[go: up one dir, main page]

JP2682849B2 - Heat exchanger and manufacturing method thereof - Google Patents

Heat exchanger and manufacturing method thereof

Info

Publication number
JP2682849B2
JP2682849B2 JP63216968A JP21696888A JP2682849B2 JP 2682849 B2 JP2682849 B2 JP 2682849B2 JP 63216968 A JP63216968 A JP 63216968A JP 21696888 A JP21696888 A JP 21696888A JP 2682849 B2 JP2682849 B2 JP 2682849B2
Authority
JP
Japan
Prior art keywords
pipes
fins
heat exchanger
pipe
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63216968A
Other languages
Japanese (ja)
Other versions
JPH0268495A (en
Inventor
武志 松元
浩一 長崎
清茂 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP63216968A priority Critical patent/JP2682849B2/en
Publication of JPH0268495A publication Critical patent/JPH0268495A/en
Application granted granted Critical
Publication of JP2682849B2 publication Critical patent/JP2682849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、給湯装置、ラジエーター等に適した高熱伝
導性セラミックスを主体とする熱交換器並びにその製造
方法に関する。
Description: TECHNICAL FIELD The present invention relates to a heat exchanger mainly composed of high thermal conductive ceramics suitable for a water heater, a radiator and the like, and a method for manufacturing the same.

(従来の技術) 給湯装置等に用いられる熱交換器としては、複数の平
行な熱交換媒体流通パイプと、多数のフィンとを組み合
わせ構成したものが挙げられる。従来から用いられてい
るこの種熱交換器は、全金属製のものが主流を占めてお
り、これは一般に銅製のフィンとパイプとを組み合わせ
構成されている。亦、最近では、特開昭62−70035及び
特開昭62−70042号公報において、耐熱、耐蝕性に優れ
たセラミック材のみにより構成されたものも提案されて
いる。このセラミックス製の熱交換器は、第4図に示す
ように予めパイプ挿入孔f…を穿設したハニカム体(フ
ィンの集合体)hにパイプp…をねじ込んだ後、パイプ
p…とハニカム体hとをガラス質の接合材によって固定
し、或いは、第5図に示すように分割したハニカム構造
体h1…に予めガラスペーストを塗布し、パイプp…をは
さみ込むようにして両者を固定一体として得られる。
(Prior Art) As a heat exchanger used in a water heater or the like, there is a heat exchanger in which a plurality of parallel heat exchange medium distribution pipes and a large number of fins are combined and configured. This type of heat exchanger that has been conventionally used is mainly made of all metal, which is generally configured by combining copper fins and pipes. Recently, JP-A-62-70035 and JP-A-62-70042 have also proposed a structure made of only a ceramic material having excellent heat resistance and corrosion resistance. As shown in FIG. 4, this heat exchanger made of ceramics is prepared by screwing pipes p ... Into a honeycomb body (assembly of fins) h having pipe insertion holes f ... and h are fixed by a glass-like bonding material, or glass paste is applied in advance to the honeycomb structure h 1 ... which is divided as shown in FIG. 5, and the pipes p are sandwiched to obtain both as a fixed unit. To be

(発明が解決しようとする課題) 上記のうち、全金属製の熱交換器は、耐熱性に乏しい
ことから高温下での使用が難しく、その為熱交換効率が
悪いばかりでなく、耐蝕性物質を含んだ排ガス、排液な
どが接触すると腐食し易く、これが原因で寿命が短くな
ったりする。
(Problems to be Solved by the Invention) Of the above, the all-metal heat exchanger is difficult to use at high temperature because of poor heat resistance, and therefore not only the heat exchange efficiency is poor, but also a corrosion-resistant substance. When exhaust gas containing exhaust gas, exhaust liquid, etc. come into contact with each other, they easily corrode, which shortens the service life.

一方、セラミック製の熱交換器の場合、高温特性、耐
蝕性の面では優れているものの、熱伝導性が悪いと云う
致命的欠陥があり、特に比較的低温となる交換器の上側
のフィン効率は良くなく、更に、熱伝導率が劣る為に、
10号型のように大型化したり、バーナーを近付けたりす
ると、内部に極端な温度分布を生じ、熱応力により割れ
てしまうと云う欠点があり、加えてコスト的な問題点も
抱えていた。亦、セラミックス製のハニカム体にパイプ
を挿入して構成する場合、パイプと各格子(フィン)と
の接合部全てについて熱伝導性を良好に保つことが難し
く、たとえハニカム体を分割体としても、ハニカム体で
あるが故に流通ガスの圧力損失が大きく、熱交換効率の
低下は免れなかった。
On the other hand, a ceramic heat exchanger has a high temperature characteristic and excellent corrosion resistance, but has a fatal defect of poor thermal conductivity. Is not good, and because the thermal conductivity is poor,
When the size was increased like the No. 10 type, or when the burner was brought closer, an extreme temperature distribution was generated inside and there was the drawback that it would crack due to thermal stress, and in addition there was a cost problem. Also, when a pipe is inserted into a ceramic honeycomb body, it is difficult to maintain good thermal conductivity for all joints between the pipe and each lattice (fin), and even if the honeycomb body is a divided body, Since it is a honeycomb body, the pressure loss of the flowing gas is large and the heat exchange efficiency is unavoidable.

(発明の目的) 本発明は、上記に鑑みなされたもので、高温・腐蝕条
件下に晒される場合にも、長寿命且つ優れた熱交換効率
を奏する新規な熱交換器並びにその有効な製造方法を提
供せんとするものである。
(Object of the invention) The present invention has been made in view of the above, and a novel heat exchanger having a long life and excellent heat exchange efficiency even when exposed to high temperature and corrosion conditions, and an effective manufacturing method thereof. Is intended to be provided.

(課題を解決する為の手段) 上記目的を達成する為の本発明の構成を添付の実施例
図に基づき説明する。第1図は本発明熱交換器の一例を
示す全体斜視図、第2図は同熱交換器を構成するパイプ
とフィンの斜視図、第3図は同熱交換器を製造する為の
治具の斜視図である。
(Means for Solving the Problems) The configuration of the present invention for achieving the above object will be described with reference to the attached embodiment drawings. FIG. 1 is an overall perspective view showing an example of the heat exchanger of the present invention, FIG. 2 is a perspective view of pipes and fins constituting the heat exchanger, and FIG. 3 is a jig for manufacturing the heat exchanger. FIG.

即ち、本発明の特定発明である熱交換器は、複数の上
下平行な熱交換媒体流通パイプ1…と、該パイプ1…に
直交状態で且つ該パイプ1…を間隔保持するよう互いに
平行に装着された多数の板状フィン2…、3…とより成
り、上記パイプ1…及びフィン2…、3…の低温側の上
部を銅製とし、高温側の下部を炭化珪素若しくは窒化ア
ルミニウム等の高熱伝導性セラミックス製とすると共
に、上記パイプ1…とフィン2…、3…とを活性金属層
により接合一体化したことを特徴とするものである。
That is, the heat exchanger which is the specific invention of the present invention includes a plurality of vertically parallel heat exchange medium distribution pipes 1, ..., Which are mounted in parallel to each other so as to be orthogonal to the pipes 1 ... Made up of a large number of plate-shaped fins 2 ... 3 ..., and the pipe 1 ... And the fins 2 ... 3 ... are made of copper at the low temperature side, and the high temperature side is made of high heat conductive material such as silicon carbide or aluminum nitride. And the fins 2 ... 3 are joined and integrated by an active metal layer.

亦、第2発明の熱交換器の製造方法は、複数の熱交換
媒体流通パイプ1…及び多数の板状フィン2…、3…の
一部を炭化珪素若しくは窒化アルミニウム等の高熱伝導
性セラミックスで、他のパイプ1…及びフィン2…、3
…を銅によりそれぞれ形成し、上面を開放した組立治具
の内底面及び両側打面に等間隔で凹設した多数の平行な
溝に上記フィン2…をそれぞれ立設した後にこれらのフ
ィン2…に直交するよう周体に活性金属層を被着形成し
た前記パイプ1…をそれぞれ配置するようにしてフィン
2…、3…とパイプ1…とを順次積み重ねることによ
り、複数の上下平行なパイプ1…に多数の板状フィン2
…、3…を直交状態で且つ該パイプ1…を間隔保持する
ように互いに平行に配設し且つ上記のパイプ1…及びフ
ィン2…、3…の一部を炭化珪素若しくは窒化アルミニ
ウム等の高熱伝導性セラミックス製とし、他のパイプ1
…及びフィン2…、3…を銅製とした構造体に組立し、
次いで、この構造体を10-3〜10-5torrの減圧雰囲気下80
0〜1000℃で加熱し、上記活性金属層の熱融着によりパ
イプ1…とフィン2…、3…とを接合一体とするように
したことを要旨とするものである。
In the method for manufacturing a heat exchanger according to the second aspect of the present invention, a plurality of heat exchange medium distribution pipes 1 ... And a large number of plate-shaped fins 2 ... 3 ... Are made of high thermal conductive ceramics such as silicon carbide or aluminum nitride. , Other pipe 1 ... and fins 2 ... 3
Are formed of copper, and the fins 2 are erected in a large number of parallel grooves that are recessed at equal intervals on the inner bottom surface of the assembly jig and the striking surfaces on both sides of the assembly jig whose upper surface is open. A plurality of vertically parallel pipes 1 are formed by sequentially stacking the fins 2 ... 3 and the pipes 1 ... by arranging the pipes 1 ... To many plate-shaped fins 2
, 3 are arranged in parallel with each other so as to maintain the pipes 1 in an orthogonal state, and a part of the pipes 1 and the fins 2 ... Made of conductive ceramics, other pipe 1
... and fins 2 ... 3 ... are assembled into a structure made of copper,
Next, this structure is placed under a reduced pressure atmosphere of 10 −3 to 10 −5 torr at 80 ° C.
The gist is that the pipes 1 ... And the fins 2 ..., 3 ... Are integrally joined by heating at 0 to 1000.degree. C. and thermal fusion of the active metal layer.

本発明における高熱伝導性セラミックスは、上記の如
く炭化珪素若しくは窒化アルミニウム等が望ましく採用
されるが、炭化珪素の熱伝導率は63ワット/m・K以上で
あり、また窒化アルミニウムの熱伝導率は120ワット/m
・K以上である。
As the high thermal conductive ceramics of the present invention, silicon carbide, aluminum nitride, or the like is desirably adopted as described above. The thermal conductivity of silicon carbide is 63 watts / m · K or more, and the thermal conductivity of aluminum nitride is 120 watt / m
-It is K or more.

パイプ1…とフィン2…、3…とを接合一体とする活
性金属層は、チタン、銅及び銀等のペースト或いは箔を
予め各パイプ1…の周体に塗着若しくは貼着することに
より被着形成される。この活性金属層は上記減圧雰囲気
下で加熱することにより融解しパイプ1…とフィン2
…、3…とを接合一体とするが、真空度が103torrを上
回ると活性金属が酸化し易くなり、一方10-5torr未満と
なると融解した活性金属が蒸散し易くなる。また、加熱
温度が800℃未満の場合、活性金属の融解が十分でな
く、1000℃を超えると活性金属が酸化及び蒸散し易くな
る。
The active metal layer in which the pipes 1 ... And the fins 2 ... 3 are integrally bonded is formed by applying or pasting a paste or foil of titanium, copper, silver or the like on the circumference of each pipe 1 in advance. Is formed. This active metal layer is melted by heating in the above-mentioned reduced pressure atmosphere, and the pipes 1 ...
3 ... are integrally joined, but when the vacuum degree exceeds 10 3 torr, the active metal is easily oxidized, while when the vacuum degree is less than 10 −5 torr, the molten active metal is easily evaporated. When the heating temperature is lower than 800 ° C, the active metal is not sufficiently melted, and when the heating temperature is higher than 1000 ° C, the active metal is easily oxidized and evaporated.

(作用) 上記構成の熱交換器は前記給湯装置やラジエーター等
に組み込まれる。そして、パイプ1…内を熱交換媒体が
流通し、他方の熱交換媒体はフィン2…、3…に接触的
に流通し、両媒体間で熱の交換がなされる。この時、パ
イプ1…及びフィン2…、3…が高熱伝導性材料により
成り、しかもフィン2…、3…板状で互いに平行に配置
されているから、熱交換媒体の圧力損失が小さく、極め
て効率的に熱交換がなされる。また、上記セラミックス
で構成されている部位は高温下に晒されても十分に耐用
できる。更に、該セラミックスは高熱伝導性を有してい
るから、熱交換器を大型化したり、バーナーを近付けて
も、内部に温度分布を生じることが少なく、熱応力によ
り割れるような懸念がない。特に、熱交換器本体の上半
部を銅で、下半部を上記高熱伝導性セラミックスで構成
しているので、高温下での使用が可能となり、バーナー
容量を大とすることが出来、全体をコンパクトなものと
することが出来る。また、比較的低温の上半部は銅で構
成されているからその優れた熱伝導性により温度分布を
小さくすることが出来、耐熱応力が大となる。
(Operation) The heat exchanger having the above configuration is incorporated in the hot water supply device, the radiator, or the like. Then, the heat exchange medium circulates in the pipes 1 ..., The other heat exchange medium circulates in contact with the fins 2, ..., 3, so that heat is exchanged between the two media. At this time, since the pipes 1 ... And the fins 2 ... 3 are made of a highly heat-conductive material and are arranged in parallel with each other in the form of fins 2 ... 3 ..., the heat exchange medium has a small pressure loss and is extremely small. Heat is exchanged efficiently. Further, the portion made of the above-mentioned ceramics can sufficiently withstand even when exposed to high temperature. Furthermore, since the ceramics have high thermal conductivity, even if the heat exchanger is upsized or the burner is brought close to the ceramics, temperature distribution is unlikely to occur inside, and there is no fear of cracking due to thermal stress. In particular, since the upper half of the heat exchanger body is made of copper and the lower half is made of the above-mentioned high thermal conductive ceramics, it can be used at high temperatures and the burner capacity can be increased. Can be made compact. Further, since the upper half of the relatively low temperature is made of copper, the temperature distribution can be narrowed due to its excellent thermal conductivity, and the thermal stress becomes large.

上記熱交換器の製造法を具体的に述べる。先ず、所定
寸法に調製されたパイプ1…の周体に上記活性金属層を
被着形成し、該パイプ1…と別途作成されたフィン2
…、3…とを後記の実施例で示す如きカーボン製組立治
具4内に上記の位置関係になるよう配置し、これを上記
雰囲気条件に保持された炉内で約30分加熱処理する。加
熱処理後治具4を取外すと第1図に示す如く活性金属層
の融着により各パイプ1…及びフィン2…、3…が接合
一体とされた熱交換器が組立構成される。
A method for manufacturing the heat exchanger will be specifically described. First, the above-mentioned active metal layer is adhered and formed on the peripheral body of the pipes 1 ...
, 3 are arranged in the carbon assembling jig 4 as shown in the embodiment described later so as to have the above-mentioned positional relationship, and this is heat-treated for about 30 minutes in the furnace maintained under the above-mentioned atmospheric conditions. When the jig 4 is removed after the heat treatment, as shown in FIG. 1, a heat exchanger in which the pipes 1 ... And the fins 2 ...

斯くして得られた熱交換器に於けるパイプ1…とフィ
ン2…、3…との接合部には活性金属の融着層が介在さ
れるから、接合強度が大でありしかもこの部分の熱伝導
性は良好である。しかも、この熱交換器は、組立治具内
に所定の位置関係を保つようにパイプ1…とフィン2
…、3…とを順次積み重ねるだけで良いため、簡単に製
作することができる。
Since the fusion layer of the active metal is interposed at the joint between the pipe 1 ... And the fins 2 ... 3 in the heat exchanger thus obtained, the joint strength is large and The thermal conductivity is good. Moreover, this heat exchanger is constructed so that the pipes 1 ...
It can be easily manufactured because it is necessary only to sequentially stack 3 ...

(実施例) 次に実施例について述べる。第2図(イ)(ロ)及び
(ハ)は、本発明熱交換器を構成するパイプ及びフィン
の形状を示すものである。パイプ1は、外径16mm程度の
大きさであり、炭化珪素或いは窒化アルミ等のセラミッ
ク原料に適量の焼結助剤、粘結材を加えて混練し、該混
練物を所定の金型より円筒状に押出し成型し、この成型
体を各セラミック体に適した温度雰囲気中で焼成して得
たもの、或いは市販の銅管を所定寸法に切断したもので
ある。亦、フィン2、3は、パイプ1の外周を抱持し得
る略半円形の切欠部21、31を有する板状体で、第2図
(ロ)(ハ)に示す如く2種例示されている。これらフ
ィン2、3は、上記同様のセラミック原料を金型プレス
成型して後焼成処理して得たもので、或いは市販の銅板
を打ち抜き加工して得たものである。
(Example) Next, an example is described. FIGS. 2 (A), (B) and (C) show the shapes of the pipes and fins constituting the heat exchanger of the present invention. The pipe 1 has an outer diameter of about 16 mm, and is kneaded by adding a proper amount of a sintering aid and a binder to a ceramic raw material such as silicon carbide or aluminum nitride, and kneading the kneaded product from a predetermined mold into a cylinder. It is obtained by extruding into a shape and firing the molded body in an atmosphere suitable for each ceramic body, or a commercially available copper tube cut into a predetermined size. The fins 2 and 3 are plate-like bodies having substantially semi-circular cutouts 21 and 31 that can hold the outer periphery of the pipe 1, and two types are illustrated as shown in FIG. 2 (b) and (c). There is. These fins 2 and 3 are obtained by press-molding a ceramic raw material similar to the above and subjecting it to post-firing, or by punching a commercially available copper plate.

上記パイプ1の周体には前記の如く活性金属層が被着
形成され、上記フィン2、3と共に第3図に示すカーボ
ン製組立治具4内に配置され、真空加熱処理に供され
る。即ち、該組立治具4はカーボン製の枠材により上面
開放の箱型に枠組されたものであり、その内底面及び両
側内面にはフィンを等間隔で立設する為の多数の平行な
溝41…が等間隔で凹設されている。第2図(ロ)に示す
フィン2をその切欠部21が上向きになるよう該溝41…に
順次嵌合立設し、切欠部21の一連的連なりによって形成
された凹部に上記パイプ1を横架させ、更に第2図
(ハ)に示す中間フィン3を側部の溝41…間に挿入させ
ると共に下辺の切欠部31によって既に横架されているパ
イプ1の周体を抱持するよう定置させる。次いでこのフ
ィン3の上辺に形成された切欠部31による凹所に別のパ
イプ1を横架させ、同要領で別のフィン3を天地逆にし
て定置させると共に別のパイプ1をその上に横架させた
後、最後に最下部と同様のフィン2を天地逆にして溝41
…間に挿入保持させる。この状態では各パイプ1…は上
下に平行で且つ間隔保持され、またフィン2…、3…は
パイプ1…に直交状態で且つ互いに平行状態で保持され
る。尚、パイプ1が途中で撓んだりする場合は、中間に
別に準備したスペーサー(不図示)を介在させることは
可能である。
An active metal layer is formed on the peripheral body of the pipe 1 as described above, and is placed in the carbon assembly jig 4 shown in FIG. 3 together with the fins 2 and 3 and subjected to vacuum heat treatment. That is, the assembling jig 4 is framed by a carbon frame material in a box shape having an open upper surface, and a large number of parallel grooves for vertically arranging fins on the inner bottom surface and both inner surfaces thereof are provided. 41 ... are recessed at equal intervals. The fins 2 shown in FIG. 2 (b) are successively fitted and set up in the grooves 41 so that the cutouts 21 face upward, and the pipe 1 is laterally placed in the recesses formed by a series of cutouts 21. The intermediate fin 3 shown in FIG. 2 (c) is inserted into the groove 41 of the side portion, and the peripheral portion of the pipe 1 which is already crossed by the cutout portion 31 on the lower side is held. Let Next, another pipe 1 is placed horizontally in the recess formed by the notch 31 formed on the upper side of the fin 3, and another fin 3 is placed upside down in the same manner and the other pipe 1 is placed on top of it. After mounting, the fin 2 similar to the bottom is turned upside down and the groove 41
… Insert and hold in between. In this state, the pipes 1 ... Are held parallel to each other in the vertical direction, and the fins 2 ... 3 are held in the pipes 1 ... When the pipe 1 bends in the middle, it is possible to interpose a separately prepared spacer (not shown) in the middle.

このようにして調製された構造体をそのまま上記条件
下で加熱処理すると、パイプ1…の周体に被着形成され
た活性金属が融解し、パイプ1…とフィン2…、3…と
が融着し、その硬化と共にこれらが強固に接合一体とさ
れ、爾後組立治具4を取外すと第1図に示す如き熱交換
器が得られる。
When the structure thus prepared is heat-treated as it is under the above-mentioned conditions, the active metal adhered to the peripheral body of the pipe 1 ... Is melted, and the pipe 1 ... And the fins 2 ... When they are attached and hardened, they are firmly joined and integrated. After that, when the assembling jig 4 is removed, a heat exchanger as shown in FIG. 1 is obtained.

第1図の熱交換器は、上下平行に均等配置された5本
のパイプ1…を4種(実質的に2種)のフィン2…、3
…で上下よりはさみ込むよう固定一体としたものであ
る。該熱交換器のパイプ1…及びフィン2…、3…の低
温側の上部を銅製とし、高温側の下部を窒化アルミニウ
ムセラミックスとして構成し、第4図に示すハニカム構
造体による熱交換器と、同一諸元と同一条件で熱交換効
率を測定したところ、前者の方が約10%程熱交換効率が
良く、また熱交換媒体の通路抵抗が小さいことにより媒
体供給用ファンの回転数が大幅に下がり、機器騒音の低
下にもつながることが確認された。亦、本発明の熱交換
器は、熱分布が小さくバーナーを近付けることが可能で
あることも確認された。
The heat exchanger of FIG. 1 includes five pipes 1 ... Which are evenly arranged in parallel in the vertical direction and four types (substantially two types) of fins 2 ,.
It is fixed and integrated so that it is sandwiched from above and below. The heat exchanger has pipes 1 ... And fins 2 ... 3 ... made of copper on the low temperature side, and a lower part of the high temperature side is made of aluminum nitride ceramics. When the heat exchange efficiency was measured under the same specifications and under the same conditions, the former had a better heat exchange efficiency of about 10%, and the passage resistance of the heat exchange medium was smaller, so the rotation speed of the medium supply fan was significantly higher It was also confirmed that it would lower the equipment noise. It was also confirmed that the heat exchanger of the present invention has a small heat distribution and can be brought closer to the burner.

(発明の効果) 叙上の如く、本発明の熱交換器は、パイプのフィンと
を高熱伝導性セラミックスと銅とにより構成され、且つ
板状フィンがパイプに直交且つ互いに平行となるよう装
着されているから熱交換媒体の流通抵抗が小さく、高温
下でも十分耐用出来ると共に熱交換効率が極めて大であ
る。亦、熱分布が小さく、特に低温側の上部を銅製で、
高温側の下部を上記高熱伝導性セラミックスで構成して
あるので、高温下に晒しても熱分布は小さく、バーナー
容量を大とし或いはバーナーを近付けることも可能とな
り、熱交換器のコンパクト化に寄与すると共に、逆に大
型化にも対応が可能となる。
(Effects of the Invention) As described above, in the heat exchanger of the present invention, the fins of the pipe are made of high thermal conductive ceramics and copper, and the plate-shaped fins are mounted so as to be orthogonal to and parallel to the pipe. Therefore, the flow resistance of the heat exchange medium is small, the heat exchange medium can withstand high temperatures sufficiently, and the heat exchange efficiency is extremely large. Also, the heat distribution is small, especially the upper part on the low temperature side is made of copper,
Since the lower part on the high temperature side is composed of the above high thermal conductivity ceramics, the heat distribution is small even when exposed to high temperature, the burner capacity can be increased or the burner can be brought closer, contributing to the compactification of the heat exchanger. On the contrary, it becomes possible to cope with the increase in size.

一方、本発明の製造方法においては、組立に対し、上
面を開放とし、内底面及び両側内面に多数の平行な溝を
等間隔で凹設した組立治具を用い、この組立治具内に所
定の位置関係を保つようにパイプとフィンとを順次積み
重ねるようにしたことから、本発明の熱交換機を構成す
る複数の上下平行なパイプと、該パイプに直交状態で且
つ該パイプを間隔保持するよう互いに平行に配設された
多数の板状フィンと、からなる構造体に簡単に組み立て
ることができ、パイプに予め被着形成された活性金属層
の加熱融着によりパイプとフィンとを接合一体としてい
るから、両者を強固に一体化でき、高精度で高性能な熱
交換器を提供することが出来る。
On the other hand, in the manufacturing method of the present invention, an upper surface of the assembly jig is opened, and a plurality of parallel grooves are formed in the inner bottom surface and the inner surfaces of both sides at equal intervals for assembly. Since the pipes and the fins are sequentially stacked so as to maintain the positional relationship between the pipes, a plurality of upper and lower parallel pipes constituting the heat exchanger of the present invention and the pipes are orthogonal to the pipes and the pipes are held at intervals. It can be easily assembled into a structure consisting of a large number of plate-shaped fins arranged in parallel with each other, and the pipe and the fin are integrally joined by heat fusion of the active metal layer previously formed on the pipe. Therefore, both can be firmly integrated, and a highly accurate and high-performance heat exchanger can be provided.

このように本発明は給湯装置やラジエーターへの適正
の増大を約束させるものであり、その価値は極めて大で
ある。
As described above, the present invention promises to increase the suitability for the water heater and the radiator, and its value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明熱交換器の一例を示す全体斜視図、第2
図は同熱交換器を構成するパイプとフィンの斜視図、第
3図は同熱交換器を製造する為の治具の斜視図、第4図
及び第5図は従来の熱交換器の斜視図である。 (符号の説明) 1……パイプ、2、3……フィン、4……組立治具。
FIG. 1 is an overall perspective view showing an example of the heat exchanger of the present invention, and FIG.
Fig. 3 is a perspective view of pipes and fins constituting the heat exchanger, Fig. 3 is a perspective view of a jig for manufacturing the heat exchanger, and Figs. 4 and 5 are perspective views of a conventional heat exchanger. It is a figure. (Explanation of symbols) 1 ... Pipe, 2 ... 3 Fin, 4 ... Assembly jig.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−70035(JP,A) 特開 昭53−113742(JP,A) 実開 昭62−160172(JP,U) 実開 昭63−5339(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 62-70035 (JP, A) JP 53-113742 (JP, A) Actual opening 62-160172 (JP, U) Actual opening 63- 5339 (JP, U)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数の上下平行な熱交換媒体流通パイプ
と、該パイプに直交状態で且つ該パイプを間隔保持する
ように互いに平行に装着された多数の板状フィンとより
成り、低温側の上部のパイプ及びフィンを銅製とし、高
温側の下部のパイプ及びフィンを炭化珪素若しくは窒化
アルミニウム等の高熱伝導性セラミックス製とすると共
に、上記パイプとフィンとを活性金属層により接合一体
化したことを特徴とする熱交換器。
1. A low-temperature side comprising a plurality of heat-exchange-medium distribution pipes which are parallel to each other in the vertical direction, and a large number of plate-shaped fins which are mounted in parallel to each other in a state orthogonal to the pipes and hold the pipes at intervals. The upper pipe and fin are made of copper, the lower pipe and fin on the high temperature side are made of high thermal conductive ceramics such as silicon carbide or aluminum nitride, and the pipe and fin are joined and integrated by an active metal layer. Characteristic heat exchanger.
【請求項2】複数の熱交換媒体流通パイプ及び多数の板
状フィンの一部を炭化珪素若しくは窒化アルミニウム等
の高熱伝導性セラミックスで、他のパイプ及び多数のフ
ィンを銅によりそれぞれ形成し、上面を開放した組立治
具の内底面及び両側内面に等間隔で凹設した多数の平行
な溝に上記フィンをそれぞれ立設した後にこれらのフィ
ンに直交するよう周体に活性金属層を被着形成した前記
パイプをそれぞれ配置するようにしてフィンとパイプと
を順次積み重ねることにより、複数の上下平行なパイプ
に多数の板状フィンを直交状態で且つ該パイプを間隔保
持するように互いに平行に配設し且つ上記のパイプ及び
フィンの一部を炭化珪素若しくは窒化アルミニウム等の
高熱伝導性セラミックス製とし、他のパイプ及びフィン
を銅製とした構造体に組立し、次いで、この構造体を10
-3〜10-5torrの減圧雰囲気下で800〜1000℃で加熱する
ことにより、上記活性金属層の熱融着によりパイプとフ
ィンとを接合一体とした熱交換器の製造方法。
2. A plurality of heat exchange medium distribution pipes and a large number of plate-shaped fins are partially formed of high thermal conductive ceramics such as silicon carbide or aluminum nitride, and the other pipes and a large number of fins are formed of copper, respectively. After the fins are erected in a large number of parallel grooves recessed at equal intervals on the inner bottom surface and both inner surfaces of the open assembly jig, an active metal layer is formed on the peripheral body so as to be orthogonal to these fins. By sequentially stacking the fins and the pipes by arranging the above-mentioned pipes, a large number of plate-like fins are arranged in parallel in a plurality of vertically parallel pipes so as to hold the pipes in an orthogonal state. In addition, a structure in which some of the above pipes and fins are made of high thermal conductive ceramics such as silicon carbide or aluminum nitride, and other pipes and fins are made of copper Was assembled, then this structure 10
A method for producing a heat exchanger in which a pipe and a fin are integrally joined by heat fusion of the active metal layer by heating at 800 to 1000 ° C. under a reduced pressure atmosphere of −3 to 10 −5 torr.
JP63216968A 1988-08-31 1988-08-31 Heat exchanger and manufacturing method thereof Expired - Fee Related JP2682849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63216968A JP2682849B2 (en) 1988-08-31 1988-08-31 Heat exchanger and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63216968A JP2682849B2 (en) 1988-08-31 1988-08-31 Heat exchanger and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0268495A JPH0268495A (en) 1990-03-07
JP2682849B2 true JP2682849B2 (en) 1997-11-26

Family

ID=16696742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63216968A Expired - Fee Related JP2682849B2 (en) 1988-08-31 1988-08-31 Heat exchanger and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2682849B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3067399B2 (en) * 1992-07-03 2000-07-17 株式会社日立製作所 Semiconductor cooling device
US5653042A (en) * 1995-07-21 1997-08-05 Besnard; Rene Apparatus for drying crop materials
US20170131046A1 (en) * 2015-11-09 2017-05-11 Electro-Motive Diesel, Inc. Foul-resistant heat exhanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113742A (en) * 1977-03-16 1978-10-04 Toyo Radiator Kk Manufacture of heat exchanger
JPS6270042A (en) * 1985-09-24 1987-03-31 旭硝子株式会社 Structure made of ceramics
JPH0449513Y2 (en) * 1986-04-01 1992-11-20
JPS635339U (en) * 1986-06-25 1988-01-14

Also Published As

Publication number Publication date
JPH0268495A (en) 1990-03-07

Similar Documents

Publication Publication Date Title
US4928756A (en) Heat dissipating fin and method for making fin assembly
US6306673B1 (en) Thermoelectric conversion module and method of manufacturing the same
US8860210B2 (en) Semiconductor device
JPS6139587A (en) Thermoelectric converter and holder
CA2002319A1 (en) Positive-temperature-coefficient heating device and process for fabricating the same
JPH04200B2 (en)
US4306426A (en) Thermoelectric heat exchanger assembly for transferring heat between a gas and a second fluid
CN116263309A (en) Three-dimensional heat transfer device
JPH0233977Y2 (en)
JP2682849B2 (en) Heat exchanger and manufacturing method thereof
JPS6132820B2 (en)
US7659110B2 (en) DNA amplification device
JPS60243484A (en) Heat exchanger
JP4297060B2 (en) Thermoelectric converter
US20090301538A1 (en) Thermoelectric module
JPS62233691A (en) Heat exchanger
JPH02150691A (en) Honeycomb heat exchanger and its manufacturing method
JP2709709B2 (en) Manufacturing method of ceramic heat exchanger
JPH03231446A (en) Semiconductor element for power use
US9151546B2 (en) Heat exchanger assembly
KR102318527B1 (en) Manufacturing method of cooling block and coolant flow plate for cooling block applied to radiator
JP2003222489A (en) Cross flow type multilayer countercurrent heat exchanger
GB2426042A (en) Plate fin heat exchanger assembly
TWM661661U (en) Horizontal heat transfer device
JPS6131800B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees