[go: up one dir, main page]

JP2682729B2 - Refrigerant heating type air conditioner and starting method thereof - Google Patents

Refrigerant heating type air conditioner and starting method thereof

Info

Publication number
JP2682729B2
JP2682729B2 JP19332790A JP19332790A JP2682729B2 JP 2682729 B2 JP2682729 B2 JP 2682729B2 JP 19332790 A JP19332790 A JP 19332790A JP 19332790 A JP19332790 A JP 19332790A JP 2682729 B2 JP2682729 B2 JP 2682729B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
valve
outdoor heat
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19332790A
Other languages
Japanese (ja)
Other versions
JPH0480560A (en
Inventor
幸男 渡辺
澤井  清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19332790A priority Critical patent/JP2682729B2/en
Publication of JPH0480560A publication Critical patent/JPH0480560A/en
Application granted granted Critical
Publication of JP2682729B2 publication Critical patent/JP2682729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、室外熱交換側に燃焼バーナを有する冷媒加
熱器を備えた冷媒加熱式空気調和機に関するものであ
る。
TECHNICAL FIELD The present invention relates to a refrigerant heating type air conditioner provided with a refrigerant heater having a combustion burner on the outdoor heat exchange side.

従来の技術 従来より提案されている冷媒加熱式空気調和機(たと
えば特公昭59−33817号公報)は第5図に示すような構
成を有している。第5図において、81は圧縮機、82は四
方弁、83は室内熱交換器、84は減圧機構、85は室外熱交
換器で、これらが環状に連結されて冷凍サイクルが構成
されている。86は第1の電磁弁87を介して冷凍サイクル
に並設された冷媒加熱器で、この冷媒加熱器86は冷媒を
加熱するバーナー等の加熱源86aを備えている。88は減
圧機構84を制御する第2の電磁弁である。89は圧縮機81
の吐出管と吸入管との連通を制御する第3の電磁弁であ
る。
2. Description of the Related Art A conventional refrigerant heating type air conditioner (for example, Japanese Examined Patent Publication No. 59-33817) has a structure shown in FIG. In FIG. 5, 81 is a compressor, 82 is a four-way valve, 83 is an indoor heat exchanger, 84 is a pressure reducing mechanism, and 85 is an outdoor heat exchanger, which are annularly connected to form a refrigeration cycle. Reference numeral 86 is a refrigerant heater arranged in parallel in the refrigeration cycle via the first electromagnetic valve 87, and this refrigerant heater 86 is equipped with a heating source 86a such as a burner for heating the refrigerant. Reference numeral 88 is a second solenoid valve that controls the pressure reducing mechanism 84. 89 is a compressor 81
Is a third solenoid valve that controls the communication between the discharge pipe and the suction pipe.

発明が解決しようとする課題 しかしながら、従来より提案されている冷媒加熱式空
気調和機には以下のような問題があつた。すなわち、第
5図の構成では冷媒加熱運転を行う場合、冷媒は圧縮機
81、四方弁82、室内熱交換器83、第1の電磁弁87を通
り、冷媒加熱器86へ流入して圧縮機81へ戻るサイクル
と、圧縮機81から第3の電磁弁89を通り圧縮機81へ戻る
サイクルの2つのサイクルを構成する。このとき、第2
の電磁弁88は閉じられているため、冷媒は室外熱交換器
85を通らない。つまり、冷媒加熱器86を用いた冷媒加熱
運転時は、第1の電磁弁87を開、第2の電磁弁88を閉、
第3の電磁弁89を開とし、室外熱交換器85に冷媒が流入
しないような冷凍サイクルを形成する。ここで、冷媒加
熱器86を用いた冷媒加熱運転を始動する場合、冷媒加熱
運転の起動と同時に第1の電磁弁87を開、第2の電磁弁
88を閉、第3の電磁弁89を開とすると、室外熱交換器85
やその近傍の配管中に溜つている冷媒はそのまま閉じ込
められてしまい、その結果、冷媒加熱運転を行つている
冷凍サイクル中の冷媒量が不足し、所定の冷媒加熱運転
を得ることができないばかりか暖房能力の低下や一部の
冷媒の急激な温度上昇を生じさせる。したがつて冷媒加
熱運転を起動する場合は、起動と同時に電磁弁87、88、
89を全て一定時間閉じ、室外熱交換器85やその近傍の配
管中に溜り込んだ冷媒を冷媒加熱運転を行う冷凍サイク
ル中に回収する冷媒回収運転が必要となる。このため暖
房立上り時間が長いという問題があつた。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, the conventionally proposed refrigerant heating type air conditioner has the following problems. That is, in the configuration of FIG. 5, when the refrigerant heating operation is performed, the refrigerant is the compressor.
81, a four-way valve 82, an indoor heat exchanger 83, a first electromagnetic valve 87, a cycle of flowing into the refrigerant heater 86 and returning to the compressor 81, and compression from the compressor 81 through a third electromagnetic valve 89. It constitutes two cycles of the return to the aircraft 81. At this time, the second
Since the solenoid valve 88 of the
Do not pass 85. That is, during the refrigerant heating operation using the refrigerant heater 86, the first solenoid valve 87 is opened and the second solenoid valve 88 is closed.
The third solenoid valve 89 is opened to form a refrigeration cycle in which the refrigerant does not flow into the outdoor heat exchanger 85. Here, when the refrigerant heating operation using the refrigerant heater 86 is started, the first solenoid valve 87 is opened at the same time as the start of the refrigerant heating operation, and the second solenoid valve is opened.
When 88 is closed and the third solenoid valve 89 is opened, the outdoor heat exchanger 85
The refrigerant accumulated in the pipes in the vicinity of it or in the vicinity of it is confined as it is, and as a result, the amount of refrigerant in the refrigeration cycle in which the refrigerant heating operation is being performed is insufficient, and not only the prescribed refrigerant heating operation cannot be obtained. It causes a decrease in heating capacity and a sharp rise in temperature of some refrigerants. Therefore, when starting the refrigerant heating operation, the solenoid valves 87, 88,
It is necessary to perform a refrigerant recovery operation in which all 89 are closed for a certain period of time and the refrigerant that has accumulated in the outdoor heat exchanger 85 and the pipes in the vicinity thereof is recovered during a refrigeration cycle in which a refrigerant heating operation is performed. Therefore, there is a problem that the heating rise time is long.

さらに、冷媒加熱運転中、暖房の熱源はバーナー等の
加熱源により供給され、圧縮機81は冷媒を循環させる仕
事のみを行つている。しかしながら圧縮機81は低負荷で
運転しても電気入力が高いという問題があつた。
Further, during the refrigerant heating operation, the heat source for heating is supplied by a heat source such as a burner, and the compressor 81 performs only the work of circulating the refrigerant. However, the compressor 81 has a problem that the electric input is high even when the compressor 81 is operated under a low load.

また暖房起動時、冷媒ポンプを使用したとき、冷媒ポ
ンプ周辺に多量の冷媒ガスが存在するような場合、冷媒
ポンプの排除容積は小さいので、冷媒ポンプ単独で冷媒
をすみやかに循環させ始めることが難しいという問題が
あつた。また、始動時に冷媒ポンプがいつも冷媒ガスを
吸い込むと、摺動部が摩耗してしまうという問題も生じ
ていた。
When a large amount of refrigerant gas is present around the refrigerant pump when the refrigerant pump is used at the time of heating start-up, the refrigerant pump has a small displacement volume, so it is difficult for the refrigerant pump to start circulating the refrigerant immediately. There was a problem. Further, if the refrigerant pump always sucks the refrigerant gas at the time of starting, there is a problem that the sliding portion is worn.

本発明は上記問題に鑑み、より良好な立上り特性を有
し、電気入力を低減できる冷媒加熱式空気調和機を提供
することを目的とするものである。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a refrigerant heating type air conditioner that has better start-up characteristics and can reduce electric input.

課題を解決するための手段 上記課題を解決するために、本発明の冷媒加熱式空気
調和機は、少なくとも圧縮機、四方弁、室外熱交換器、
減圧機構、室内熱交換器、冷媒ポンプ、冷媒加熱器を備
え、前記冷媒ポンプと前記冷媒加熱器と前記四方弁と前
記室内熱交換器と前記室外熱交換器を順次環状に配管接
続し、前記室内熱交換器と前記室外熱交換器をつなぐ配
管の一部に前記室内熱交換器から前記室外熱交換器への
方向にのみ冷媒の流通を可能にする第1の逆止弁を設
け、前記室外熱交換器と前記冷媒ポンプの間に第1の電
磁弁を設け、前記冷媒加熱器と前記四方弁をつなぐ配管
の一部に前記冷媒加熱器から前記四方弁への方向にのみ
冷媒の流通を可能にする第2の逆止弁を設け、前記第2
の逆止弁の入口側と出口側をそれぞれ第2、第3の電磁
弁を介して前記圧縮機の吸入側と吐出側に接続し、さら
に前記圧縮機の吸入側を第4の電磁弁および前記四方弁
を順次経由し、前記室外熱交換器と前記第1の電磁弁と
を結ぶ配管に接続して冷房用回路を構成し、前記第1の
逆止弁と逆向きの第3の逆止弁およびこの第3の逆止弁
と直列に接続した減圧機構を前記第1の逆止弁に並列に
接続したものである。
Means for Solving the Problems In order to solve the above problems, the refrigerant heating type air conditioner of the present invention is at least a compressor, a four-way valve, an outdoor heat exchanger,
A pressure reducing mechanism, an indoor heat exchanger, a refrigerant pump, and a refrigerant heater are provided, and the refrigerant pump, the refrigerant heater, the four-way valve, the indoor heat exchanger, and the outdoor heat exchanger are sequentially connected in a ring by pipes, A first check valve that allows a refrigerant to flow only in a direction from the indoor heat exchanger to the outdoor heat exchanger is provided in a part of a pipe connecting the indoor heat exchanger and the outdoor heat exchanger, and A first solenoid valve is provided between the outdoor heat exchanger and the refrigerant pump, and the refrigerant flows only in a direction from the refrigerant heater to the four-way valve in a part of a pipe connecting the refrigerant heater and the four-way valve. A second check valve for enabling
The check valve has an inlet side and an outlet side connected to the suction side and the discharge side of the compressor via second and third electromagnetic valves, respectively, and the suction side of the compressor is connected to a fourth electromagnetic valve and A cooling circuit is configured by connecting to the pipe that connects the outdoor heat exchanger and the first electromagnetic valve through the four-way valve in sequence, and a third reverse valve that is opposite to the first check valve is formed. A stop valve and a pressure reducing mechanism connected in series with the third check valve are connected in parallel with the first check valve.

さらに、本発明は、上記構成において、第1の逆止弁
と室外熱交換器を結ぶ配管の途中に気液分離器を設け、
前記気液分離器のガス側出口と室外熱交換器、第1の電
磁弁を順次接続し、さらに前記気液分離器の液側出口を
第5の電磁弁を途中に備えた配管で前記室外熱交換器と
前記第1の電磁弁とを結ぶ配管に接続したものである。
Furthermore, the present invention is, in the above-mentioned configuration, provided with a gas-liquid separator in the middle of a pipe connecting the first check valve and the outdoor heat exchanger,
The gas side outlet of the gas-liquid separator, the outdoor heat exchanger, and the first electromagnetic valve are sequentially connected, and the liquid side outlet of the gas-liquid separator is connected to the outdoor side by a pipe provided with a fifth electromagnetic valve. The heat exchanger and the first solenoid valve are connected to a pipe.

さらに、本発明は上記それぞれの構成において、冷媒
ポンプと並列に室外熱交換器から冷媒加熱器への方向に
のみ冷媒の流通を可能にする第4の逆止弁を設けたもの
である。
Further, the present invention is, in each of the above-described configurations, provided with a fourth check valve in parallel with the refrigerant pump to allow the refrigerant to flow only in the direction from the outdoor heat exchanger to the refrigerant heater.

さらに、本発明の起動方法は、上記それぞれの冷媒加
熱式空気調和機において、冷媒加熱運転起動時に先ず圧
縮機を用いて起動し、冷凍サイクルが安定した時点で冷
媒ポンプを起動し、両者を並行して運転する過程を経た
後、圧縮機の吸入側の第2の電磁弁を閉じ、圧縮機内部
の冷媒を排出させた後に、吐出側の第3の電磁弁を閉
じ、圧縮機を停止して冷媒ポンプ単独の運転に切り換え
るものである。
Furthermore, the starting method of the present invention, in each of the refrigerant heating type air conditioners, first starts using the compressor at the time of starting the refrigerant heating operation, starts the refrigerant pump at the time when the refrigeration cycle becomes stable, and operates both in parallel. Then, the second solenoid valve on the suction side of the compressor is closed to discharge the refrigerant inside the compressor, and then the third solenoid valve on the discharge side is closed to stop the compressor. The operation is switched to the operation of the refrigerant pump alone.

作用 本発明は上記の構成により、冷媒加熱運転中も室外熱
交換器をサブクーラーとして常時利用し、熱搬送運転起
動時の冷媒回収運転を不要として暖房立上り特性を改善
できる。また、気液分離器を使用することにより、液冷
媒の冷媒ポンプへの回収を良好に維持できて、少ない冷
媒容量で十分にまかなえるとともに、液冷媒が全部室外
熱交換器を流れることによる圧力損もなくすことがで
き、また、冷媒ポンプに逆止弁を介装することにより、
始動時に冷媒ポンプがいつも冷媒ガスを吸い込み、摺動
部が摩耗してしまうという問題も解消できる。
Effect With the above-described configuration, the present invention can improve the heating start-up characteristic by constantly using the outdoor heat exchanger as a subcooler even during the refrigerant heating operation and eliminating the need for the refrigerant recovery operation when the heat transfer operation is started. Further, by using the gas-liquid separator, the recovery of the liquid refrigerant to the refrigerant pump can be well maintained, and it is possible to sufficiently cover the small refrigerant capacity, and the pressure loss caused by the liquid refrigerant flowing through the outdoor heat exchanger. It can be eliminated, and by installing a check valve in the refrigerant pump,
The problem that the refrigerant pump always sucks the refrigerant gas at the time of starting and the sliding part is worn can be solved.

また、冷媒の搬送を起動時のみ圧縮機で行い安定した
起動を計り、安定後は低電気入力の冷媒ポンプにより運
転を行うので、安価で快適な暖房性能が得られる。
In addition, since the refrigerant is conveyed by the compressor only at the time of start-up and stable start-up is performed, and after the operation is stable, the operation is performed by the refrigerant pump of low electric input, so that inexpensive and comfortable heating performance can be obtained.

実施例 以下、本発明の一実施例を図面を用いて説明する。Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例を示す冷媒加熱式空気
調和機の冷媒回路図である。第1図において、1は圧縮
機、2は四方弁、3は室内熱交換器、4は減圧機構、5
は室外熱交換器、6は冷媒加熱器、7は冷媒ポンプ、8,
9,10はそれぞれ第1、第2、第3の逆止弁、11,12,13,1
4はそれぞれ第1、第2、第3、第4の電磁弁であり、
冷媒ポンプ7と冷媒加熱器6と四方弁2と室内熱交換器
3と室外熱交換器5を順次環状に配管接続し、さらに、
室内熱交換器3と室外熱交換器5をつなぐ配管の一部に
室内熱交換器3から室外熱交換器5への方向にのみ冷媒
の流通を可能にする第1の逆止弁8を設け、さらに、室
外熱交換器5と冷媒ポンプ7の間に第1の電磁弁11を設
け、さらに、冷媒加熱器6と四方弁2をつなぐ配管の一
部に冷媒加熱器6から四方弁2への方向にのみ冷媒の流
通を可能にする第2の逆止弁9を設け、さらに、第2の
逆止弁9の入口側と出口側をそれぞれ第2、第3の電磁
弁12,13を介して圧縮機1の吸入側と吐出側に接続し、
さらに圧縮機1の吸入側を第4の電磁弁14および四方弁
2を順次経由し、室外熱交換器5と第1の電磁弁11とを
結ぶ配管に接続して冷房用回路を構成し、第1の逆止弁
8と逆向きの第3の逆止弁10およびこの第3の逆止弁と
直列に接続した減圧機構4を第1の逆止弁8に並列に接
続した構成となつている。
FIG. 1 is a refrigerant circuit diagram of a refrigerant heating type air conditioner showing a first embodiment of the present invention. In FIG. 1, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a decompression mechanism, 5
Is an outdoor heat exchanger, 6 is a refrigerant heater, 7 is a refrigerant pump,
9,10 are the first, second and third check valves respectively 11,12,13,1
4 is the first, second, third and fourth solenoid valves,
The refrigerant pump 7, the refrigerant heater 6, the four-way valve 2, the indoor heat exchanger 3, and the outdoor heat exchanger 5 are sequentially connected in an annular pipe, and further,
A first check valve 8 that allows the refrigerant to flow only in the direction from the indoor heat exchanger 3 to the outdoor heat exchanger 5 is provided in a part of a pipe connecting the indoor heat exchanger 3 and the outdoor heat exchanger 5. Further, a first electromagnetic valve 11 is provided between the outdoor heat exchanger 5 and the refrigerant pump 7, and the refrigerant heater 6 is connected to the four-way valve 2 in a part of a pipe connecting the refrigerant heater 6 and the four-way valve 2. Is provided with a second check valve 9 that allows the refrigerant to flow only in the direction of, and the inlet side and the outlet side of the second check valve 9 are provided with second and third solenoid valves 12 and 13, respectively. Connected to the suction side and the discharge side of the compressor 1 via
Further, the suction side of the compressor 1 is connected to a pipe connecting the outdoor heat exchanger 5 and the first solenoid valve 11 via the fourth solenoid valve 14 and the four-way valve 2 one after another to form a cooling circuit, The third check valve 10 opposite to the first check valve 8 and the pressure reducing mechanism 4 connected in series with the third check valve 8 are connected in parallel to the first check valve 8. ing.

次にこの構成による冷媒加熱式空気調和機の動作につ
いて説明する。冷媒加熱暖房開始時、第1の電磁弁11は
開、第2の電磁弁12は開、第3の電磁弁13は開、第4の
電磁弁14は閉、となつている。この状態で圧縮機1を起
動すると、圧縮機1より吐出された冷媒は第3の電磁弁
13、四方弁2、室内熱交換器3、第1の逆止弁8、室外
熱交換器5、第1の電磁弁11、冷媒ポンプ7、冷媒加熱
器6、第2の電磁弁12を経て圧縮機1へもどる回路を循
環する。このとき、冷媒ポンプ7はその内部を冷媒が通
過できる構成である。バーナー等により冷媒加熱器6内
で加熱された冷媒は室内熱交換器3で室内空気と熱交換
(暖房)し、大部分が凝縮する。凝縮しきれなかつた冷
媒が室外熱交換器5で凝縮し、冷媒加熱器6にもどつて
くる。起動後数分でサイクルが安定したら、先ず冷媒ポ
ンプ7を起動し、冷媒ポンプ7の回転数を調整し、圧縮
器1との併用運転を行い、次に圧縮機1の停止操作を行
う。つまり、圧縮機1の吸入側にある第2の電磁弁12を
閉じる。すると圧縮機1は運転を継続しているため圧縮
機内部の冷媒を吐出する。その後圧縮機1の吐出側にあ
る第3の電磁弁13を閉じ同時に圧縮機1も停止する。す
ると冷媒は冷媒ポンプ7から冷媒加熱器6、第2の逆止
弁9、四方弁2、室内熱交換器3、第1の逆止弁8、室
外熱交換器5、第1の電磁弁11を順次循環するようにな
る。これにより、冷媒回収運転の必要がなくなり、ま
た、低電気入力の冷媒加熱暖房回路が実現される。
Next, the operation of the refrigerant heating type air conditioner having this configuration will be described. At the start of refrigerant heating and heating, the first solenoid valve 11 is open, the second solenoid valve 12 is open, the third solenoid valve 13 is open, and the fourth solenoid valve 14 is closed. If the compressor 1 is started in this state, the refrigerant discharged from the compressor 1 will be discharged by the third solenoid valve.
13, through the four-way valve 2, the indoor heat exchanger 3, the first check valve 8, the outdoor heat exchanger 5, the first electromagnetic valve 11, the refrigerant pump 7, the refrigerant heater 6, the second electromagnetic valve 12 The circuit returning to the compressor 1 circulates. At this time, the refrigerant pump 7 is configured to allow the refrigerant to pass through it. The refrigerant heated in the refrigerant heater 6 by the burner or the like exchanges heat (heats) with the indoor air in the indoor heat exchanger 3, and most of the refrigerant is condensed. The refrigerant that could not be condensed is condensed in the outdoor heat exchanger 5 and returns to the refrigerant heater 6. When the cycle becomes stable within a few minutes after starting, first the refrigerant pump 7 is started, the rotation speed of the refrigerant pump 7 is adjusted, the combined operation with the compressor 1 is performed, and then the operation of stopping the compressor 1 is performed. That is, the second solenoid valve 12 on the suction side of the compressor 1 is closed. Then, since the compressor 1 continues to operate, the refrigerant inside the compressor is discharged. After that, the third solenoid valve 13 on the discharge side of the compressor 1 is closed and at the same time the compressor 1 is stopped. Then, the refrigerant flows from the refrigerant pump 7 to the refrigerant heater 6, the second check valve 9, the four-way valve 2, the indoor heat exchanger 3, the first check valve 8, the outdoor heat exchanger 5, and the first solenoid valve 11. Will be cycled sequentially. This eliminates the need for the refrigerant recovery operation and realizes a refrigerant heating and heating circuit with low electric input.

冷房運転については第1の電磁弁11を閉、第2の電磁
弁12を開、第3の電磁弁13を開、第4の電磁弁14を開に
し、四方弁2を切り換えるだけで通常の回路構成と同様
であるので説明を省略する。
For cooling operation, the first solenoid valve 11 is closed, the second solenoid valve 12 is opened, the third solenoid valve 13 is opened, the fourth solenoid valve 14 is opened, and the four-way valve 2 is simply switched to the normal operation. Since the circuit configuration is the same as the circuit configuration, the description thereof is omitted.

第2図は本発明の第2の実施例を示す冷媒加熱式空気
調和機の冷媒回路図である。第2図において、21は圧縮
機、22は四方弁、23は室内熱交換器、24は減圧機構、25
は室外熱交換器、26は冷媒加熱器、27は冷媒ポンプ、2
8,29,30,31はそれぞれ第1、第2、第3、第4の逆止
弁、32,33,34,35はそれぞれ第1、第2、第3、第4の
電磁弁であり、冷媒ポンプ27と冷媒加熱器26と四方弁22
と室内熱交換器23と室外熱交換器25を順次環状に配管接
続し、さらに、室内熱交換器23と室外熱交換器25をつな
ぐ配管の一部に室内熱交換器23から室外熱交換器25への
方向にのみ冷媒の流通を可能にする第1の逆止弁28を設
け、さらに、室外熱交換器25と冷媒ポンプ27の間に第1
の電磁弁32を設け、さらに、冷媒加熱器26と四方弁22を
つなぐ配管の一部に冷媒加熱器26から四方弁22への方向
にのみ冷媒の流通を可能にする第2の逆止弁29を設け、
さらに、第2の逆止弁29の入口側出口側をそれぞれ第
2、第3の電磁弁33,34を介して圧縮機21の吸入側と吐
出側に接続し、さらに圧縮機21の吸入側を第4の電磁弁
35および四方弁22を順次経由し、室外熱交換器25と第1
の電磁弁32とを結ぶ配管に接続して冷房用回路を構成
し、第1の逆止弁28と逆向きの第3の逆止弁30およびこ
の第3の逆止弁と直列に接続した減圧機構24を第1の逆
止弁28に並列に接続し、さらに、室外熱交換器25から冷
媒加熱器26への方向にのみ冷媒の流通を可能にする第4
の逆止弁31を冷媒ポンプ27に並列に設けた構成となつて
いる。動作については、冷媒ポンプ27が冷媒ガスを吸い
込まないこと以外は上記第1の実施例と同様であるので
説明を省略する。
FIG. 2 is a refrigerant circuit diagram of a refrigerant heating type air conditioner showing a second embodiment of the present invention. In FIG. 2, 21 is a compressor, 22 is a four-way valve, 23 is an indoor heat exchanger, 24 is a decompression mechanism, and 25
Is an outdoor heat exchanger, 26 is a refrigerant heater, 27 is a refrigerant pump, 2
8,29,30,31 are the first, second, third and fourth check valves respectively, and 32,33,34,35 are the first, second, third and fourth solenoid valves respectively. , Refrigerant pump 27, refrigerant heater 26 and four-way valve 22
And the indoor heat exchanger 23 and the outdoor heat exchanger 25 are sequentially connected in an annular pipe, and further, the indoor heat exchanger 23 to the outdoor heat exchanger are connected to a part of the pipe connecting the indoor heat exchanger 23 and the outdoor heat exchanger 25. A first check valve 28 that allows the flow of the refrigerant only in the direction toward 25 is provided, and further, a first check valve 28 is provided between the outdoor heat exchanger 25 and the refrigerant pump 27.
And a second check valve for allowing the refrigerant to flow only in the direction from the refrigerant heater 26 to the four-way valve 22 in a part of the pipe connecting the refrigerant heater 26 and the four-way valve 22. 29,
Further, the inlet side and outlet side of the second check valve 29 are connected to the suction side and the discharge side of the compressor 21 via the second and third electromagnetic valves 33 and 34, respectively, and the suction side of the compressor 21 is further connected. The fourth solenoid valve
The outdoor heat exchanger 25 and the first
To form a cooling circuit by connecting the solenoid valve 32 to a solenoid valve 32, and connected in series with the first check valve 28, a third check valve 30 in the opposite direction, and the third check valve. The pressure reducing mechanism 24 is connected in parallel to the first check valve 28, and further, the refrigerant is allowed to flow only in the direction from the outdoor heat exchanger 25 to the refrigerant heater 26.
The check valve 31 is provided in parallel with the refrigerant pump 27. The operation is the same as that of the first embodiment except that the refrigerant pump 27 does not suck the refrigerant gas, and the description thereof will be omitted.

第3図は本発明の第3の実施例を示す冷媒加熱式空気
調和機の冷媒回路図である。第3図において、41は圧縮
機、42は四方弁、43は室内熱交換器、44は減圧機構、45
は室外熱交換器、46は冷媒加熱器、47は冷媒ポンプ、48
は気液分離器、49,50,51はそれぞれ第1、第2、第3の
逆止弁、53,54,55,56,57はそれぞれ第1、第2、第3、
第4、第5の電磁弁であり、冷媒ポンプ47と冷媒加熱器
46と四方弁42と室内熱交換器43と気液分離器48と第5の
電磁弁57を順次環状に配管接続し、さらに、気液分離器
48のガス側出口を途中に室外熱交換器45を備えた配管で
第5の電磁弁57と冷媒ポンプ47をつなぐ配管に接続し、
さらに、室内熱交換器43と気液分離器48をつなぐ配管の
一部に室内熱交換器43から気液分離器48への方向にのみ
冷媒の流通を可能にする第1の逆止弁49を設け、さら
に、室外熱交換器45と第5の電磁弁57の交点と冷媒ポン
プ47の間に第1の電磁弁53を設け、さらに、冷媒加熱器
46と四方弁42をつなぐ配管の一部に冷媒加熱器46から四
方弁42への方向にのみ冷媒の流通を可能にする第2の逆
止弁50を設け、さらに、第2の逆止弁50の入口側と出口
側をそれぞれ第2、第3の電磁弁54,55を介して圧縮機4
1の吸入側と吐出側に接続し、さらに圧縮機41の吸入側
を第4の電磁弁56および四方弁42を順次経由し、室外熱
交換器45と第5の電磁弁57の交点と第1の電磁弁53とを
結ぶ配管に接続して冷房用回路を構成し、第1の逆止弁
49と逆向きの第3の逆止弁51およびこの第3の逆止弁と
直列に接続した減圧機構44を第1の逆止弁49に並列に接
続した構成となつている。
FIG. 3 is a refrigerant circuit diagram of a refrigerant heating type air conditioner showing a third embodiment of the present invention. In FIG. 3, 41 is a compressor, 42 is a four-way valve, 43 is an indoor heat exchanger, 44 is a pressure reducing mechanism, and 45 is
Is an outdoor heat exchanger, 46 is a refrigerant heater, 47 is a refrigerant pump, 48
Is a gas-liquid separator, 49, 50 and 51 are first, second and third check valves respectively, and 53, 54, 55, 56 and 57 are first, second and third respectively.
The fourth and fifth solenoid valves, the refrigerant pump 47 and the refrigerant heater.
46, the four-way valve 42, the indoor heat exchanger 43, the gas-liquid separator 48, and the fifth electromagnetic valve 57 are sequentially connected in an annular pipe, and the gas-liquid separator is further connected.
The gas side outlet of 48 is connected to the pipe connecting the fifth solenoid valve 57 and the refrigerant pump 47 with the pipe having the outdoor heat exchanger 45 on the way.
Further, a first check valve 49 that allows the refrigerant to flow only in a direction from the indoor heat exchanger 43 to the gas-liquid separator 48 in a part of a pipe connecting the indoor heat exchanger 43 and the gas-liquid separator 48. And a first electromagnetic valve 53 between the refrigerant pump 47 and the intersection of the outdoor heat exchanger 45 and the fifth electromagnetic valve 57, and the refrigerant heater.
A second check valve 50 that allows the refrigerant to flow only in the direction from the refrigerant heater 46 to the four-way valve 42 is provided in a part of the pipe that connects the four-way valve 46 and the four-way valve 42, and the second check valve is further provided. Compressor 4 is provided on the inlet side and the outlet side of 50 through second and third solenoid valves 54 and 55, respectively.
The suction side of the compressor 41 is connected to the suction side of the compressor 41, and the suction side of the compressor 41 is sequentially passed through the fourth solenoid valve 56 and the four-way valve 42 to connect the outdoor heat exchanger 45 and the fifth solenoid valve 57 to each other. The first check valve is configured by connecting to a pipe connecting to the first solenoid valve 53 to form a cooling circuit.
The third check valve 51 and the depressurization mechanism 44 connected in series with the third check valve 51 are connected in parallel to the first check valve 49.

次にこの構成による冷媒加熱式空気調和機の動作につ
いて説明する。冷媒加熱暖房開始時、第1の電磁弁53は
開、第2の電磁弁54は開、第3の電磁弁55は開、第4の
電磁弁56は閉、第5の電磁弁57は開となつている。この
状態で圧縮機41を起動すると、圧縮機41より吐出された
冷媒は第3の電磁弁55、四方弁42、室内熱交換器43、第
1の逆止弁49、気液分離器48、第5の電磁弁57および室
外熱交換器45、第1の電磁弁53、冷媒ポンプ47、冷媒加
熱器46、第2の電磁弁54、を経て圧縮機41へもどる回路
を循環する。このとき冷媒ポンプ47はその内部を冷媒が
通過できる構成である。バーナー等により冷媒加熱器46
内で加熱された冷媒は室内熱交換器43で室内空気と熱交
換(暖房)し、大部分が凝縮する。気体と液体が混合し
た状態の冷媒が気液分離器48に入り、その内部で気体液
体が分離され、気体の溶媒は気液分離器48上部のガス管
から、また液体の冷媒は気液分離器48下部の液管から出
る。ガス冷媒は室外熱交換器45において凝縮し、気液分
離器48の液管から第5の電磁弁57をへて来た液冷媒と合
流し、冷媒ポンプ47を経由して冷媒加熱器46にもどつて
くる。起動後数分でサイクルが安定したら、先ず冷媒ポ
ンプ47を起動し、冷媒ポンプ47の回転数を調整し、圧縮
機41との併用運転を行い、次に圧縮機41の停止操作を行
う。つまり、圧縮機41の吸入側にある第2の電磁弁54を
閉じる。すると圧縮機41は運転を継続しているため圧縮
機内部の冷媒を吐出する。その後圧縮機41の吐出側にあ
る第3の電磁弁55を閉じ同時に圧縮機41も停止する。す
ると冷媒は冷媒ポンプ47から冷媒加熱器46、第2の逆止
弁50、四方弁42、室内熱交換器43、第1の逆止弁49、気
液分離器48、室外熱交換器45および第5の電磁弁57、第
1の電磁弁53よりなる回路を循環するようになる。これ
により、冷媒回収運転の必要がなくなり、また低電気入
力の冷媒加熱暖房回路が実現される。また、気液分離器
48により、液冷媒の冷媒ポンプ47への回収を良好に維持
でき、少ない溶媒容量で十分にまかなえるとともに、液
冷媒が全部室外熱交換器45を流れることによる圧力損も
解消できる。
Next, the operation of the refrigerant heating type air conditioner having this configuration will be described. At the start of refrigerant heating and heating, the first solenoid valve 53 is open, the second solenoid valve 54 is open, the third solenoid valve 55 is open, the fourth solenoid valve 56 is closed, and the fifth solenoid valve 57 is open. It is said. When the compressor 41 is started in this state, the refrigerant discharged from the compressor 41 causes the third electromagnetic valve 55, the four-way valve 42, the indoor heat exchanger 43, the first check valve 49, the gas-liquid separator 48, The circuit returning to the compressor 41 is circulated through the fifth electromagnetic valve 57, the outdoor heat exchanger 45, the first electromagnetic valve 53, the refrigerant pump 47, the refrigerant heater 46, and the second electromagnetic valve 54. At this time, the refrigerant pump 47 is configured to allow the refrigerant to pass through it. Refrigerant heater 46 by burner etc.
The refrigerant heated inside heat-exchanges (heats) with indoor air in the indoor heat exchanger 43, and most of it is condensed. The refrigerant in the state where the gas and the liquid are mixed enters the gas-liquid separator 48, and the gas-liquid is separated therein, the gas solvent is separated from the gas pipe above the gas-liquid separator 48, and the liquid refrigerant is separated into the gas-liquid. It comes out of the liquid pipe at the bottom of the container 48. The gas refrigerant is condensed in the outdoor heat exchanger 45, merges with the liquid refrigerant coming from the liquid pipe of the gas-liquid separator 48 to the fifth electromagnetic valve 57, and passes through the refrigerant pump 47 to the refrigerant heater 46. Come back. When the cycle becomes stable within a few minutes after starting, first the refrigerant pump 47 is started, the rotation speed of the refrigerant pump 47 is adjusted, the combined operation with the compressor 41 is performed, and then the operation of stopping the compressor 41 is performed. That is, the second solenoid valve 54 on the suction side of the compressor 41 is closed. Then, the compressor 41 discharges the refrigerant inside the compressor because it continues to operate. After that, the third solenoid valve 55 on the discharge side of the compressor 41 is closed, and at the same time, the compressor 41 is stopped. Then, the refrigerant flows from the refrigerant pump 47 to the refrigerant heater 46, the second check valve 50, the four-way valve 42, the indoor heat exchanger 43, the first check valve 49, the gas-liquid separator 48, the outdoor heat exchanger 45, and The circuit including the fifth solenoid valve 57 and the first solenoid valve 53 is circulated. This eliminates the need for the refrigerant recovery operation and realizes a refrigerant heating and heating circuit with low electric input. Also, gas-liquid separator
Due to 48, the recovery of the liquid refrigerant to the refrigerant pump 47 can be favorably maintained, a small solvent capacity can be sufficiently covered, and the pressure loss due to the liquid refrigerant all flowing through the outdoor heat exchanger 45 can be eliminated.

冷房運転については第1の電磁弁53を閉、第2の電磁
弁54を開、第3の電磁弁55を開、第4の電磁弁56を開、
第5の電磁弁57を閉にし、四方弁42を切り換えるだけで
通常の回路構成と同様であるので説明を省略する。
Regarding the cooling operation, the first solenoid valve 53 is closed, the second solenoid valve 54 is opened, the third solenoid valve 55 is opened, the fourth solenoid valve 56 is opened,
Since the fifth circuit is the same as the normal circuit configuration only by closing the fifth solenoid valve 57 and switching the four-way valve 42, the description is omitted.

第4図は本発明の第4の実施例を示す冷媒加熱式空気
調和機の冷媒回路図である。第4図において、61は圧縮
機、62は四方弁、63は室内熱交換器、64は減圧機構、65
は室外熱交換器、66は冷媒加熱器、67は冷媒ポンプ、68
は気液分離器、69,70,71,72はそれぞれ第1、第2、第
3、第4の逆止弁、73,74,75,76,77はそれぞれ第1、第
2、第3、第4、第5の電磁弁であり、冷媒ポンプ67と
冷媒加熱器66と四方弁62と室内熱交換器63と気液分離器
68と第5の電磁弁77を順次環状に配管接続し、さらに、
気液分離器68のガス側出口を途中に室外熱交換器65を備
えた配管で第5の電磁弁77と冷媒ポンプ67をつなぐ配管
に接続し、さらに、室内熱交換器63と気液分離器68をつ
なぐ配管の一部に室内熱交換器63から気液分離器68への
方向にのみ冷媒の流通を可能にする第1の逆止弁69を設
け、さらに、室内熱交換器65と第5の電磁弁77の交点と
冷媒ポンプ67の間に第1の電磁弁73を設け、さらに、冷
媒加熱器66と四方弁62をつなぐ配管の一部に冷媒加熱器
66から四方弁62への方向にのみ冷媒の流通を可能にする
第2の逆止弁70を設け、さらに、第2の逆止弁70の入口
側と出口側をそれぞれ第2、第3の電磁弁74,75を介し
て圧縮機61の吸入側と吐出側に接続し、さらに圧縮機61
の吸入側を第4の電磁弁76および四方弁62を順次経由
し、室外熱交換器65と第5の電磁弁77の交点と第1の電
磁弁73とを結ぶ配管に接続して冷房用回路を構成し、第
1の逆止弁69と逆向きの第3の逆止弁71およびこの第3
の逆止弁と直列に接続した減圧機構64を第1の逆止弁69
に並列に接続し、さらに、第1の電磁弁73から冷媒加熱
器66の方向へのみ冷媒を流通させる第4の逆止弁72を冷
媒ポンプ67と並列に設けた構成となつている。動作につ
いては上記第3の実施例と同様であるので説明を省略す
る。
FIG. 4 is a refrigerant circuit diagram of a refrigerant heating type air conditioner showing a fourth embodiment of the present invention. In FIG. 4, 61 is a compressor, 62 is a four-way valve, 63 is an indoor heat exchanger, 64 is a decompression mechanism, and 65
Is an outdoor heat exchanger, 66 is a refrigerant heater, 67 is a refrigerant pump, 68
Is a gas-liquid separator, 69, 70, 71 and 72 are first, second, third and fourth check valves respectively, and 73, 74, 75, 76 and 77 are respectively first, second and third , A fourth and a fifth solenoid valve, a refrigerant pump 67, a refrigerant heater 66, a four-way valve 62, an indoor heat exchanger 63, and a gas-liquid separator.
68 and the fifth solenoid valve 77 are sequentially connected in an annular pipe connection.
The gas side outlet of the gas-liquid separator 68 is connected to the pipe connecting the fifth solenoid valve 77 and the refrigerant pump 67 with a pipe having an outdoor heat exchanger 65 on the way, and further the indoor heat exchanger 63 and the gas-liquid separator are connected. A first check valve 69 that allows the refrigerant to flow only in the direction from the indoor heat exchanger 63 to the gas-liquid separator 68 is provided in a part of the pipe that connects the vessel 68, and the indoor heat exchanger 65 and The first electromagnetic valve 73 is provided between the intersection of the fifth electromagnetic valve 77 and the refrigerant pump 67, and the refrigerant heater is provided in a part of the pipe connecting the refrigerant heater 66 and the four-way valve 62.
A second check valve 70 that allows the refrigerant to flow only in the direction from the 66 to the four-way valve 62 is provided. Further, the inlet side and the outlet side of the second check valve 70 are provided with second and third sides, respectively. Connected to the suction side and discharge side of the compressor 61 via solenoid valves 74 and 75,
For cooling, the suction side of is connected to the pipe connecting the intersection of the outdoor heat exchanger 65 and the fifth solenoid valve 77 and the first solenoid valve 73 through the fourth solenoid valve 76 and the four-way valve 62 in sequence. A third check valve 71, which constitutes a circuit and is opposite to the first check valve 69, and the third check valve 71.
Of the pressure reducing mechanism 64 connected in series with the check valve of the first check valve 69.
And a fourth check valve 72 that allows the refrigerant to flow only from the first electromagnetic valve 73 to the refrigerant heater 66 in parallel with the refrigerant pump 67. The operation is the same as that of the third embodiment, so the explanation is omitted.

発明の効果 以上のように、本発明によれば、熱搬送運転起動時の
冷媒回収運転を不要とし暖房立上り特性を改善し、ま
た、冷媒の搬送を起動時のみ圧縮機で行い安定した起動
を計り、安定後は低電気入力の冷媒ポンプにより安価で
快適な暖房性能を提供できるものである。
EFFECTS OF THE INVENTION As described above, according to the present invention, the refrigerant recovery operation at the time of starting the heat transfer operation is not required to improve the heating start-up characteristic, and the transfer of the refrigerant is performed by the compressor only at the time of start-up for stable start-up. After measuring and stabilizing, a low electric input refrigerant pump can provide inexpensive and comfortable heating performance.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図、第3図、第4図はそれぞれ本発明の第
1、第2、第3、第4の実施例を示す冷媒加熱式空気調
和機の冷媒回路図、第5図は従来例を示す冷媒加熱式空
気調和機の冷媒回路図である。 1,21,41,61……圧縮機、2,22,42,62……四方弁、3,23,4
3,63……室内熱交換器、4,24,44,64……減圧機構、5,2
5,45,65……室外熱交換器、6,26,46,66……冷媒加熱
器、7,27,47,67……冷媒ポンプ、48,68……気液分離
器。
FIG. 1, FIG. 2, FIG. 3, and FIG. 4 are refrigerant circuit diagrams of a refrigerant heating type air conditioner showing the first, second, third, and fourth embodiments of the present invention, respectively, and FIG. FIG. 6 is a refrigerant circuit diagram of a refrigerant heating type air conditioner showing a conventional example. 1,21,41,61 …… Compressor, 2,22,42,62 …… Four-way valve, 3,23,4
3,63 …… Indoor heat exchanger, 4,24,44,64 …… Decompression mechanism, 5,2
5,45,65 …… Outdoor heat exchanger, 6,26,46,66 …… Refrigerant heater, 7,27,47,67 …… Refrigerant pump, 48,68 …… Gas-liquid separator.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも圧縮機、四方弁、室外熱交換
器、減圧機構、室内熱交換器、冷媒ポンプ、冷媒加熱器
を備え、前記冷媒ポンプと前記冷媒加熱器と前記四方弁
と前記室内熱交換器と前記室外熱交換器を順次環状に配
管接続し、前記室内熱交換器と前記室外熱交換器をつな
ぐ配管の一部に前記室内熱交換器から前記室外熱交換器
への方向にのみ冷媒の流通を可能にする第1の逆止弁を
設け、前記室外熱交換器と前記冷媒ポンプの間に第1の
電磁弁を設け、前記冷媒加熱器と前記四方弁をつなぐ配
管の一部に前記冷媒加熱器から前記四方弁への方向にの
み冷媒の流通を可能にする第2の逆止弁を設け、前記第
2の逆止弁の入口側と出口側をそれぞれ第2、第3の電
磁弁を介して前記圧縮機の吸入側と吐出側に接続し、さ
らに前記圧縮機の吸入側を第4の電磁弁および前記四方
弁を順次経由し、前記室外熱交換器と前記第1の電磁弁
とを結ぶ配管に接続して冷房用回路を構成し、前記第1
の逆止弁と逆向きの第3の逆止弁およびこの第3の逆止
弁と直列に接続した減圧機構を前記第1の逆止弁に並列
に接続した冷媒加熱式空気調和機。
1. A compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing mechanism, an indoor heat exchanger, a refrigerant pump, a refrigerant heater, the refrigerant pump, the refrigerant heater, the four-way valve, and the indoor heat. The exchanger and the outdoor heat exchanger are connected to each other in a circular pipe, and a part of the pipe connecting the indoor heat exchanger and the outdoor heat exchanger is provided only in the direction from the indoor heat exchanger to the outdoor heat exchanger. A first check valve for allowing the flow of refrigerant is provided, a first electromagnetic valve is provided between the outdoor heat exchanger and the refrigerant pump, and a part of a pipe connecting the refrigerant heater and the four-way valve. Is provided with a second check valve that allows the refrigerant to flow only in the direction from the refrigerant heater to the four-way valve, and an inlet side and an outlet side of the second check valve are second and third, respectively. Is connected to the suction side and the discharge side of the compressor via the solenoid valve of Side via the fourth solenoid valve and the four-way valve sequentially, and a circuit for cooling by connecting to a pipe connecting the said outdoor heat exchanger of the first solenoid valve, said first
Refrigerant heating type air conditioner in which a third check valve in the opposite direction to the check valve and a pressure reducing mechanism connected in series with the third check valve are connected in parallel to the first check valve.
【請求項2】第1の逆止弁と室外熱交換器を結ぶ配管の
途中に気液分離器を設け、前記気液分離器のガス側出口
と室外熱交換器、第1の電磁弁を順次接続し、さらに前
記気液分離器の液側出口を第5の電磁弁を途中に備えた
配管で前記室外熱交換器と前記第1の電磁弁とを結ぶ配
管に接続した請求項1記載の冷媒加熱式空気調和機。
2. A gas-liquid separator is provided in the middle of a pipe connecting the first check valve and the outdoor heat exchanger, and the gas-side outlet of the gas-liquid separator, the outdoor heat exchanger, and the first solenoid valve are connected. The liquid-side outlet of the gas-liquid separator is connected to a pipe connecting the outdoor heat exchanger and the first solenoid valve by a pipe having a fifth solenoid valve in the middle. Refrigerant heating type air conditioner.
【請求項3】冷媒ポンプと並列に室外熱交換器から冷媒
加熱器への方向にのみ冷媒の流通を可能にする第4の逆
止弁を設けた請求項1または2記載の冷房加熱式空気調
和機。
3. The air-cooling type heating air according to claim 1, further comprising a fourth check valve provided in parallel with the refrigerant pump to allow the refrigerant to flow only in the direction from the outdoor heat exchanger to the refrigerant heater. Harmony machine.
【請求項4】請求項1乃至3のうちのいずれか1つに記
載の冷媒加熱式空気調和機において、その冷媒加熱運転
起動時に先ず圧縮機を用いて起動し、冷凍サイクルが安
定した時点で冷媒ポンプを起動し、両者を並行して運転
する過程を経た後、圧縮機の吸入側の第2の電磁弁を閉
じ、圧縮機内部の冷媒を排出させた後に、吐出側の第3
の電磁弁を閉じ、圧縮機を停止して冷媒ポンプ単独の運
転に切り換える冷媒加熱式空気調和機の起動方法。
4. The refrigerant heating type air conditioner according to any one of claims 1 to 3, wherein when the refrigerant heating operation is started, first the compressor is started and the refrigeration cycle is stabilized. After the process of operating the refrigerant pump and operating both in parallel, the second electromagnetic valve on the suction side of the compressor is closed to discharge the refrigerant inside the compressor, and then the third on the discharge side.
A method for starting a refrigerant heating type air conditioner in which the solenoid valve is closed, the compressor is stopped, and the operation of the refrigerant pump alone is switched to.
JP19332790A 1990-07-20 1990-07-20 Refrigerant heating type air conditioner and starting method thereof Expired - Lifetime JP2682729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19332790A JP2682729B2 (en) 1990-07-20 1990-07-20 Refrigerant heating type air conditioner and starting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19332790A JP2682729B2 (en) 1990-07-20 1990-07-20 Refrigerant heating type air conditioner and starting method thereof

Publications (2)

Publication Number Publication Date
JPH0480560A JPH0480560A (en) 1992-03-13
JP2682729B2 true JP2682729B2 (en) 1997-11-26

Family

ID=16306057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19332790A Expired - Lifetime JP2682729B2 (en) 1990-07-20 1990-07-20 Refrigerant heating type air conditioner and starting method thereof

Country Status (1)

Country Link
JP (1) JP2682729B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101533112B1 (en) * 2008-08-25 2015-07-02 엘지전자 주식회사 Heat pump system and method for controlling the same
CN106642773A (en) * 2016-12-12 2017-05-10 珠海格力电器股份有限公司 Air conditioning system and control method thereof

Also Published As

Publication number Publication date
JPH0480560A (en) 1992-03-13

Similar Documents

Publication Publication Date Title
CN105066349B (en) Indoor unit mode switching control method of heat recovery multi-split air conditioner and heat recovery multi-split air conditioner
JP3984258B2 (en) Air conditioner
JPH06185822A (en) Air conditioner
JP4031560B2 (en) Air conditioner
JP2682729B2 (en) Refrigerant heating type air conditioner and starting method thereof
JP5601890B2 (en) Air conditioner
KR100528292B1 (en) Heat-pump type air conditioner
JP2924954B2 (en) Heat pump system for both cooling and heating
JP2682730B2 (en) Refrigerant heating type air conditioner and control method thereof
JPH04278149A (en) Cooling and heating device
JPH0587426A (en) Air-conditioner
JPH0297847A (en) Separate type air conditioner designed for multi chambers
JP2888688B2 (en) Refrigerant heating air conditioner and control method thereof
JPS632859Y2 (en)
JP2005061740A (en) Air conditioner
JPH06174313A (en) Air conditioner
EP3726162A1 (en) Air conditioning apparatus
JP2874975B2 (en) Air conditioner
JPH09250819A (en) Multi-type air conditioner
JP2003042505A (en) Air conditioner and method of controlling its operation
JPH0120709B2 (en)
JPH03230060A (en) Heat pump type air conditioner
JPH0633910B2 (en) Heat pump refrigeration system
JPH062963A (en) Air conditioner
JPH05340625A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100808

EXPY Cancellation because of completion of term