[go: up one dir, main page]

JP2686698B2 - Isotope ratio analysis method and device - Google Patents

Isotope ratio analysis method and device

Info

Publication number
JP2686698B2
JP2686698B2 JP4295610A JP29561092A JP2686698B2 JP 2686698 B2 JP2686698 B2 JP 2686698B2 JP 4295610 A JP4295610 A JP 4295610A JP 29561092 A JP29561092 A JP 29561092A JP 2686698 B2 JP2686698 B2 JP 2686698B2
Authority
JP
Japan
Prior art keywords
absorption intensity
temperature
isotope
sample gas
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4295610A
Other languages
Japanese (ja)
Other versions
JPH06148070A (en
Inventor
陽二 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP4295610A priority Critical patent/JP2686698B2/en
Publication of JPH06148070A publication Critical patent/JPH06148070A/en
Application granted granted Critical
Publication of JP2686698B2 publication Critical patent/JP2686698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、試料に光を照射しその
光吸収強度より同位体を分析する装置に関し、試料ガス
の温度変動による同位体比の測定誤差を補正する方法お
よび装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for irradiating a sample with light and analyzing an isotope from its light absorption intensity, and to a method and apparatus for correcting an isotope ratio measurement error due to a temperature change of a sample gas. Is.

【0002】[0002]

【従来の技術】同位体を用いたトレーサは、医学分野で
は病気の診断応用として、農業分野では光合成の研究・
植物の代謝作用の研究、地球科学分野では生態系のトレ
ースに利用されている。
2. Description of the Related Art Tracers using isotopes are used for diagnosis of diseases in the medical field, and for photosynthesis in the agricultural field.
It is used for studying the metabolism of plants and for tracing ecosystems in the earth science field.

【0003】この様な用途に使われる同位体としては、
窒素、炭素、水素等がある。特に炭素では炭素の質量数
が12(以下単に12Cと略記する)と炭素の質量数13
(以下単に13Cと略記する)の安定同位体がありこの安
定同位体は放射性同位体のように放射線被曝がなく取扱
が容易であり医学分野で利用が積極的に研究されてい
る。以下同位体分析の代表例として炭素の同位体分析
(試料ガスはCO2 )について説明する。
Isotopes used for such purposes include
There are nitrogen, carbon, hydrogen, etc. Particularly in carbon, the mass number of carbon is 12 (hereinafter simply abbreviated as 12 C) and the mass number of carbon is 13
There is a stable isotope (hereinafter simply referred to as 13 C), and this stable isotope is not exposed to radiation like a radioactive isotope, is easy to handle, and its use in the medical field is actively studied. Carbon isotope analysis (sample gas is CO 2 ) will be described below as a typical example of isotope analysis.

【0004】従来このような用途の炭素同位体比分析装
置として、発光スペクトル幅の非常に狭い半導体レーザ
を波長可変光源として用いて、そのレーザ光を試料に照
射し、12CO2 13CO2 の光吸収線が相互干渉しない
光吸収線を測定し、12CO213CO2 の光吸収強度よ
12CO2 13CO2 の存在比の変化を高精度にトレー
スするものがある。半導体レーザは半導体レーザの温度
および駆動電流を精密に制御することにより容易に波長
可変光源となる。
Conventionally, as a carbon isotope ratio analyzer for such an application, a semiconductor laser having an extremely narrow emission spectrum width was used as a wavelength tunable light source, and the laser beam was irradiated to a sample to obtain 12 CO 2 and 13 CO 2 light absorption line is measured optical absorption lines not interfere with each other, there is the trace 12 CO 2 and than the light absorption intensity of 13 CO 2 12 CO 2 and a change in the abundance of 13 CO 2 with high accuracy. The semiconductor laser easily becomes a wavelength tunable light source by precisely controlling the temperature and drive current of the semiconductor laser.

【0005】従来の炭素同位体比分析装置の概略ブロッ
ク図を図3に示す。1は半導体レーザ、2は試料セル、
3は試料ガス導入口、4は試料ガス排出口、5は光検出
器、6は半導体レーザの温度制御部、7は半導体レーザ
の電流制御部である。
A schematic block diagram of a conventional carbon isotope ratio analyzer is shown in FIG. 1 is a semiconductor laser, 2 is a sample cell,
Reference numeral 3 is a sample gas inlet, 4 is a sample gas outlet, 5 is a photodetector, 6 is a semiconductor laser temperature control unit, and 7 is a semiconductor laser current control unit.

【0006】半導体レーザ1は温度制御部6により選択
された12CO2 13CO2 の光吸収線近辺を帰引するよ
うに温度帰引される。また、電流制御部7により適当な
光出力となっている。このように波長帰引された半導体
レーザ1からのレーザ光りは試料セル2に入射される。
試料セル2内には同位体測定を目的としたCO2 ガスが
試料ガス導入口3より導入されている。試料セル2に入
射されたレーザ光はCO2 ガスと相互作用し吸収され
る。試料セル2からの出射光は光検出器5で検出され
る。このような手段で図2に示すような12CO2 13
2 の光吸収線が測定される。測定された吸収線より光
吸収強度を求め両吸収強度の比より同位体比が求まる。
吸収強度は図2に示すような吸収線より吸収が最大であ
る場合の光強度Iとその波長で吸収がない場合の光強度
0 より式lnI/I0 にて求める。吸収が弱い場合は
0 −Iでも良い。又、吸収線より吸収量(図4の斜線
部分)を求めて吸収強度としてもよい。測定終了後は試
料ガス排出口4より試料ガスを排出する。
The semiconductor laser 1 is temperature-reduced so as to retract the vicinity of the light absorption lines of 12 CO 2 and 13 CO 2 selected by the temperature control unit 6. Further, the current controller 7 provides an appropriate light output. The laser light from the semiconductor laser 1 thus wavelength-reduced is incident on the sample cell 2.
CO 2 gas for the purpose of isotope measurement is introduced into the sample cell 2 through the sample gas inlet 3. The laser light incident on the sample cell 2 interacts with the CO 2 gas and is absorbed. Light emitted from the sample cell 2 is detected by the photodetector 5. By such means, 12 CO 2 and 13 C as shown in FIG.
The optical absorption line of O 2 is measured. The light absorption intensity is obtained from the measured absorption line, and the isotope ratio is obtained from the ratio of the two absorption intensities.
The absorption intensity is obtained by the formula lnI / I 0 from the light intensity I when the absorption is maximum from the absorption line as shown in FIG. 2 and the light intensity I 0 when there is no absorption at that wavelength. If the absorption is weak, I 0 -I may be used. Further, the absorption amount (oblique line portion in FIG. 4) may be obtained from the absorption line and used as the absorption intensity. After the measurement, the sample gas is discharged from the sample gas outlet 4.

【0007】本例では、光検出器5で試料セル2の透過
光を検出して吸収線を求めているが、電流制御部7の電
流に変調をかける等で半導体レーザ1に周波数変調をか
け、光検出器5の出力信号をロックイン増幅器を用いて
変調信号と同期検波することにより更に、高感度に吸収
線検出できる。
In the present example, the photodetector 5 detects the transmitted light of the sample cell 2 to obtain the absorption line. However, the semiconductor laser 1 is frequency-modulated by modulating the current of the current control section 7 or the like. By detecting the output signal of the photodetector 5 synchronously with the modulation signal using the lock-in amplifier, the absorption line can be detected with higher sensitivity.

【0008】このように、12CO2 13CO2 の相互の
吸収線が干渉しない両吸収線を選択し、また小型・信頼
性の高い半導体レーザ用いているので、同位体比を高精
度で測定でき、信頼性の高い炭素同位体分析装置とな
る。
As described above, since both absorption lines of 12 CO 2 and 13 CO 2 which do not interfere with each other are selected, and a compact and highly reliable semiconductor laser is used, the isotope ratio can be accurately adjusted. It is a carbon isotope analyzer that can be measured and has high reliability.

【0009】[0009]

【発明が解決しようとする課題】しかし、従来の炭素同
位体比分析装置においては、試料セル12内の試料ガス
の温度が変動すると同位体比の測定誤差が増加すること
が分かった。これは、試料ガスの温度変動により吸収強
度が変わるが、12CO2 13CO2 それぞれの吸収強度
の温度依存性が異なるからである。前記したような分野
での用途では。CO2 の温度は測定環境により変わるの
が通常であって同位体比の測定誤差は増加する。
However, in the conventional carbon isotope ratio analyzer, it was found that the measurement error of the isotope ratio increases when the temperature of the sample gas in the sample cell 12 fluctuates. This is because the absorption intensity changes depending on the temperature variation of the sample gas, but the temperature dependence of the absorption intensity of each of 12 CO 2 and 13 CO 2 is different. For applications in the fields mentioned above. The temperature of CO 2 usually changes depending on the measurement environment, and the measurement error of the isotope ratio increases.

【0010】本発明の課題は、測定同位体比の温度変動
を補正して高精度で同位体比を測定して分析することが
できる同位体比分析方法および装置を提供することにあ
る。
An object of the present invention is to provide an isotope ratio analysis method and apparatus capable of correcting the temperature fluctuation of the measured isotope ratio and measuring and analyzing the isotope ratio with high accuracy.

【0011】[0011]

【課題を解決するための手段】本発明によれば、試料ガ
ス中の同位体の光吸収強度により同位体比を分析する同
位体比分析方法において、試料ガス中の第1の同位体に
おける吸収線の吸収強度の第の温度変化率を、この吸
収線の回転遷移の際の下準位に存在する第1の同位体分
子数の変化率の計算値から、求め、試料ガス中の第2の
同位体における吸収線の吸収強度の第2の温度変化率
、この吸収線の回転遷移の際の下準位に存在する第2
の同位体分子数の変化率の計算値から、求め、試料ガス
中の第1および第2の同位体の光吸収強度を測定して第
1および第2の光吸収強度測定値を求め、これらの第1
および第2の光吸収強度測定値を求めるのと同時に試料
ガスの温度を検出して試料ガス温度測定値を求め、この
試料ガス温度測定値と前記第1および第2の温度変化率
に基づいて第1および第2の変動値を求め、かつ、これ
らの第1および第2の変動値により前記第1および第2
の光吸収強度測定値を補正することを特徴とする同位体
比分析方法が得られる。
According to the present invention, in the isotope ratio analysis method for analyzing the isotope ratio by the optical absorption intensity of the isotope in the sample gas, the absorption at the first isotope in the sample gas a first temperature change rate of the absorption intensity of the line, the intake
The first isotope in the lower level during the rotational transition of the convergence line
The second temperature change rate of the absorption intensity of the absorption line of the second isotope in the sample gas was found from the calculated value of the change rate of the number of daughters and was present in the lower level during the rotational transition of this absorption line. Second
From the calculated value of the rate of change of the number of isotope molecules , the light absorption intensities of the first and second isotopes in the sample gas are measured to obtain the first and second light absorption intensity measurement values. First of
And at the same time as obtaining the second light absorption intensity measurement value, the temperature of the sample gas is detected to obtain the sample gas temperature measurement value, and based on the sample gas temperature measurement value and the first and second temperature change rates. First and second variation values are obtained, and the first and second variation values are calculated based on these first and second variation values.
An isotope ratio analysis method is provided, which is characterized by correcting the measured light absorption intensity of

【0012】また、本発明によれば、波長を一定範囲に
おいて変化させることができる光源と、この光源からの
光線を受ける試料ガスを収容している試料セルと、この
試料セル中の試料ガスを通過してきた前記光源からの光
線の強度を検出する光検出器と、前記試料セル中の試料
ガス中の温度を検出する温度検出手段と、試料ガス中の
第1の同位体における吸収線の吸収強度の第1の温度変
化率を、この吸収線の回転遷移の際の下準位に存在する
第1の同位体分子数の変化率の計算値から、求める第1
の温度変化率演算手段と、試料ガス中の第2の同位体に
おける吸収線の吸収強度の第2の温度変化率を、この吸
収線の回転遷移の際の下準位に存在する第2の同位体分
子数の変化率の計算値から、求める第2の温度変化率演
算手段と、前記光検出器からの出力に基づいて試料ガス
の第1および第2の同位体の光吸収強度を測定して第1
および第2の光吸収強度測定値を求める光吸収強度測定
手段と、前記温度検出手段からの試料ガス温度測定値と
前記第1の温度変化率演算手段からの第1の温度変化率
と前記第2の温度変化率演算手段からの第2の温度変化
率とに基づいて第1および第2の変動値を求める変動値
演算手段と、この変動値演算手段からの第1および第2
の変動値に基づいて前記光吸収強度測定手段からの第1
および第2の光吸収強度測定値を補正して第1および第
2の光吸収強度補正値を求める光吸収強度補正演算手段
と、この光吸収強度補正演算手段からの第1および第2
の光吸収強度補正値に基づいて同位体比を求める同位体
比演算手段とを具備することを特徴とする同位体比演算
装置が得られる。
Further, according to the present invention, a light source capable of changing the wavelength within a certain range, a sample cell containing a sample gas for receiving a light beam from the light source, and a sample gas in the sample cell are provided. A photodetector that detects the intensity of the light beam from the light source that has passed through, a temperature detection unit that detects the temperature in the sample gas in the sample cell, and an absorption line absorption of the first isotope in the sample gas. The first rate of temperature change of intensity exists in the lower level during the rotational transition of this absorption line
First calculated from the calculated change rate of the number of isotope molecules
And temperature change rate computing means, the second rate of temperature change in the absorption intensity of absorption lines in a second isotope in the sample gas, the absorption
The second isotope in the lower level during the rotational transition of the convergence line
The second temperature change rate calculating means for obtaining the calculated change rate of the number of children and the light absorption intensities of the first and second isotopes of the sample gas are measured based on the output from the photodetector. First
And a light absorption intensity measuring means for obtaining a second light absorption intensity measurement value, a sample gas temperature measurement value from the temperature detecting means, a first temperature change rate from the first temperature change rate calculating means, and the first temperature change rate. Fluctuation value calculation means for obtaining first and second fluctuation values based on the second temperature change rate from the second temperature change rate calculation means, and first and second fluctuation value calculation means from the fluctuation value calculation means.
From the light absorption intensity measuring means based on the variation value of
And light absorption intensity correction calculation means for correcting the second and second light absorption intensity measurement values to obtain the first and second light absorption intensity correction values, and the first and second light absorption intensity correction calculation means.
And an isotope ratio calculating means for obtaining an isotope ratio based on the light absorption intensity correction value of 1.

【0013】[0013]

【実施例】次に、本発明の実施例を図面に基づいて詳細
に説明する。
Next, an embodiment of the present invention will be described in detail with reference to the drawings.

【0014】図1は本発明の1実施例を示すブロック図
である。図1に示す実施例においては、図3に示す同位
体比分析装置と同一の構成要素には同一の符号が付され
ている。
FIG. 1 is a block diagram showing an embodiment of the present invention. In the embodiment shown in FIG. 1, the same components as those of the isotope ratio analyzer shown in FIG. 3 are designated by the same reference numerals.

【0015】前記試料セル2の内部には、試料ガスの温
度を検出する温度センサ8が設けられている。この温度
センサ8の温度測定値は光吸収強度補正装置9に与えら
れる。この光吸収強度補正装置9には、第1の温度変化
率演算装置10と第2の温度変化率演算装置11の出力
が与えられる。前記第1の温度変化率演算装置10は、
試料セル2中の第1の同位体における吸収線の吸収強度
の第1の温度変化率を求めて光吸収強度補正装置9に与
える。前記第2の温度変化率演算装置11は、試料セル
2中の第2の同位体における吸収線の吸収強度の第2の
温度変化率を求めて光吸収強度補正装置9に与える。
A temperature sensor 8 for detecting the temperature of the sample gas is provided inside the sample cell 2. The temperature measurement value of the temperature sensor 8 is given to the light absorption intensity correction device 9. The light absorption intensity correction device 9 is provided with the outputs of the first temperature change rate calculation device 10 and the second temperature change rate calculation device 11. The first temperature change rate calculation device 10 is
The first temperature change rate of the absorption intensity of the absorption line of the first isotope in the sample cell 2 is obtained and given to the optical absorption intensity correction device 9. The second temperature change rate calculation device 11 obtains the second temperature change rate of the absorption intensity of the absorption line of the second isotope in the sample cell 2 and supplies it to the light absorption intensity correction device 9.

【0016】前記光検出器5の出力は光吸収強度測定装
置12に与えられる。この光吸収強度測定装置12は、
光検出器5からの出力に基づいて試料ガス中の第1およ
び第2の同位体の光吸収強度測定値を求めて光吸収強度
補正装置9に与える。
The output of the photodetector 5 is given to the optical absorption intensity measuring device 12. This light absorption intensity measuring device 12 is
Based on the output from the photodetector 5, the light absorption intensity measurement values of the first and second isotopes in the sample gas are obtained and given to the light absorption intensity correction device 9.

【0017】前記光吸収強度補正装置9は、前記温度セ
ンサ8からの温度測定値と第1および第2の温度変化率
演算装置10、11からの第1および第2の温度変化率
とに基づいて第1および第2の変動値を求め、次にこれ
らの第1および第2の変動値に基づいて光吸収強度測定
装置12からの第1および第2の光吸収強度測定値を補
正して第1および第2の光吸収強度補正値を求めて同位
体比演算装置13に与える。この同位体比演算装置13
は、前記第1および第2の光吸収強度補正値に基づいて
同位体比を求める。
The light absorption intensity correction device 9 is based on the temperature measurement value from the temperature sensor 8 and the first and second temperature change rates from the first and second temperature change rate calculation devices 10 and 11. To obtain the first and second fluctuation values, and then correct the first and second light absorption intensity measurement values from the light absorption intensity measuring device 12 based on these first and second fluctuation values. The first and second light absorption intensity correction values are calculated and given to the isotope ratio calculation device 13. This isotope ratio calculation device 13
Calculates the isotope ratio based on the first and second light absorption intensity correction values.

【0018】次に炭素の同位体比分析装置の具体的な例
を説明する。
Next, a specific example of the carbon isotope ratio analyzer will be described.

【0019】光の吸収は下のエネルギー準位(以下単に
下準位と略記する)にいる分子が光を吸収して上のエネ
ルギー準位(以下単に上準位と略記する)に遷移した場
合に起こるが、下準位にいる分子数が変化すると吸収強
度が変化する。この下準位に存在する分子数は温度によ
り変化し、その温度依存性は測定する吸収線の下準位の
エネルギーレベルが違うと異なる。
Light is absorbed when a molecule at a lower energy level (hereinafter simply referred to as a lower level) absorbs light and transitions to an upper energy level (hereinafter simply referred to as an upper level). Occurs, the absorption intensity changes as the number of molecules in the lower level changes. The number of molecules existing in this lower level changes depending on the temperature, and its temperature dependence differs depending on the energy level of the lower level of the absorption line to be measured.

【0020】測定される吸収線のスペクトル構造はCO
2 分子の振動・回転遷移スペクトルである。(例 12
2 スペクトルの振動・回転遷移 00001→300
12、R(46)、13CO2 スペクトルの振動回転遷移
00001→30011、R(16))通常、同位体
比の測定に使用される両吸収線での振動遷移の下準位は
基底準位(例では00001)なので、振動遷移の温度
依存性は考慮する必要がないが、回転遷移の下準位は異
なるので温度依存性を考慮する必要がある。
The spectral structure of the absorption line measured is CO
This is a vibration / rotational transition spectrum of two molecules. (Example 12 C
Vibration and rotation transition of O 2 spectrum 00001 → 300
12, R (46), vibrational and rotational transition of 13 CO 2 spectrum 00001 → 30011, R (16)) Usually, the lower level of vibrational transition in both absorption lines used for isotope ratio measurement is
Since it is the ground level (00001 in the example), it is not necessary to consider the temperature dependence of the vibrational transition, but it is necessary to consider the temperature dependence because the lower level of the rotational transition is different.

【0021】回転遷移の下準位の分子数の変化率△Nr
/Nrは、次の式(1)で近似できる。
Rate of change in the number of molecules in the lower level of rotational transition ΔNr
/ Nr can be approximated by the following equation (1).

【0022】 △Nr/Nr=△T・(Q/T−1)‥‥‥‥‥‥‥‥‥‥(1) ここで、Q=(B・J(J+1)−D・J2 (J+1)
2 )・h・C/kである。ただし、NrはCO2 分子の
温度が基準温度Tである時の回転遷移の下準位に存在す
るCO2 分子の分子数。△NrはCO2 分子の温度が△
T変化した時の下準位に存在すCO2 分子の変化数。T
は基準温度(絶対温度)、△TはTからの温度変化、B
はCO2 分子の回転定数、DはCO2 分子の歪定数、J
はCO2分子の回転量子数、hはプランク定数、Cは光
速、kはボルツマン定数を示す。
ΔNr / Nr = ΔT · (Q / T−1) ‥‥‥‥‥‥‥‥‥‥‥‥‥ (1) Where, Q = (B ・ J (J + 1) −D ・ J 2 (J + 1) )
2 ) · h · C / k. However, Nr is the number of CO 2 molecules existing in the lower level of rotational transition when the temperature of the CO 2 molecule is the reference temperature T. △ Nr is the temperature of CO 2 molecule is △
The number of changes in the CO 2 molecule existing in the lower level when T changed. T
Is the reference temperature (absolute temperature), ΔT is the temperature change from T, B
Rotation constants of CO 2 molecules, D is distortion constant of CO 2 molecules, J
Is the rotational quantum number of the CO 2 molecule, h is Planck's constant, C is the speed of light, and k is the Boltzmann's constant.

【0023】本発明はこのような関係を測定同位体比の
温度補正にうまく利用したものである。
The present invention makes good use of this relationship for temperature correction of the measured isotope ratio.

【0024】本発明の実施例において、前記第1の温度
変化率演算装置10は下準位に存在する12CO2 の分子
数の変化率を計算して12CO2 の吸収強度の変化率を求
め、かつ、第2の温度変化率演算装置11は下準位に存
在する13CO2 の分子数の変化率を計算し13CO2 の吸
収強度の変化率を求めるものである。前記光吸収強度補
正装置9は図2に示すように13CO2 12CO2 の吸収
強度比を検出する吸収強度比検出回路9aと、前記第1
および第2の温度変化率演算装置10、11からの出力
値10a、11aを加算する加算回路9bと、この加算
回路9bからの出力値と吸収強度比検出回路9aからの
出力値とを乗算する乗算回路9cとを有している。
In the embodiment of the present invention, the first temperature change rate calculation device 10 calculates the change rate of the number of molecules of 12 CO 2 existing in the lower level to obtain the change rate of the absorption intensity of 12 CO 2. The second temperature change rate calculation device 11 calculates the change rate of the number of molecules of 13 CO 2 existing in the lower level to obtain the change rate of 13 CO 2 absorption intensity. The light absorption intensity correction device 9 and the absorption intensity ratio detection circuit 9a for detecting the absorption intensity ratio of the 13 CO 2/12 CO 2 as shown in FIG. 2, the first
And an adder circuit 9b for adding the output values 10a, 11a from the second temperature change rate computing devices 10, 11, and an output value from the adder circuit 9b and an output value from the absorption intensity ratio detection circuit 9a. It has a multiplication circuit 9c.

【0025】本実施例においては、次のように炭素の同
位体比を求める。
In this example, the carbon isotope ratio is determined as follows.

【0026】(1)試料セル2内の試料ガスの12CO2
13CO2 の吸収線を測定すると同時に試料セル2内の
試料ガスの温度を測定する。
(1) 12 CO 2 of the sample gas in the sample cell 2
And the absorption line of 13 CO 2 are measured, and at the same time, the temperature of the sample gas in the sample cell 2 is measured.

【0027】(2)吸収強度比検出回路9aで12CO2
13CO2 の吸収線より両吸収強度を求めて両強度比を
求める。
(2) The absorption intensity ratio detection circuit 9a uses 12 CO 2
Then, both absorption intensities are obtained from the absorption lines of 13 CO 2 and 13 and the ratio of both intensities is obtained.

【0028】(3)第1の温度変化率演算装置10にお
いて、測定した試料ガスの温度測定値と下準位のエネル
ギー準位より前記式(1)に基づいて12CO2 の分子数
の変化率を求めて12CO2 の吸収強度の変化率とする。
同様に第2の温度変化率演算装置11において、前記温
度測定値と下準位のエネルギー準位より式(1)に基づ
いて13CO2 の分子数の変化率を求めて13CO2 の吸収
強度の変化率とする。
(3) In the first temperature change rate computing device 10, the number of molecules of 12 CO 2 changes according to the above equation (1) from the measured temperature value of the sample gas and the lower energy level. The rate is calculated and used as the rate of change in the absorption intensity of 12 CO 2 .
Similarly, in the second temperature change rate computing device 11, the rate of change of the number of molecules of 13 CO 2 is calculated from the measured temperature value and the energy level of the lower level based on the equation (1) to absorb 13 CO 2 . The rate of change in strength.

【0029】(4)前記第1のおよび第2の温度変化率
演算装置10、11は、マイクロコンピュータを用いて
計算してもよいし、又コンピュータで予め計算しROM
(Read Only Memory)に記憶してもよ
い。更に、ここでは計算で変化率を求めたが、予め選択
された12CO2 13CO2 の振動・回転遷移スペクトル
の吸収強度の温度変化率を実験で測定し、その値を用い
てもよい。(12CO2の吸収強度の温度変化率は試料ガ
スの温度を基準温度T近辺で変化させ各温度における12
CO2 の吸収線の吸収強度を測定し、温度Tにおける吸
収強度を基準とした温度変化率を求める。13CO2 の吸
収強度の温度変化率も12CO2 同様、試料ガスの温度を
変化させ各温度における13CO2 の吸収線の吸収強度を
測定して温度Tの吸収強度を基準とした温度変化率を求
める) (5)加算回路9bにおいて第1および第2の温度変化
率演算装置10、11で求めた変化率を加算し総合の変
化率を求める。
(4) The first and second temperature change rate calculation devices 10 and 11 may be calculated using a microcomputer, or may be calculated in advance by a computer and stored in a ROM.
It may be stored in (Read Only Memory). Further, although the rate of change is calculated here, the rate of temperature change of the absorption intensity of the vibration / rotational transition spectra of 12 CO 2 and 13 CO 2 selected in advance may be experimentally measured, and the value may be used. . (The temperature change rate of the absorption intensity of 12 CO 2 is 12 at each temperature by changing the temperature of the sample gas near the reference temperature T.
The absorption intensity of the CO 2 absorption line is measured, and the temperature change rate based on the absorption intensity at temperature T is determined. The temperature change rate of the absorption intensity of 13 CO 2 is also the same as that of 12 CO 2 , the temperature of the sample gas is changed, and the absorption intensity of the absorption line of 13 CO 2 at each temperature is measured to change the temperature based on the absorption intensity of temperature T. (5) Addition of the change rates obtained by the first and second temperature change rate calculation devices 10 and 11 in the adder circuit 9b to obtain a total change rate.

【0030】(6)乗算回路9cにおいて、吸収強度比
検出回路9aで求めた同位体比に加算回路9bで求めた
吸収強度の変化率をかけ、測定同位体比の温度による誤
差を低減する。
(6) In the multiplication circuit 9c, the isotope ratio obtained by the absorption intensity ratio detection circuit 9a is multiplied by the change rate of the absorption intensity obtained by the addition circuit 9b to reduce the error in the measured isotope ratio due to temperature.

【0031】なお、従来の炭素同位体分析装置の説明で
記述したロックイン増幅器を用いて検出した吸収線より
吸収強度比を求めてもよい。更に、ここでは炭素同位体
の分析の補正方法及び装置で記述したが本方法及び装置
は炭素、窒素、水素等の同位体の分析の補正にも適用で
きる。
The absorption intensity ratio may be obtained from the absorption line detected by using the lock-in amplifier described in the description of the conventional carbon isotope analyzer. Further, although the correction method and apparatus for the analysis of carbon isotopes are described here, the present method and apparatus can also be applied to the correction for the analysis of isotopes of carbon, nitrogen, hydrogen and the like.

【0032】[0032]

【発明の効果】本発明は、測定同位体比の温度変動を補
正することができるから、高精度で同位体比を測定して
分析することができる。
INDUSTRIAL APPLICABILITY Since the present invention can correct the temperature fluctuation of the measured isotope ratio, the isotope ratio can be measured and analyzed with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の同位体比分析装置の1実施例を示すブ
ロック図である。
FIG. 1 is a block diagram showing an embodiment of an isotope ratio analyzer of the present invention.

【図2】本発明の1実施例における光吸収強度補正放置
を示すブロック図である。
FIG. 2 is a block diagram showing light absorption intensity correction leaving in one embodiment of the present invention.

【図3】従来の同位体比分析装置を示すブロック図であ
る。
FIG. 3 is a block diagram showing a conventional isotope ratio analyzer.

【図4】本発明及び従来の同位体比分析装置における光
吸収強度を説明するための図である。
FIG. 4 is a diagram for explaining light absorption intensity in the present invention and the conventional isotope ratio analyzer.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2 試料セル 5 光検出器 6 温度制御部 7 電流制御部 8 温度センサ 9 光吸収強度補正装置 10 第1の温度変化率演算装置 11 第2の温度変化率演算装置 12 光吸収強度測定装置 13 同位体比演算装置 1 semiconductor laser 2 sample cell 5 photodetector 6 temperature control unit 7 current control unit 8 temperature sensor 9 light absorption intensity correction device 10 first temperature change rate calculation device 11 second temperature change rate calculation device 12 light absorption intensity measurement Device 13 Isotope ratio calculator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−11634(JP,A) 特開 昭53−42889(JP,A) 特開 昭51−88291(JP,A) 特開 昭61−97552(JP,A) 特開 平1−501568(JP,A) Acta Physica Acad emiae Scientiarum Hungaricae,Vol.48,N o.1(1980)p93−102 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-61-11634 (JP, A) JP-A-53-42889 (JP, A) JP-A-51-88291 (JP, A) JP-A-61- 97552 (JP, A) Japanese Patent Application Laid-Open No. 1-501568 (JP, A) Acta Physica Acad emiae Scientific Hungaricae, Vol. 48, No. 1 (1980) p93-102

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試料ガス中の同位体の光吸収強度により
同位体比を分析する同位体比分析方法において、前記試料ガス中の 第1の同位体における吸収線の吸収強
度の第1の温度変化率を、この吸収線の回転遷移の際の
下準位に存在する第1の同位体分子数の変化率の計算値
から、求め、前記試料ガス中の 第2の同位体における吸収線の吸収強
度の第2の温度変化率を、この吸収線の回転遷移の際の
下準位に存在する第2の同位体分子数の変化率の計算値
から、求め、 試料ガス中の第1および第2の同位体の光吸収強度を測
定して第1および第2の光吸収強度測定値を求め、 これらの第1および第2の光吸収強度測定値を求めるの
と同時に試料ガスの温度を検出して試料ガス温度測定値
を求め、 この試料ガス温度測定値と前記第1および第2の温度変
化率に基づいて第1および第2の変動値を求め、かつ、 これらの第1および第2の変動値により前記第1および
第2の光吸収強度測定値を補正することを特徴とする同
位体比分析方法。
1. A method of analyzing an isotope ratio by analyzing an optical absorption intensity of an isotope in a sample gas , wherein a first temperature of an absorption intensity of an absorption line of a first isotope in the sample gas is used . The rate of change can be calculated by the rotational transition of this absorption line.
Calculated rate of change of the number of first isotope molecules existing in the lower level
From obtains, the second temperature change rate of the absorption intensity of absorption lines in a second isotope of the sample gas, at the time of rotational transitions of the absorption line
Calculated rate of change of the number of second isotope molecules existing in the lower level
From seeking to obtain the first and second light absorption intensity measurements by measuring the light absorption intensity of the first and second isotope in the sample gas, the first and second light absorption intensity measurement thereof At the same time as obtaining the value, the temperature of the sample gas is detected to obtain the measured value of the sample gas temperature, and the first and second fluctuation values are obtained based on the measured value of the sample gas temperature and the first and second temperature change rates. And an isotope ratio analysis method which corrects the first and second measured values of optical absorption intensity by the first and second fluctuation values.
【請求項2】 波長を一定範囲において変化させること
ができる光源と、 この光源からの光線を受ける試料ガスを収容している試
料セルと、 この試料セル中の試料ガスを通過してきた前記光源から
の光線の強度を検出する光検出器と、 前記試料セル中の試料ガス中の温度を検出する温度検出
手段と、 試料ガス中の第1の同位体における吸収線の吸収強度の
第1の温度変化率を、この吸収線の回転遷移の際の下準
位に存在する第1の同位体分子数の変化率の計算値か
ら、求める第1の温度変化率演算手段と、 試料ガス中の第2の同位体における吸収線の吸収強度の
第2の温度変化率を、この吸収線の回転遷移の際の下準
位に存在する第2の同位体分子数の変化率の計算値か
ら、求める第2の温度変化率演算手段と、 前記光検出器からの出力に基づいて試料ガスの第1およ
び第2の同位体の光吸収強度を測定して第1および第2
の光吸収強度測定値を求める光吸収強度測定手段と、 前記温度検出手段からの試料ガス温度測定値と前記第1
の温度変化率演算手段からの第1の温度変化率と前記第
2の温度変化率演算手段からの第2の温度変化率とに基
づいて第1および第2の変動値を求める変動値演算手段
と、 この変動値演算手段からの第1および第2の変動値に基
づいて前記光吸収強度測定手段からの第1および第2の
光吸収強度測定値を補正して第1および第2の光吸収強
度補正値を求める光吸収強度補正演算手段と、 この光吸収強度補正演算手段からの第1および第2の光
吸収強度補正値に基づいて同位体比を求める同位体比演
算手段とを具備することを特徴とする同位体比演算装
置。
2. A light source capable of changing a wavelength within a fixed range, a sample cell containing a sample gas for receiving a light beam from the light source, and a light source which has passed through the sample gas in the sample cell. of a photodetector for detecting the intensity of light, temperature detecting means for detecting the temperature of the sample gas in the sample cell, the first absorption intensity of absorption lines in the first isotope in the sample gas The rate of temperature change is defined as the lower limit of the rotational transition of this absorption line.
Calculated value of the rate of change of the number of the first isotope molecule present in
Et obtains a first temperature change rate calculating means, the second rate of temperature change in the absorption intensity of absorption lines in a second isotope in the sample gas, the lower level during the rotational transitions of the absorption line
The calculated rate of change in the number of second isotope molecules present in
Et obtains a second temperature change rate computing means, said photodetector first and second measuring the light absorption intensity of the first and second isotopes of the sample gas based on the output from the
The light absorption intensity measurement means for obtaining the light absorption intensity measurement value of the sample gas temperature measurement value from the temperature detection means and the first
Change value calculating means for obtaining first and second change values based on the first temperature change rate from the second temperature change rate calculating means and the second temperature change rate from the second temperature change rate calculating means. And the first and second light absorption intensity measurement values from the light absorption intensity measurement means are corrected based on the first and second variation values from the variation value calculation means. The light absorption intensity correction calculation means for obtaining the absorption intensity correction value, and the isotope ratio calculation means for obtaining the isotope ratio based on the first and second light absorption intensity correction values from the light absorption intensity correction calculation means. An isotope ratio calculation device characterized by:
JP4295610A 1992-11-05 1992-11-05 Isotope ratio analysis method and device Expired - Fee Related JP2686698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4295610A JP2686698B2 (en) 1992-11-05 1992-11-05 Isotope ratio analysis method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4295610A JP2686698B2 (en) 1992-11-05 1992-11-05 Isotope ratio analysis method and device

Publications (2)

Publication Number Publication Date
JPH06148070A JPH06148070A (en) 1994-05-27
JP2686698B2 true JP2686698B2 (en) 1997-12-08

Family

ID=17822858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4295610A Expired - Fee Related JP2686698B2 (en) 1992-11-05 1992-11-05 Isotope ratio analysis method and device

Country Status (1)

Country Link
JP (1) JP2686698B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239611A (en) * 1999-10-12 2004-08-26 Nok Corp Co sensor
JP2002071557A (en) * 2000-08-31 2002-03-08 Japan Science & Technology Corp Method and apparatus for isotopomer absorption spectral analysis

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7513901L (en) * 1974-12-19 1976-06-21 United Technologies Corp VEHICLE EXHAUST SYSTEM ANALYSIS.
JPS5342889A (en) * 1976-09-30 1978-04-18 Nippon Bunko Kogyo Kk Measuring method of methabolism function of organ
JPS6111634A (en) * 1984-06-28 1986-01-20 Japan Spectroscopic Co Method and equipment for measuring 13co2
JPS6197552A (en) * 1984-10-19 1986-05-16 Toshiba Corp Measurement of concentration level for uranium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Acta Physica Academiae Scientiarum Hungaricae,Vol.48,No.1(1980)p93−102

Also Published As

Publication number Publication date
JPH06148070A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
JP5360053B2 (en) Gas analyzer with calibration gas cell
US6274879B1 (en) Process and device for the quantitative detection of a given gas
US5464983A (en) Method and apparatus for determining the concentration of a gas
US6862534B2 (en) Method of determining an analyte concentration in a sample from an absorption spectrum
CN105067564B (en) A kind of optical fiber gas concentration detection method with temperature compensation capability
WO2014106940A1 (en) Gas absorption spectroscopy device and gas absorption spectroscopy method
CN107091818B (en) Multi-gas-chamber complex component gas analysis system and method
CN101617192A (en) Wavelength modulation spectroscopy for simultaneous measurement of two or more gas components
CN102177423A (en) Wavelength-modulation spectroscopy method
JPH0599845A (en) Water content analysis device using semiconductor laser
US10337988B2 (en) Device for measuring moisture in a gas
JP5347983B2 (en) Gas analyzer
US5559333A (en) Apparatus of non-dispersive infrared analyzer
JP2018096974A (en) Analysis device, analysis device program and analysis method
Li et al. WMS based dual-range real-time trace sensor for ethane detection in exhaled breath
JP2522865B2 (en) Carbon isotope analyzer
Li et al. Diode laser absorption spectroscopy for real-time detection of breath oxygen
JP2686698B2 (en) Isotope ratio analysis method and device
US11650155B2 (en) Gas analysis system and gas analysis method
EP4160189A1 (en) Analysis device, program for analysis device, and analysis method
US5155545A (en) Method and apparatus for the spectroscopic concentration measurement of components in a gas mixture
EP0261452B1 (en) Gas analyzer
JP2000206041A (en) Method for detecting the concentration of inclusions in a sample using laser spectroscopy
JP3223097B2 (en) Method for analyzing the concentration of multiple components contained in a solution
JP2775558B2 (en) Isotope ratio correction method and isotope ratio correction device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees