to the upper part of the engine E, and a shaft 23 is rotatably supported by the housing 26. Each of the half bodies 27, 28 has a substantially bottomed cylindrical shape having a cylindrical wall 27a, 28a and an end wall 27b, 28b, and these half bodies 27, 28 are connected to an opening to define a mechanism chamber 29. ing. End wall 28 on half 28
A bearing hole 32a and a vent hole 33a are formed in b, an open hole 34a is formed in the cylindrical wall 28a close to the left side portion of a stator coil described later, and the half body 27 has a bearing hole 32b and an outside air hole in the end wall 27b. 33b
An open hole 34b is formed in the cylindrical wall 27a in proximity to the right side portion of a stator coil described later. Vent 3 in half 28
3a penetrates the end wall 28b to communicate a cooling air passage, which will be described later, with the mechanism chamber 29, and the shafts 23 are provided in the bearing holes 32a, 32b of the respective half bodies 28, 27.
Are rotatably supported via ball bearings.

シャフト23は、半体28の端壁28bから突出した図中左
端部に回転方向に多数極を有する永久磁石35が固設さ
れ、また、半体27の端壁27bから突出した図中右端に前
述のプーリ24が固設され、機構室29内の中間部分にロー
タ36が固設されている。ロータ36は、2つのヨーク半体
36a,36bをシャフト23に固定し、これらヨーク半体36a,3
6bでフィールドコイル37を抱持して構成されている。ヨ
ーク半体36a,36bは、対向する端部が互いにくし状に組
み合い、外周部にフィールドコイル37の励磁によって多
数の磁極が周方向に交互に発生する。これらヨーク半体
36a,36bには軸方向両側にそれぞれ冷却用のファン38a,3
8bが取り付けられている。フィールドコイル37は、図中
右方でシャフト23に設けられたスリップリング39に結線
され、このスリップリング39に接触するブラシ41を介し
て機構室29の右側に配置されたボルテージレギュレータ
40と接続されている。周知のように、ボルテージレギュ
レータ40は、バッテリと接続されてフィールドコイル37
を通電し、フィールドコイル37に流れる界磁電流を制御
する。
The shaft 23 has a permanent magnet 35 having a large number of poles in the rotational direction fixed to the left end in the figure protruding from the end wall 28b of the half body 28, and at the right end in the figure protruding from the end wall 27b of the half body 27. The above-mentioned pulley 24 is fixedly mounted, and the rotor 36 is fixedly mounted in the middle portion of the mechanism chamber 29. The rotor 36 has two yoke halves
36a, 36b are fixed to the shaft 23, and these yoke halves 36a, 3b
The field coil 37 is held by 6b. The yoke halves 36a, 36b have their opposite ends assembled in a comb shape with each other, and a large number of magnetic poles are alternately generated in the circumferential direction on the outer periphery by the excitation of the field coil 37. These yoke halves
36a and 36b have cooling fans 38a and 3 on both sides in the axial direction.
8b is attached. The field coil 37 is connected to a slip ring 39 provided on the shaft 23 on the right side in the figure, and a voltage regulator arranged on the right side of the mechanism chamber 29 via a brush 41 that contacts the slip ring 39.
Connected with 40. As is well known, the voltage regulator 40 is connected to the battery and is connected to the field coil 37.
To control the field current flowing in the field coil 37.

ハウジング26には、機構室29の内壁にロータ36の外方
でステータ42が固設されている。ステータ42は、ハウジ
ング26内壁に固定された環状のヨーク43に周方向に交互
に複数の始動用コイル44と発電用コイル44(図中明示さ
れず、始動用コイルと同一番号を付す)とをそれぞれ分
布巻して成り、始動用コイル44および発電用コイル44が
それぞれスター結線されている。始動用コイル44は後述
する駆動回路に結線され、発電用コイル44は機構室29の
図中右側部に配置された整流回路45に結線されている。
整流回路45は、周知のダイオードから成る全波整流回路
等が用いられ、図示しないリレーを介してバッテリに接
続されている。このリレーは、イグニッシンキーのスタ
ート位置への操作等に応動するコンタクタを有し、始動
用コイル44の通電時に整流回路45をバッテリから遮絶す
る。
In the housing 26, a stator 42 is fixedly installed on the inner wall of the mechanism chamber 29 outside the rotor 36. The stator 42 includes a plurality of starting coils 44 and a power-generating coil 44 (not shown in the figure, which are the same as the starting coils) alternately arranged in a circumferential direction on an annular yoke 43 fixed to the inner wall of the housing 26. The coils are distributed and wound, and the starting coil 44 and the power generating coil 44 are star-connected. The starting coil 44 is connected to a drive circuit, which will be described later, and the power generation coil 44 is connected to a rectifying circuit 45 arranged on the right side of the mechanism chamber 29 in the figure.
As the rectifier circuit 45, a known full-wave rectifier circuit including diodes is used, and the rectifier circuit 45 is connected to a battery via a relay (not shown). This relay has a contactor that responds to the operation of the ignition key to the start position, and cuts off the rectifier circuit 45 from the battery when the starting coil 44 is energized.

また、ハウジング26には、半体28に端壁28bの図中左
側面に2つの部材を接合して成る略円筒状のケース30が
固設されている。ケース30は、端壁28b側の図中左側部
が全面を開口して端壁28bとの間に回路室31を画成し、
図中左側部に取付穴30aと複数の外気孔30bとが形成され
ている。回路室31内には、ケース30と同軸的に略円筒状
の筒部材46が配置され、この筒部材46の外側に6つのパ
ワーモジュール471,422,473,474,475,476(以下、必要
に応じ添字の無い番号で代表する)が配置されている。
筒部材46は、大筒部46aと小筒部46bとを仕切壁46cで隔
別して成り、小筒部46bの図中右端開口が半体28の軸受3
2aの外縁部に接合されてシャフト23の左端部を包囲し、
大筒部46aの図中左端開口が取付穴30aて開放されてい
る。この筒部材46には、大筒部46a内に制御回路48が収
容され、小筒部46bの内壁に前述の永久磁石35に近接し
てホール素子49が固設されている。ホール素子49は、仕
切壁46cを貫通するハーネスで制御回路48と結線され、
永久磁石35によりシャフト23の回転位置を検出して検知
信号を出力する。制御回路48はマイコンから成るコント
ローラ、前述の電磁クラッチ18を駆動する駆動回路およ
び始動コイル44への通電を電磁クラッチ18への通電より
も遅延させるための遅延回路等を有する。この制御回路
48は、各パワーモジュール47およびイグニッションキー
スイッチ等に接続され、エンジン起動時においてホイー
ル素子49が出力する検知信号に基づき始動コイル44に通
電する電流の位相を決定して駆動信号をパワーモジュー
ル47に出力する。
Further, the housing 26 is provided with a substantially cylindrical case 30 formed by joining two members to the left side surface of the end wall 28b in the drawing on the half body 28. In the case 30, the left side in the figure on the side of the end wall 28b opens the entire surface to define a circuit chamber 31 between the case 30 and the end wall 28b.
A mounting hole 30a and a plurality of outside air holes 30b are formed on the left side in the figure. In the circuit chamber 31, a cylindrical member 46 having a substantially cylindrical shape is arranged coaxially with the case 30, and six power modules 47 1 , 42 2 , 47 3 , 47 4 , 47 5 , are arranged outside the cylindrical member 46. 47 6 (hereinafter, represented by numbers without subscripts as necessary) are arranged.
The tubular member 46 is formed by separating the large tubular portion 46a and the small tubular portion 46b by a partition wall 46c, and the right end opening of the small tubular portion 46b in the drawing is the bearing 3 of the half body 28.
It is joined to the outer edge of 2a and surrounds the left end of the shaft 23,
The left end opening of the large cylinder portion 46a in the figure is opened as a mounting hole 30a. In this tubular member 46, a control circuit 48 is housed in a large tubular portion 46a, and a Hall element 49 is fixedly provided on the inner wall of the small tubular portion 46b in proximity to the permanent magnet 35 described above. The hall element 49 is connected to the control circuit 48 by a harness that penetrates the partition wall 46c,
The permanent magnet 35 detects the rotational position of the shaft 23 and outputs a detection signal. The control circuit 48 has a controller composed of a microcomputer, a drive circuit for driving the electromagnetic clutch 18 and a delay circuit for delaying the energization of the starting coil 44 with respect to the energization of the electromagnetic clutch 18. This control circuit
48 is connected to each power module 47 and an ignition key switch, etc., and determines the phase of the current to be supplied to the starting coil 44 based on the detection signal output by the wheel element 49 at the time of engine startup, and outputs a drive signal to the power module 47. Output.

パワーモジュール47は、回路室31内に筒部材46の外側
で同心状に配置され、軸方向両端をそれぞれ略環状の保
持部材(仕切部材)50,51に固定されている。第2図に
詳示するように、図中右方の保持部材50は、ベークライ
ト等の絶縁材料から成る環状板50a,50bを接合して成
り、半体28の端壁28bに固定されている。同様に、図中
左方の保持部材51は、絶縁材料から環状板51a,51bを接
合して成り、ケース30の図中左端内壁に固定されてい
る。保持部材51には環状板51a,51b間に後述するバスバ
ー52が挟着され、また、保持部材50には環状板50a,50b
間に後述する3つのバスバー53,54,55が挟着されてい
る。パワーモジュール47は、比較的厚みの大きい略板状
のケーシング56に8個のPMOS−FETのベアチップ(以
下、FETと略記する)57を設けて構成されている。ケー
シング56は、アルミニウム等の電導性および熱伝導性に
秀れた材料から成り、8個のFET57の所定時間における
発熱量に対応した熱容量を有する。このケーシング56は
径方向に直交かつ軸方向に延在して軸方向両端部が前述
の保持部材50,51に固定され、6つのパワーモジュール4
7のケーシング56が全体として六角筒状に配置されてい
る。なお、58a,58bは位置合せ用のノックピンである。
これらケーシング56は、径方向内方の面に複数の冷却フ
ィン60が形成され、また、内方の面が前述の筒部材46と
の間で軸方向に延在する冷却風路59を画成し、この冷却
風路59内に冷却フィン60が突出している。冷却風路59
は、図中左端が外気孔30bから外部に開放され、図中右
端が通気孔33aを介し機構室29に開口している。冷却フ
ィン60は、第3図に示すように、略中心に向かって平行
かつ階段状に突出し、軸方向に延在している。
The power module 47 is arranged concentrically inside the circuit chamber 31 outside the tubular member 46, and has both axial ends fixed to substantially annular holding members (partitioning members) 50 and 51, respectively. As shown in detail in FIG. 2, the holding member 50 on the right side of the drawing is formed by joining annular plates 50a and 50b made of an insulating material such as Bakelite and fixed to the end wall 28b of the half body 28. . Similarly, the holding member 51 on the left side of the drawing is formed by joining annular plates 51a and 51b made of an insulating material, and is fixed to the left end inner wall of the case 30 in the drawing. A bus bar 52, which will be described later, is sandwiched between the holding members 51 between the annular plates 51a and 51b, and the holding member 50 includes the annular plates 50a and 50b.
Three bus bars 53, 54, 55 described later are sandwiched between them. The power module 47 is configured by providing eight PMOS-FET bare chips (hereinafter abbreviated as FET) 57 in a substantially plate-like casing 56 having a relatively large thickness. The casing 56 is made of a material having excellent electric conductivity and thermal conductivity such as aluminum, and has a heat capacity corresponding to the heat generation amount of the eight FETs 57 in a predetermined time. The casing 56 extends in the direction orthogonal to the radial direction and in the axial direction, and both ends in the axial direction are fixed to the holding members 50 and 51 described above.
The seven casings 56 are arranged in a hexagonal tubular shape as a whole. Incidentally, 58a and 58b are knock pins for alignment.
In these casings 56, a plurality of cooling fins 60 are formed on the inner surface in the radial direction, and the inner surface defines a cooling air passage 59 extending axially with the above-mentioned tubular member 46. However, the cooling fins 60 project into the cooling air passage 59. Cooling air passage 59
The left end in the drawing is opened to the outside from the outside air hole 30b, and the right end in the drawing is opened to the mechanism chamber 29 via the ventilation hole 33a. As shown in FIG. 3, the cooling fins 60 project in parallel and stepwise toward the substantial center and extend in the axial direction.

また、ケーシング56は、第5図(a),(b)に示す
ように、径方向外方の面に上述の8個のFET57が4個を
1列として2列に固定され、これら列間に帯状電極61
が、各列の外側に抵抗を内蔵した帯状電極62a,62bがFET
57列と平行に配置されている。FET57は、ケーシング56
との接合面にドレイン電極が形成され、このドレイン電
極にニッケル等のメッキが施されてケーシング56と電導
かつ熱伝導可能にハンダ等で固定されている。これらFE
T57は、それぞれ、ソース電流が帯状電極61に、ゲート
電極が列に応じて帯状電極62a,62bに結線され、全体と
して並列に接続されている。帯状電極61はケーシング56
上に絶縁シート63を介して固定され、同様に、帯状電極
62a,62bもケーシング56上に絶縁シート64a,64bを介して
固定さている。このケーシング56は径方向外方部がエポ
キシ等の合成樹脂から成る蓋体65で閉止され、内部にシ
リコンゲル66が封入されている。
As shown in FIGS. 5 (a) and 5 (b), the casing 56 has the above-mentioned eight FETs 57 fixed in two rows with four rows as one row on the outer surface in the radial direction. Strip electrode 61
However, the strip electrodes 62a and 62b with built-in resistors on the outside of each row are FET
It is arranged in parallel with 57 rows. FET57, casing 56
A drain electrode is formed on the joint surface with and is plated with nickel or the like and fixed to the casing 56 with solder or the like so as to be electrically conductive and thermally conductive. These FE
In T57, the source current is connected to the strip electrode 61, and the gate electrode is connected to the strip electrodes 62a and 62b depending on the column, and they are connected in parallel as a whole. The strip electrode 61 is a casing 56.
It is fixed via an insulating sheet 63 on top, as well as the strip electrodes.
62a and 62b are also fixed on the casing 56 via insulating sheets 64a and 64b. The casing 56 has a radially outer portion closed by a lid 65 made of a synthetic resin such as epoxy, and a silicon gel 66 is enclosed inside.

上述の6つのパワーモジュール47は、第6図に示すよ
うにステータ42の始動用コイル44と接続され、この始動
用コイル44に三相電流を通電する駆動回路67を構成す
る。第3図、第4図および第6図に明らかなように、図
中上方に隣接して配置された3つのパワーモジュール47
1,472,473は、始動用コイル44の端子とバッテリとの間
に介在し、同様に、下方に隣接して配置されたパワーモ
ジュール474,475,476は始動用コイル44と接地との間に
介在している。パワーモジュール471,472,473は、FET57
のドレインすなわちケーシング56の右端が前述の保持部
材51に挟持された円弧状のバスバー52に並列に接続され
てバスバー52を介しバッテリと接続され、FET57のソー
スすなわち帯状電極61の左端がそれぞれ保持部材50に略
平行に挟持されたバスバー53,54,55を介してパワーモジ
ュール474,475,476のドレインすなわちケーシング56の
左端部に接続され、FET57のゲートすなわち帯状電極62
a,62bが図示しないハーネス等で制御回路48に接続され
ている。また、3つのパワーモジュール474,475,476
は、ドレインすなわちケーシング56の右端部がそれぞれ
保持部材51を貫通するバスバー68(図では1つのみを示
す)で始動用コイル44の3コの端子に接続され、ソース
がそれぞれバスバー69(図中、1つのみが明示される)
で半体28の左端部に接続されて設置され、ゲートが制御
回路48に接続されている。バスバー69は、第2図に明示
するように、パワーモジュール47の径方向外方で軸方向
に延在して中間部分に屈曲部69aが形成され、この屈曲
部69aが蓋体65に当接して蓋体65を保持している。
The above-mentioned six power modules 47 are connected to the starting coil 44 of the stator 42 as shown in FIG. 6, and constitute a drive circuit 67 for supplying a three-phase current to the starting coil 44. As is apparent from FIGS. 3, 4, and 6, three power modules 47 are arranged adjacent to each other in the upper part of the drawing.
1 , 47 2 , 47 3 are interposed between the terminals of the starting coil 44 and the battery, and similarly, the power modules 47 4 , 47 5 , 47 6 arranged adjacently below are the starting coils 44. And the ground. Power module 47 1 , 47 2 , 47 3 is FET57
The drain, that is, the right end of the casing 56 is connected in parallel to the arc-shaped bus bar 52 sandwiched by the above-mentioned holding member 51 and connected to the battery via the bus bar 52, and the source of the FET 57, that is, the left end of the strip electrode 61, is the holding member. It is connected to the drains of the power modules 47 4 , 47 5 , 47 6 via the bus bars 53, 54, 55 sandwiched substantially parallel to 50, that is, the left end of the casing 56, and the gate of the FET 57, that is, the strip electrode 62.
The a and 62b are connected to the control circuit 48 by a harness or the like not shown. Also, three power modules 474,475,476
Is connected to the three terminals of the starting coil 44 by bus bars 68 (only one is shown in the figure) that penetrate the holding member 51 at the right end of the drain, that is, the casing 56, and the sources are respectively bus bars 69 (in the figure). (Only one is specified)
Is connected and installed at the left end of the half body 28, and the gate is connected to the control circuit 48. As clearly shown in FIG. 2, the bus bar 69 extends axially outward of the power module 47 and has a bent portion 69a formed at an intermediate portion thereof, and the bent portion 69a abuts on the lid 65. Holds the lid 65.

次に、実施例の作用を説明する。 Next, the operation of the embodiment will be described.

スタッグSは、フィールドコイル37がバッテリとボル
テージレギュレータ40を介し接続されて通電し、エンジ
ン起動時においてステータ42の始動用コイル44が三相電
流を通電された場合に始動電動機として、また、エンジ
ン起動後においてステータ42の整流回路45がリレーでバ
ッテリに接続されると発電用コイル44で発電する充電発
電機として機能する。
The stag S is used as a starting electric motor when the field coil 37 is connected to the battery via the voltage regulator 40 and is energized, and when the starting coil 44 of the stator 42 is energized with a three-phase current at the time of engine startup, and also the engine startup. After that, when the rectifying circuit 45 of the stator 42 is connected to the battery by a relay, the rectifying circuit 45 functions as a charging generator that generates power with the power generation coil 44.

そして、エンジン起動時においては、イグニッション
キーのスタート位置への操作で変速装置Tの電磁クラッ
チ18を通電し、この電磁クラッチ18への通電開始後所定
時間が経過した時に始動用コイル44への通電を開始す
る。したがって、変速装置Tは電磁クラッチ18の係止爪
がリングギヤ16の係止穴に陥入してリングギヤ16を拘束
し、この後にスタッグSが始動電動機として駆動し、ス
タッグSの出力が変速装置Tにより減速されてエンジン
Eのクランク軸11に伝達され、エンジンEはスタッグS
により起動される。ここで、このエンジン起動時におい
て、駆動回路67はFET57のスイッチング作用により始動
用コイル44に三相電流を通電して通電期間中においてFE
T57が発熱するが、このFET57が発する熱はケーシング56
に吸収されるため、FET57の温度上昇が抑制される。
When the engine is started, the electromagnetic clutch 18 of the transmission T is energized by operating the ignition key to the start position, and the starting coil 44 is energized when a predetermined time elapses after the electromagnetic clutch 18 is energized. To start. Therefore, in the transmission T, the locking claws of the electromagnetic clutch 18 are recessed into the locking holes of the ring gear 16 to restrain the ring gear 16, and then the stag S is driven as a starting electric motor, and the output of the stag S is changed to the transmission T. Is decelerated by and transmitted to the crankshaft 11 of the engine E, and the engine E is stag S.
It is started by Here, at the time of starting the engine, the drive circuit 67 energizes the starting coil 44 with a three-phase current by the switching action of the FET 57, and FE
Although T57 generates heat, the heat generated by this FET 57 is generated by the casing 56.
Therefore, the temperature rise of the FET 57 is suppressed.

次に、エンジンEが起動されると、変速装置Tは電磁
クラッチ18への通電が停止されてリングギヤ16が解放さ
れ、また、スタッグSは始動用コイル44への通電が停止
されて整流回路45がバッテリに接続される。このため、
スタッグSは、変速装置Tを介してエンジンEにより駆
動されて発電し、発電用コイル44に発生する三相電流を
整流回路45で整流して出力する。ここで、この発電時に
おいては、スタッグSはシャフト23と一体に冷却ファン
38a,38bが回転し、第1図中矢印で示すように、冷却フ
ァン38aにより冷却風が外気孔30bから冷却風路59および
通気孔33aを経て開放穴34aに流れて各パワーモジュール
47およびステータ42のコイル44の図中左側部が冷却さ
れ、また、冷却ファン38bにより冷却風が外気孔33bから
機構室29を経て開放穴34bに流れて整流回路45、ボルテ
ージレギュレータ40およびステータ42のコイル44の図中
右側部が冷却される。したがって、パワーモジュール47
およびステータ42のコイル44等を効果的に冷却できる。
さらに、ステータ42と各パワーモジュール47とは保持部
材51および端壁28bによって隔離されるため相互に熱的
に影響し合うことも無く、スタッグSの充電発電機とし
ての運転中にパワーモジュール47のFET57の温度が上昇
することを防止でき、エンジンを停止直後に再始動する
場合のFET57の温度を低くできる。
Next, when the engine E is started, the transmission T is deenergized to the electromagnetic clutch 18 to release the ring gear 16, and the stag S is deenergized to the starting coil 44 to rectify the rectifier circuit 45. Is connected to the battery. For this reason,
The stag S is driven by the engine E via the transmission T to generate electric power, and rectifies the three-phase current generated in the power generation coil 44 by the rectifier circuit 45 and outputs the rectified current. Here, at the time of this power generation, the stag S and the shaft 23 are integrated with the cooling fan.
38a and 38b rotate, and as shown by the arrow in FIG. 1, the cooling fan 38a causes the cooling air to flow from the outside air holes 30b to the open holes 34a through the cooling air passages 59 and the ventilation holes 33a, and each power module.
47 and the left side of the coil 44 of the stator 42 in the figure are cooled, and the cooling air flows from the outside air hole 33b to the open hole 34b through the mechanism chamber 29 by the cooling fan 38b, so that the rectifier circuit 45, the voltage regulator 40, and the stator 42. The right side of the coil 44 in the figure is cooled. Therefore, the power module 47
And the coil 44 and the like of the stator 42 can be effectively cooled.
Furthermore, since the stator 42 and each power module 47 are separated by the holding member 51 and the end wall 28b, they do not affect each other thermally, and the power module 47 of the stag S is operated during operation as a charging generator. It is possible to prevent the temperature of the FET 57 from rising and to lower the temperature of the FET 57 when restarting the engine immediately after it is stopped.

一方、スタッグSは、各パワーモジュール47がFET57
のドレインをケーシング56に導電可能に直付けされ、ま
た、各パワーモジュール47が制御回路48の廻りに同心状
に配置されるため、パワーモジュール47相互および各パ
ワーモジュール47と制御回路48との配線を簡素化でき、
さらに、パワーモジュール47間を接続するバスバー52,5
3,54,55の短縮と抵抗値の整合とが達成でき、またさら
に、各バスバー53,54,55が平行に配置されるため短絡等
のおそれもきわめて小さくできる。
On the other hand, in the stag S, each power module 47 has a FET 57.
Since the drains of the power modules 47 are conductively directly attached to the casing 56 and the power modules 47 are arranged concentrically around the control circuit 48, the wiring between the power modules 47 and between the power modules 47 and the control circuit 48 is performed. Can be simplified,
Furthermore, the busbars 52, 5 connecting between the power modules 47
Shortening of 3,54,55 and matching of resistance values can be achieved, and further, since the bus bars 53,54,55 are arranged in parallel, the risk of short circuit or the like can be extremely reduced.

そして、各パワーモジュール47は予めFET57を組み付
けて相互に結線しておくことができるため、スタッグS
の組付も容易であり、さらに、各パワーモジュール47は
ケーシング56を介して接続できるため配線も容易であ
る。
Since each power module 47 can be pre-assembled with the FET 57 and connected to each other, the stag S
Is also easy to assemble, and since each power module 47 can be connected via the casing 56, wiring is also easy.

なお、上述した実施例では、三相電動機を充電発電機
と一体に組み付けられた始動電動機として例示するが、
三相電動機単体についても本発明が達成できることは言
うまでも無い。
In the embodiment described above, the three-phase electric motor is exemplified as the starting electric motor that is integrally assembled with the charging generator,
It goes without saying that the present invention can be achieved even with a single three-phase motor.

(発明の効果) 以上説明したように、この発明にかかる三相電動機の
駆動回路配置構造によれば、三相巻線に三相交流を出力
する駆動回路が三相巻線の端子についてブリッジ状に結
線された半導体スイッチング素子を基板によって制御回
路の廻りに同心状に配置して構成されるため、各素子間
および素子と制御回路との間の結線長さの短縮と整合と
が図れ、また、半導体スイッチング素子の組付作業も容
易となる。
(Effects of the Invention) As described above, according to the drive circuit layout structure of the three-phase electric motor according to the present invention, the drive circuit that outputs the three-phase alternating current to the three-phase winding has a bridge-like structure with respect to the terminals of the three-phase winding. Since the semiconductor switching elements connected to each other are concentrically arranged around the control circuit by the substrate, the connection length between each element and between the element and the control circuit can be shortened and matching can be achieved. Assembling work of the semiconductor switching element is also facilitated.

【図面の簡単な説明】[Brief description of the drawings]

第1図から第6図は本願発明の一実施例にかかるエンジ
ンの始動・充電装置を示し、第1図が全体図、第2図が
要部拡大断面図、第3図が第2図のIII−III矢視断面
図、第4図が第2図のIV−IV矢視断面図、第5図(a)
が主要部品の平面図、第5図(b)が第5図(a)のV
−V矢視断面図、第6図が一部の回路図である。 E……エンジン S……始動発電機(三相電動機) 36……ロータ、44……始動用コイル 48……制御回路、56……ケーシング(基板) 57……FET(半導体スイッチング素子) 59……冷却風路、60……冷却フィン 67……駆動回路
1 to 6 show an engine starting / charging device according to an embodiment of the present invention. FIG. 1 is an overall view, FIG. 2 is an enlarged cross-sectional view of an essential part, and FIG. 3 is FIG. III-III arrow sectional drawing, FIG. 4 is IV-IV arrow sectional drawing of FIG. 2, FIG. 5 (a)
Is a plan view of main parts, and FIG. 5 (b) is V in FIG. 5 (a).
FIG. 6 is a partial circuit diagram, which is a cross-sectional view taken along the line -V. E …… Engine S …… Starting generator (three-phase motor) 36 …… Rotor, 44 …… Starting coil 48 …… Control circuit, 56 …… Casing (board) 57 …… FET (semiconductor switching element) 59… … Cooling air duct, 60 …… Cooling fin 67 …… Drive circuit

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ハウジングに回動軸を支持し、該回転軸ま
たはハウジングの一方に界磁発生用の磁極を、他方に三
相巻線を固設するとともに、該三相巻線の3つの端子と
結線された駆動回路をハウジング内に収容し、駆動回路
により直流電流を三相電流に変換して三相巻線を通電す
る三相電動機において、 前記駆動回路は前記三相巻線の3つの端子についてそれ
ぞれ端子と電源との間に介在する電源側の半導体スイッ
チング素子および端子と接地との間に介在する接地側の
半導体スイッチング素子とを備え、 これら6つの半導体スイッチング素子を前記ハウジング
内に前記回転軸軸線に対し点対称的に配設された6つの
基板に個別に支持するとともに、前記半導体スイッチン
グ素子に駆動信号を出力する制御回路を前記各基板の配
置中心に配設したことを特徴とする三相電動機の駆動回
路配置構造。
1. A rotating shaft is supported by a housing, a magnetic pole for generating a field is fixed to one of the rotating shaft or the housing, and a three-phase winding is fixed to the other, and three of the three-phase windings are provided. A three-phase motor in which a drive circuit connected to a terminal is housed in a housing, and the drive circuit converts a direct current into a three-phase current to energize a three-phase winding. Each of the terminals is provided with a semiconductor switching element on the power source side interposed between the terminal and the power source and a semiconductor switching element on the ground side interposed between the terminal and the ground, and these six semiconductor switching elements are provided in the housing. A control circuit for individually supporting the six substrates arranged point-symmetrically with respect to the axis of the rotation axis and outputting a drive signal to the semiconductor switching element is arranged at the center of arrangement of the respective substrates. Driving circuit arrangement of a three-phase motor, characterized in that the.
【請求項2】前記基板を導電材から構成して前記ハウジ
ングに非導電材から成る保持部材を介して支持するとと
もに、前記半導体スイッチング素子を前記基板に一端子
を電気的に導通させて支持し、該基板を介して前記半導
体スイッチング素子の端子を接続することを特徴とする
請求項1に記載の三相電動機の駆動回路配置構造。
2. The substrate is made of a conductive material and is supported by the housing via a holding member made of a non-conductive material, and the semiconductor switching element is supported by electrically connecting one terminal to the substrate. The drive circuit arrangement structure for a three-phase electric motor according to claim 1, wherein the terminals of the semiconductor switching element are connected through the substrate.
【請求項3】前記3つの電源側の半導体スイッチング素
子を一方側に隣接して配置するとともに、前記3つの接
地側の半導体スイッチング素子を他方側に隣接して配置
し、前記三相巻線の各端子についてそれぞれ電源側の半
導体スイッチング素子と接地側の半導体スイッチング素
子とを平行に結線したことを特徴とする請求項1または
請求項2に記載の三相電動機の駆動配置回路構造。
3. The three power source side semiconductor switching elements are arranged adjacent to one side and the three ground side semiconductor switching elements are arranged adjacent to the other side, and The drive arrangement circuit structure of the three-phase electric motor according to claim 1 or 2, wherein a semiconductor switching element on the power supply side and a semiconductor switching element on the ground side are connected in parallel for each terminal.
【請求項4】前記基板を熱伝導材から構成して該基板に
前記半導体素子を熱伝導可能に設けるとともに、前記6
つの基板を略六角筒状に配置して中心側内部に冷却風が
流動する冷却風路を画成したことを特徴とする請求項1
から請求項3に記載の三相電動機の駆動回路配置構造。
4. The substrate is made of a heat conductive material, and the semiconductor element is provided on the substrate so as to be able to conduct heat.
The two substrates are arranged in a substantially hexagonal tube shape to define a cooling air passage through which cooling air flows inside the center side.
4. The drive circuit layout structure for a three-phase electric motor according to claim 3.
【請求項5】前記基板は前記半導体スイッチング素子を
外方側の面に支持して内方側の面に前記冷却風路中に突
出する放熱フィンを有することを特徴とする請求項4に
記載の三相電動機の駆動回路構造。
5. The substrate according to claim 4, wherein the substrate supports the semiconductor switching element on an outer surface and has a heat radiating fin on an inner surface that projects into the cooling air passage. Of three-phase motor drive circuit.
JP8520389A 1989-04-04 1989-04-04 Drive circuit layout of three-phase motor Expired - Fee Related JP2690551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8520389A JP2690551B2 (en) 1989-04-04 1989-04-04 Drive circuit layout of three-phase motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8520389A JP2690551B2 (en) 1989-04-04 1989-04-04 Drive circuit layout of three-phase motor

Publications (2)

Publication Number Publication Date
JPH02266855A JPH02266855A (en) 1990-10-31
JP2690551B2 true JP2690551B2 (en) 1997-12-10

Family

ID=13852054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8520389A Expired - Fee Related JP2690551B2 (en) 1989-04-04 1989-04-04 Drive circuit layout of three-phase motor

Country Status (1)

Country Link
JP (1) JP2690551B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151977A (en) * 2010-01-22 2011-08-04 Denso Corp Vehicular rotary-electric machine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1557931A4 (en) 2002-10-28 2010-11-17 Toyota Motor Co Ltd Generator-motor
US7362001B2 (en) 2002-10-28 2008-04-22 Toyota Jidosha Kabushiki Kaisha Generator-motor
JP3743433B2 (en) 2003-03-25 2006-02-08 日産自動車株式会社 Power converter
GB2463652B (en) * 2008-09-18 2011-08-10 Controlled Power Technologies Ltd Electrical machine
JP5410194B2 (en) * 2009-08-07 2014-02-05 株式会社デンソー Motor with built-in drive circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151977A (en) * 2010-01-22 2011-08-04 Denso Corp Vehicular rotary-electric machine

Also Published As

Publication number Publication date
JPH02266855A (en) 1990-10-31

Similar Documents

Publication Publication Date Title
JP3958593B2 (en) Vehicle power supply
US4546280A (en) Alternator with unitary brush-holder and bearing hub
JP3543881B2 (en) Alternator
JP3458531B2 (en) Alternator
EP1722463B1 (en) Rotary electric machine for vehicles
US8450891B2 (en) Device for rectifying current of electric rotary machine and rotary electric machine including such device
US8299667B2 (en) Automotive controlling apparatus-integrated dynamoelectric machine
US7265463B2 (en) Rotary electric apparatus with high cooling performance
US20100308700A1 (en) Automotive dynamoelectric machine
JP4650528B2 (en) Rotating electric machine for vehicles
JP2690551B2 (en) Drive circuit layout of three-phase motor
EP1737106B1 (en) Rotary electric machine for vehicle
JPH02266854A (en) Starter and generator for engine
JP2003274611A (en) Commutator device of vehicle ac generator
CN110247522B (en) Rotating electrical machine
JP2002136076A (en) Ac generator
EP0762603B1 (en) Rotary electric machine for vehicle
JP7130992B2 (en) Rotating electric machine
JP4258909B2 (en) Vehicle alternator
JP2010239727A (en) Ac generator for vehicle and generator motor device for vehicle
JP4745493B2 (en) AC generator
JP2002136016A (en) Brushless ac generator
JP2007166900A (en) Power unit for vehicle
US10998781B2 (en) Rotating electric machine
KR20020065383A (en) Alternator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees