JP2685433B2 - Demodulation method - Google Patents
Demodulation methodInfo
- Publication number
- JP2685433B2 JP2685433B2 JP61041769A JP4176986A JP2685433B2 JP 2685433 B2 JP2685433 B2 JP 2685433B2 JP 61041769 A JP61041769 A JP 61041769A JP 4176986 A JP4176986 A JP 4176986A JP 2685433 B2 JP2685433 B2 JP 2685433B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- carrier
- signal
- sampling
- band signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 15
- 238000005070 sampling Methods 0.000 claims description 21
- 238000012545 processing Methods 0.000 claims description 12
- 238000007493 shaping process Methods 0.000 description 6
- 238000012937 correction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、復調方式、更に詳しく言えばディジタル信
号処理により復調を行なう方式に係り、特にディジタル
位相変調または直交振幅変調された搬送波帯域伝送の復
調に関する。
〔従来の技術〕
PSK,QAM方式によって変調された受信信号に対しては
復調をディジタル的に実現する方式としては、アイ・イ
ー・イー・イー,トランザクション オン コミュニケ
ーション,シー オー エム 25,2(1977年)第238頁
から第250頁(IEEE,Transaction on Communication,COM
−25,2,(1977)pp238−250)において記載されている
様に、入力帯域信号をヒルベルトフィルタに通して、π
/2シフトされた互いに直交した2つの信号系列を得る方
法がある。この方法では、ヒルベルトフィルタが、2つ
の直交したパスバンドフィルタに拡張されているため
に、このフィルタの出力は搬送波帯域信号となってい
る。従って、搬送波周波数のcos成分,sin成分を用意
し、乗算により基底帯域化させる必要がある。この操作
をディジタル処理で行なうために、従来は搬送波のcos
成分,sin成分各々の離散値をROM引きして乗算を行なう
方法が主であり、標本化周波数に従ったポイント分のメ
モリ量が必要となる。また、基底帯域信号に波形整形フ
ィルタリングを施す操作が付け加わり、演算処理が増加
し、回路構成が複雑になりがちである。
〔発明が解決しようとする問題点〕
上記従来技術では、演算の複雑化,回路規模,ヒルベ
ルトフィルタの位相特性、等、ディジタル化による利点
である経済性,高性能,LSI化の点で十分な配慮がなされ
ていなかった。
本発明の目的は、ディジタル信号処理技術を導入し、
搬送波の復調,基底帯域での変調信号の直交・同期成分
の分離をディジタル的に行ない、さらには搬送波位置回
転補正,クロック再生,波形整形フィルタリング等のデ
ィジタル技術とあわせて、ディジタル復調方式を提供
し、無調整化,高性能化,メモリの半減,演算量の減少
によって、回路の小型化,LSI化,低消費電力化を達成す
ることにある。
〔問題点を解決するための手段〕
上記目的を達成するためには、搬送波帯域信号を基底
帯域での直交2成分へ変換する操作を、搬送波帯域信号
を直接標本化し、その繰り返しによって表わされる低域
のスペクトラムに着目し、この帯域の中心周波数だけ負
に周波数シフトを行なうことによって実現する。そして
上記処理によって分離された直交・同相成分の信号を変
調信号のビットレートに同期した信号とするために補間
処理を行なうことにより波形整形フィルタリング,搬送
波位相回転補正,クロック抽出等を識別点のみの標本点
で処理出来る。
すなわち、本発明の特徴とするところは、ディジタル
位相変調またはディジタル直交振幅変調された搬送波希
望帯域信号を所定周波数fsで標本化処理し、該標本化時
の離散信号(fs、Nfs…)を2系列に分離し、該分離離
散信号をそれぞれ復調して基底帯域信号のI、Q成分を
得る復調方式であって、上記搬送波帯域信号の搬送周波
数fcを、
上記搬送波帯域信号の変調帯域幅(BW)の2倍以上の
周波数に設定した標本化周波数fsに対して、その整数倍
(N×fs)の周波数に、上記変調帯域幅の1/2以上の周
波数を加えた周波数となる条件と、
かつ、上記搬送周波数fcは、
の条件を満たすように設定し、上記復調を標本化周波数
fsにて標本化された離散信号からディジタル処理可能と
なるよう構成した復調方式にある。
本発明の好適な実施態様によれば、上記搬送波帯域信
号の搬送波周波数fcを、帯域信号の上記標本化周波数fs
による標本化によって得られる離散信号が時間的に1つ
ずつ交互に2系列に分離されるように設定したことにあ
る。
更に、本発明の好適な実施態様によれば、上記搬送波
周波数fcを、
に設定し、上記2系列の中で1つずつ交互に正負の符号
反転し、上記I、Q成分を基底帯域信号として得ること
にある。
〔作用〕
以下第1図,第2図に従って本発明の原理を説明す
る。第2図は第1図で示した信号処理を行なうためのブ
ロック構成図である。
受信信号r(t)は周波数領域では第1図(a)で示
される様なスペクトラムを有していると仮定する。この
中で斜線部で示された帯域を希望受信信号と考える。図
(a)で、搬送波周波数は標本化周波数fsの整数倍(fs
×N)と受信信号帯域幅BWの2分の1以上の周波数faを
加えた値に設定されている。但し、fc+BW/2<fs×N+
fs/2の条件を満たすものとする。これはfsで標本化を行
なった時にスペクトルの折り返しが帯域BW内に影響を与
えないようにするためである。上記に記す搬送波におい
て、帯域制限フィルタ12により希望帯域信号を得る。こ
の出力を(b)に示す。次に、この帯域信号を周波数fs
で標本化を行なうと(c)に示す様に受信信号のスペク
トルが繰り返し表われ、周波数fc(=fa)を中心周波数
とする希望帯域信号が得られる。この標本化はA/D変換
器13で行なう。ここでfc=fa=fs/4となる場合を考え
る。まず、A/D変換器13の出力の離散信号を1つずつ交
互に2系列に分離する。この操作により、2系列の離散
信号は周波数fs/2で標本化され、かつ位相がfs/4の周期
のπ/2だけシフトされた系列と考えられる。しかし、こ
の2系列の離散信号は未だ中心周波数fcとする帯域信号
であるから基底帯域信号化するために(−fc)だけ周波
数シフトを行なう必要がある。いまz領域を考えると、
z=ejwT=ej2πf/fs′
ここでfs′=fs/2
であり、(−fc)=fs/4をシフトすることは
ej2π(f+fs/4)/fs/2
=ej2π(fs/4)/(fa/2)・ej2πf/fs/2)
=ejπ・ejwT
=−z
ということで、z→−zの変換と等価である。従って時
間応答で考えた場合、
z+n→(−z)-n=(−1)-n(z)-n=(−1)
n(z)-n
であり、離散信号を交互に正負へ符号変換することと等
価となる。以上の理論を用いて基底帯域での直交2成分
を得ることが出来る。
〔実施例〕
以下、本発明の1実施例を第3図により説明する。第
3図は、搬送波の直交成分,同相成分をそれぞれ信号で
位相変調するような変調方式、つまりディジタル位相変
調または直交振巾変調方式で変調された搬送波帯域伝送
における受信部の復調器のブロック構成図である。受信
信号は、第1図(a)に示す様に周波数領域で不要波成
分に取り囲れていると考えられる。入力受信信号の搬送
波は、第3図BPF12以降の標本化周波数fsの整数倍にfs/
4だけ加えられた周波数に設定する。(fc=Nfs+fs/
4)。このように周波数配置された帯域信号から受信信
号を得ることを考える。BPF12は通過域が十分に受信信
号帯域巾を満たすもので、かつfsでの標本化による折り
返しが受信信号に悪影響を与えない程度の阻止域減衰特
性が必要である。このBPF12はアナログフィルタで実現
出来る。次にBPF12の出力をA/D変換器13により周波数fs
で標本化を行なう。標本化により受信信号がfcを中心周
波数とする帯域信号として得られる。この受信離散信号
は時間系列に沿って1つずつ交互に2系列に分離され、
それぞれの系列の中で交互に正負の符号変換が符号変換
器14,15により行なわれる。以上の操作によって基底帯
域信号としての変調波の直交成分,同相成分が2系列に
分離されることになる。
次に、この互いに直交する成分である信号の離散時間
周期(2/fs)が信号のビットレートに同期していない標
本点であるとすれば、同期する時間での標本値を補間に
よって得る必要がある。従って補間16,17により、以下
の波形整形フィルタリング,搬送波位相回転補正,クロ
ック抽出,AGC等か識別点に対しての標本点のみで実現出
来る。
〔発明の効果〕
本発明によれば、標本化と正負の符号変換の処理を施
すことによってディジタル位相変調または直交振幅変調
された搬送波帯域信号から、基底帯域での直交成分,同
相成分を得ることが出来、しかも全てディジタル信号処
理で行なえる。また基底帯域信号の離散信号より変調信
号のビットレートに同期した信号を得るための補間操作
を行なうことにより、波形整形フィルタリング,位相補
正,クロック抽出,AGC等が識別点のみの標本値で実現出
来る。従ってアナログ回路で実現する場合の様な位相調
整の煩らしさや、レベル変動,素子感度による特性劣化
の欠点は全て解決され、また従来のディジタル方式の様
に搬送波の離散値のメモリや乗算器が不用になる。この
ため、経済的にも部品点数の上でも有利であり、またLS
I化を行なう場合でのチップ面積の縮少等に貢献出来
る。Description: TECHNICAL FIELD The present invention relates to a demodulation system, more specifically to a system for performing demodulation by digital signal processing, and more particularly to a digital phase modulation or quadrature amplitude modulation carrier band transmission. Regarding demodulation. [Prior Art] As a method for digitally demodulating a received signal modulated by the PSK or QAM method, IEE, transaction-on-communication, CMO 25,2 (1977 Year) Page 238 to 250 (IEEE, Transaction on Communication, COM
-25,2, (1977) pp238-250), the input band signal is passed through a Hilbert filter to obtain π
There is a method of obtaining two signal sequences that are / 2 shifted and are orthogonal to each other. In this method, the output of this filter is a carrier band signal because the Hilbert filter is extended to two orthogonal passband filters. Therefore, it is necessary to prepare a cos component and a sin component of the carrier frequency and make them into a base band by multiplication. In order to perform this operation digitally, the carrier wave cos is conventionally used.
The main method is to draw the ROM of the discrete values of each of the components and sin components and perform multiplication, and the amount of memory for points corresponding to the sampling frequency is required. In addition, an operation of applying waveform shaping filtering to the baseband signal is added, which increases the amount of arithmetic processing and tends to complicate the circuit configuration. [Problems to be Solved by the Invention] The above-mentioned conventional techniques are sufficient in terms of complexity of operation, circuit scale, phase characteristics of Hilbert filter, etc. No consideration was given. The object of the present invention is to introduce digital signal processing technology,
The digital demodulation method is provided in combination with digital technology such as carrier wave demodulation, separation of quadrature / synchronous components of the modulated signal in the base band, and further carrier wave position rotation correction, clock reproduction, waveform shaping filtering, etc. The goal is to achieve circuit miniaturization, LSI integration, and low power consumption by eliminating adjustment, improving performance, halving memory, and reducing the amount of computation. [Means for Solving the Problems] In order to achieve the above object, the operation of converting a carrier band signal into two orthogonal components in the base band is performed by directly sampling the carrier band signal and repeating it. This is achieved by focusing on the spectrum of the frequency band and negatively shifting the center frequency of this frequency band. The quadrature / in-phase component signals separated by the above processing are subjected to interpolation processing so as to be a signal synchronized with the bit rate of the modulation signal, whereby waveform shaping filtering, carrier phase rotation correction, clock extraction, etc. Can be processed at sample points. That is, the feature of the present invention is that the carrier desired band signal that is digital phase modulated or digital quadrature amplitude modulated is sampled at a predetermined frequency fs, and the discrete signal (fs, Nfs ...) At the time of sampling is 2 This is a demodulation method for obtaining I and Q components of a baseband signal by separating each of the separated discrete signals into a series and demodulating each of the separated discrete signals, wherein the carrier frequency fc of the carrier band signal is set to the modulation bandwidth (BW ), The sampling frequency fs is set to a frequency equal to or more than twice, and a frequency that is an integer multiple (N × fs) of the sampling frequency plus a frequency equal to or more than 1/2 of the modulation bandwidth, And the carrier frequency fc is Set so that the condition of
This is a demodulation method configured to enable digital processing from the discrete signal sampled by fs. According to a preferred embodiment of the present invention, the carrier frequency fc of the carrier band signal is set to the sampling frequency fs of the band signal.
The discrete signal obtained by the sampling is set to be alternately separated into two series one by one in time. Further, according to a preferred embodiment of the present invention, the carrier frequency fc is To obtain the I and Q components as baseband signals by alternately inverting the positive and negative signs of the two sequences one by one. [Operation] The principle of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 2 is a block configuration diagram for performing the signal processing shown in FIG. It is assumed that the received signal r (t) has a spectrum as shown in FIG. 1 (a) in the frequency domain. The band indicated by the shaded area is considered to be the desired received signal. In Figure (a), the carrier frequency is an integer multiple of the sampling frequency fs (fs
× N) and a frequency fa equal to or more than ½ of the reception signal bandwidth BW are set. However, fc + BW / 2 <fs × N +
The condition of fs / 2 shall be satisfied. This is to prevent the spectrum folding from affecting the band BW when sampling with fs. A desired band signal is obtained by the band limiting filter 12 on the carrier wave described above. This output is shown in (b). Next, let this band signal be frequency fs
When the sampling is carried out at, the spectrum of the received signal appears repeatedly as shown in (c), and a desired band signal having the frequency fc (= fa) as the center frequency is obtained. This sampling is performed by the A / D converter 13. Consider the case where fc = fa = fs / 4. First, the discrete signals output from the A / D converter 13 are alternately separated into two series one by one. By this operation, it is considered that the two series of discrete signals are sampled at the frequency fs / 2 and the phase is shifted by π / 2 of the period of fs / 4. However, since these two series of discrete signals are still band signals having the center frequency fc, it is necessary to shift the frequency by (-fc) in order to convert them into base band signals. Considering the z region now, z = e jwT = e j2πf / fs ′ where fs ′ = fs / 2, and shifting (−fc) = fs / 4 is e j2π (f + fs / 4) / fs / 2 = e j2π (fs / 4) / (fa / 2) · e j2πf / fs / 2) = e jπ · e jwT = −z, which is equivalent to the conversion of z → −z. Therefore, when considering the time response, z + n → (-z) -n = (-1) -n (z) -n = (-1)
n (z) -n, which is equivalent to alternating the positive and negative signs of the discrete signal. Using the above theory, two orthogonal components in the base band can be obtained. [Embodiment] An embodiment of the present invention will be described below with reference to FIG. FIG. 3 is a block diagram of a demodulator of a receiver in a carrier band transmission in which a quadrature component and an in-phase component of a carrier are phase-modulated by signals, that is, digital phase modulation or quadrature amplitude modulation. It is a figure. It is considered that the received signal is surrounded by unnecessary wave components in the frequency domain as shown in FIG. The carrier wave of the input received signal is fs / at an integral multiple of the sampling frequency fs after BPF12 in Fig. 3.
Set to the frequency with only 4 added. (Fc = Nfs + fs /
Four). It is considered to obtain a received signal from band signals arranged in this way. BPF12 must have sufficient passband to meet the received signal bandwidth, and must have stopband attenuation characteristics to the extent that aliasing due to sampling at fs does not adversely affect the received signal. This BPF12 can be realized with an analog filter. Next, output the BPF12 to the frequency fs by the A / D converter 13.
Sampling with. By sampling, the received signal is obtained as a band signal whose center frequency is fc. The received discrete signals are alternately separated into two series along the time series,
Positive and negative sign conversions are alternately performed by the sign converters 14 and 15 in each series. By the above operation, the quadrature component and the in-phase component of the modulated wave as the baseband signal are separated into two series. Next, if the discrete time period (2 / fs) of the signal, which is a component that is orthogonal to each other, is a sampling point that is not synchronized with the bit rate of the signal, it is necessary to obtain the sampled value at the synchronized time by interpolation. There is. Therefore, the interpolation 16 and 17 can be realized by the following waveform shaping filtering, carrier phase rotation correction, clock extraction, AGC, etc., or only by the sampling points for the identification points. [Effect of the Invention] According to the present invention, a quadrature component and an in-phase component in a base band can be obtained from a carrier band signal that is digitally phase-modulated or quadrature-amplitude-modulated by performing sampling and positive / negative sign conversion processing. It can be done, and all can be done by digital signal processing. In addition, waveform shaping filtering, phase correction, clock extraction, AGC, etc. can be realized with sample values only at the discrimination points by performing interpolation operations to obtain signals synchronized with the bit rate of modulated signals from discrete signals of baseband signals. . Therefore, all the troubles of phase adjustment such as in the case of realizing with an analog circuit, the level fluctuation, and the defect of the characteristic deterioration due to the element sensitivity are all solved, and the memory and the multiplier of the discrete value of the carrier wave like the conventional digital system are solved. It becomes useless. Therefore, it is economically and advantageous in terms of the number of parts.
It can contribute to the reduction of the chip area when performing I conversion.
【図面の簡単な説明】
第1図は本発明の基本方式の信号処理過程のスペクトラ
ム、第2図は、第1図の信号処理をブロック構成で示し
たもの、第3図は、本発明の一実施例を表わすもので復
調方式をブロック構成で示したものである。
12……帯域制限フィルタ(BPF)、
13……A/D変換器、14,15……符号変換器、16,17……補
間器、18,19……波形整形ロールオフフィルタ、20……
搬送波位相回転補正回路及び、クロック抽出回路及びAG
C回路のブロック図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a spectrum of a signal processing process of the basic method of the present invention, FIG. 2 is a block diagram of the signal processing of FIG. 1, and FIG. 3 is a block diagram of the present invention. FIG. 1 shows an embodiment and shows a demodulation method in a block configuration. 12 …… Bandwidth limiting filter (BPF), 13 …… A / D converter, 14,15 …… Sign converter, 16,17 …… Interpolator, 18,19 …… Wave shaping roll-off filter, 20 ……
Carrier wave phase rotation correction circuit, clock extraction circuit and AG
Block diagram of C circuit.
フロントページの続き (72)発明者 高橋 康文 国分寺市東恋ヶ窪1丁目280番地 株式 会社日立製作所中央研究所内 (56)参考文献 IEEE Transactions on Communication s,vol COM−25,No.2,P 238−250(1977)Continuation of front page (72) Inventor Yasufumi Takahashi 1-280 Higashi Koigabo, Kokubunji-shi Central Research Laboratory, Hitachi, Ltd. (56) References IEEE Transactions on Communication s, vol COM-25, No. 2, P 238-250 (1977)
Claims (1)
された搬送波希望帯域信号を所定周波数fsで標本化処理
し、該標本化時の離散信号(fs、Nfs…)を2系列に分
離し、該分離離散信号をそれぞれ復調して基底帯域信号
のI、Q成分を得る復調方式であって、 上記搬送波帯域信号の搬送周波数fcを、 上記搬送波帯域信号の変調帯域幅(BW)の2倍以上の周
波数に設定した標本化周波数fsに対して、その整数倍
(N×fs)の周波数に、上記変調帯域幅の1/2以上の周
波数を加えた周波数となる条件と、 かつ、上記搬送周波数fcは、 の条件を満たすように設定し、上記復調を標本化周波数
fsにて標本化された離散信号からディジタル処理可能と
なるよう構成したことを特徴とする復調方式。 2.上記搬送波帯域信号の搬送波周波数fcを、帯域信号
の上記標本化周波数fsによる標本化によって得られる離
散信号が時間的に1つずつ交互に2系列に分離されるよ
うに設定したことを特徴とする特許請求の範囲第1項記
載の復調方式。 3.上記搬送波周波数fcを、に設定し、上記2系列の中で1つずつ交互に正負の符号
反転し、上記I、Q成分を基底帯域信号として得てなる
特許請求の範囲第2項記載の復調方式。(57) [Claims] A carrier desired band signal that has been digitally phase-modulated or digital quadrature amplitude modulated is sampled at a predetermined frequency fs, the discrete signals (fs, Nfs ...) At the time of sampling are separated into two series, and the separated discrete signals are respectively separated. A demodulation method for demodulating to obtain I and Q components of a baseband signal, in which the carrier frequency fc of the carrier band signal is set to a frequency twice or more the modulation bandwidth (BW) of the carrier band signal. The carrier frequency fc is a condition that a frequency obtained by adding 1/2 or more of the modulation bandwidth to a frequency that is an integer multiple (N × fs) of the converted frequency fs, and that the carrier frequency fc is Set so that the condition of
A demodulation method characterized by being configured so that digital processing can be performed from a discrete signal sampled by fs. 2. The carrier frequency fc of the carrier band signal is set such that discrete signals obtained by sampling the band signal at the sampling frequency fs are alternately separated into two series one by one in time. The demodulation method according to claim 1. 3. The carrier frequency fc is 3. The demodulation system according to claim 2, wherein the I and Q components are obtained as baseband signals by alternately inverting the positive and negative signs of the two sequences one by one.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61041769A JP2685433B2 (en) | 1986-02-28 | 1986-02-28 | Demodulation method |
US07/015,027 US4737728A (en) | 1986-02-28 | 1987-02-17 | Digitally processed demodulator for quadrature modulated signals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61041769A JP2685433B2 (en) | 1986-02-28 | 1986-02-28 | Demodulation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62200849A JPS62200849A (en) | 1987-09-04 |
JP2685433B2 true JP2685433B2 (en) | 1997-12-03 |
Family
ID=12617602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61041769A Expired - Lifetime JP2685433B2 (en) | 1986-02-28 | 1986-02-28 | Demodulation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2685433B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2613256B2 (en) * | 1988-05-25 | 1997-05-21 | 株式会社日立製作所 | Digital demodulator |
CN115776429B (en) * | 2022-11-23 | 2024-04-30 | 苏州市江海通讯发展实业有限公司 | 406MHz position indication mark intermediate frequency phase modulation signal generation method and system |
-
1986
- 1986-02-28 JP JP61041769A patent/JP2685433B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
IEEE Transactions on Communications,vol COM−25,No.2,P238−250(1977) |
Also Published As
Publication number | Publication date |
---|---|
JPS62200849A (en) | 1987-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4737728A (en) | Digitally processed demodulator for quadrature modulated signals | |
US4803700A (en) | Method of, and demodulator for, digitally demodulating an SSB signal | |
US5172070A (en) | Apparatus for digitally demodulating a narrow band modulated signal | |
US8467761B2 (en) | Simplified high frequency tuner and tuning method | |
JPH02244922A (en) | Digital frequency divided multiple signal receiver | |
KR20060121126A (en) | Bandpass Sampling Receivers and Sampling Methods | |
EP1388942B1 (en) | Conversion circuit, tuner and demodulator | |
JP2685433B2 (en) | Demodulation method | |
US5373533A (en) | FSK signal receiving device | |
CN111683028B (en) | Digital equal-amplitude cw signal demodulation method | |
US6728321B2 (en) | Receiving device for angle-modulated signals | |
GB2244410A (en) | Quadrature demodulator | |
US5574450A (en) | Synchronization adder circuit | |
JP3362427B2 (en) | Quadrature detector | |
JPH084277B2 (en) | Digital communication system | |
US7277501B2 (en) | Data receiving device | |
JP2002300224A (en) | Receiver | |
JP2000068839A (en) | Sigma-delta A / D converter, demodulator, receiver and disk device | |
JP2659963B2 (en) | Receiver | |
JP3643109B2 (en) | Data receiving device | |
JPH05152850A (en) | Digital modulator and digital demodulator | |
JP3888757B2 (en) | Space diversity receiver | |
Jankovic et al. | Extraction of in phase and quadrature components by IF-sampling | |
JPH0646096A (en) | Digital demodulator | |
JPS62200848A (en) | Demodulation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |